summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-05-23 15:46:55 +0100
committerGitHub <noreply@github.com>2018-05-23 15:46:55 +0100
commitfbb1f7aad7e168b538ecc8808d6719ecaac83e7f (patch)
tree91981bc752a464d46962f1e161c7fd62aabf26cd
parent941d3924152e4f7edd205cd03bdc1e4f0fab1d56 (diff)
downloadregularization-fbb1f7aad7e168b538ecc8808d6719ecaac83e7f.tar.gz
regularization-fbb1f7aad7e168b538ecc8808d6719ecaac83e7f.tar.bz2
regularization-fbb1f7aad7e168b538ecc8808d6719ecaac83e7f.tar.xz
regularization-fbb1f7aad7e168b538ecc8808d6719ecaac83e7f.zip
readme updated1
-rw-r--r--Readme.md18
1 files changed, 9 insertions, 9 deletions
diff --git a/Readme.md b/Readme.md
index f3076e1..2144d3e 100644
--- a/Readme.md
+++ b/Readme.md
@@ -54,23 +54,23 @@
```
### References:
-*1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://doi.org/10.1016/0167-2789(92)90242-F)*
+1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://doi.org/10.1016/0167-2789(92)90242-F)*
-*2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)*
+2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)*
-*3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)*
+3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)*
-*4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86)* **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)
+4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86)* **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)
-*5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)*
+5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)*
-*6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), pp.492-526.](https://doi.org/10.1137/090769521)
+6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), pp.492-526.](https://doi.org/10.1137/090769521)
-*7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)
+7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)
-*8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)*
+8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)*
-*9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.](https://doi.org/10.1007/s11263-010-0330-1)*
+9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.](https://doi.org/10.1007/s11263-010-0330-1)*
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)