diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-05-03 09:46:22 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-05-03 09:46:22 +0100 |
commit | b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f (patch) | |
tree | fbce834a3d8af6cc27010163e2ece956ccdcfc3d /Readme.md | |
parent | 885c2879cec3aef13b66604e899fd454aa53c65a (diff) | |
download | regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.gz regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.bz2 regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.tar.xz regularization-b9ae46b8ee314ae6d605eca3870ecf33d1c72c4f.zip |
readme updates
Diffstat (limited to 'Readme.md')
-rw-r--r-- | Readme.md | 19 |
1 files changed, 8 insertions, 11 deletions
@@ -1,9 +1,6 @@ # CCPi-Regularisation Toolkit (CCPi-RGL) -**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed. -CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited for -[splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), of ADMM or FISTA type. Furthermore, -the toolkit can be used independently to solve image denoising problems. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** +**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed. CCPi-RGL software consists of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as ADMM and FISTA. Furthermore, the toolkit can be used independently to solve image denoising and inpaiting tasks. The core modules are written in C-OMP and CUDA languages, wrappers for Matlab and Python are provided.** <div align="center"> <img src="docs/images/probl.png" height="225"><br> @@ -55,19 +52,19 @@ the toolkit can be used independently to solve image denoising problems. The cor ``` ### References: -*1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.* +*1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://doi.org/10.1016/0167-2789(92)90242-F)* -*2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.* +*2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)* -*3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.* +*3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)* -*4. Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems* +*4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86)* [CODE to reproduce results](https://github.com/dkazanc/multi-channel-X-ray-CT) -*5. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.* +*5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)* -*6. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.* +*6. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)* -*7. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.* +*7. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)* ### License: [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) |