summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-05-03 09:46:22 +0100
committerGitHub <noreply@github.com>2018-05-03 09:46:22 +0100
commitb9ae46b8ee314ae6d605eca3870ecf33d1c72c4f (patch)
treefbce834a3d8af6cc27010163e2ece956ccdcfc3d /Readme.md
parent885c2879cec3aef13b66604e899fd454aa53c65a (diff)
downloadregularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.gz
regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.bz2
regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.xz
regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.zip
readme updates
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md19
1 files changed, 8 insertions, 11 deletions
diff --git a/Readme.md b/Readme.md
index 8a67c60..de1dcbf 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,9 +1,6 @@
# CCPi-Regularisation Toolkit (CCPi-RGL)
-**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed.
-CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited for
-[splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), of ADMM or FISTA type. Furthermore,
-the toolkit can be used independently to solve image denoising problems. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
+**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed. CCPi-RGL software consists of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as ADMM and FISTA. Furthermore, the toolkit can be used independently to solve image denoising and inpaiting tasks. The core modules are written in C-OMP and CUDA languages, wrappers for Matlab and Python are provided.**
<div align="center">
<img src="docs/images/probl.png" height="225"><br>
@@ -55,19 +52,19 @@ the toolkit can be used independently to solve image denoising problems. The cor
```
### References:
-*1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.*
+*1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://doi.org/10.1016/0167-2789(92)90242-F)*
-*2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.*
+*2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)*
-*3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.*
+*3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)*
-*4. Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems*
+*4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86)* [CODE to reproduce results](https://github.com/dkazanc/multi-channel-X-ray-CT)
-*5. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.*
+*5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)*
-*6. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.*
+*6. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)*
-*7. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.*
+*7. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)*
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)