summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-04-16 15:29:57 +0100
committerGitHub <noreply@github.com>2018-04-16 15:29:57 +0100
commit3d17b516f269921f5c8fb4eb54cec49f732e27d5 (patch)
treeb6dd09825750854bf6c87cee8e544c2278ac5586 /Readme.md
parent7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69 (diff)
parent57727584760e6b1a980071587e1f1e8910c7d6a3 (diff)
downloadregularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.gz
regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.bz2
regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.xz
regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.zip
Merge pull request #50 from vais-ral/SB_TV
Split Bregman method
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md12
1 files changed, 6 insertions, 6 deletions
diff --git a/Readme.md b/Readme.md
index 31d03a1..a260bb3 100644
--- a/Readme.md
+++ b/Readme.md
@@ -14,11 +14,12 @@ can also be used as image denoising iterative filters. The core modules are writ
## Package modules (regularisers):
### Single-channel
-1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D GPU/CPU]; (Ref. 1)
-2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D GPU/CPU]; (Ref. 2)
+1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D CPU/GPU]; (Ref. 1)
+2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D CPU/GPU]; (Ref. 2)
+3. Split-Bregman (SB) Total Variation [2D/3D CPU/GPU]; (Ref. 4)
### Multi-channel
-1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D GPU/CPU]; (Ref. 4,2)
+1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D CPU/GPU]; (Ref. 3,2)
## Installation:
@@ -43,12 +44,11 @@ can also be used as image denoising iterative filters. The core modules are writ
### References:
1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.
2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
-3. Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-4. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.
+3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.
+4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
### Acknowledgments:
CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group and STFC SCD software developers. Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com
-