diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-03 21:53:18 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-03 21:53:18 +0100 |
commit | e330e54d386eea70c9240cd870a771c451fdce01 (patch) | |
tree | c64d5f4e7e70b280c4240d3626495ba20a741147 | |
parent | 52ed0437bfbf5bb8a6fdafd65628c4460184fd2d (diff) | |
download | regularization-e330e54d386eea70c9240cd870a771c451fdce01.tar.gz regularization-e330e54d386eea70c9240cd870a771c451fdce01.tar.bz2 regularization-e330e54d386eea70c9240cd870a771c451fdce01.tar.xz regularization-e330e54d386eea70c9240cd870a771c451fdce01.zip |
readme and pyx updated
-rw-r--r-- | Readme.md | 86 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularizers.pyx | 12 | ||||
-rw-r--r-- | Wrappers/Python/src/gpu_regularizers.pyx | 307 |
3 files changed, 40 insertions, 365 deletions
@@ -1,77 +1,37 @@ -# FISTA Reconstruction (Daniil Kazantsev) +# CCPi-Regularisation Toolkit (CCPi-RUT) -# General Description +**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise convergence and make the reconstruction problem more well-posed. +CCPi-RUT is released under Apache 2.0 license and consists of 2D/3D regularisation methods which frequently used for IIR. +The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** -Software for reconstructing 2D/3D x-ray and neutron tomography datasets. The data can be undersampled, of poor contrast, noisy, and contain various artifacts. This is Matlab and C-omp implementation of iterative model-based algorithms with unconventional data fidelities and with various regularization terms (TV and higher-order LLT). The main optimization problem is solved using FISTA framework [1]. The presented algorithms are FBP, FISTA (Least-Squares), FISTA-LS-TV(LS-Total Variation), FISTA-GH(Group-Huber)-TV, and FISTA-Student-TV. More information about the algorithms can be found in papers [2,3]. Please cite [2] if the algorithms or data used in your research. - -## Requirements/Dependencies: +## Prerequisites: * MATLAB (www.mathworks.com/products/matlab/) - * ASTRA toolbox (https://github.com/astra-toolbox/astra-toolbox) - * C/C++ compiler (run compile_mex in Matlab first to compile C-functions) - -## Package Contents: - -### Demos: - * Demo1: Synthetic phantom reconstruction with noise, stripes and zingers - * DemoRD1: Real data reconstruction from sino_basalt.mat (see Data) - * DemoRD2: Real data reconstruction from sino3D_dendrites.mat (see Data) - -### Data: - * phantom_bone512.mat - a synthetic 2D phantom obtained from high-resolution x-ray scan - * sino_basalt.mat – 2D neutron (PSI) tomography sinogram (slice across a pack of basalt beads) - * sino3D_dendrites.mat – 3D (20 slices) x-ray synchrotron dataset (DLS) of growing dendrites + * Python (ver. 3.5); Cython + * C/C++ compilers + * nvcc compilers -### Main modules: +## Package Contents : - * FISTA_REC.m – Matlab function to perform FISTA-based reconstruction - * FGP_TV.c – C-omp function to solve for the weighted TV term using FGP - * SplitBregman_TV.c – C-omp function to solve for the weighted TV term using Split-Bregman - * LLT_model.c – C-omp function to solve for the weighted LLT [3] term using explicit scheme - * studentst.m – Matlab function to calculate Students t penalty with 'auto-tuning' + * 1. Rudin-Osher-Fatemi Total Variation (explicit PDE minimisation scheme) 2D/3D GPU/CPU [1] + * 2. Fast-Gradient-Projection Total Variation 2D/3D GPU/CPU [2] -### Supplementary: - - * zing_rings_add.m Matlab script to generate proj. data, add noise, zingers and stripes - * my_red_yellowMAP.mat – nice colormap for the phantom - * RMSE.m – Matlab function to calculate Root Mean Square Error - -### Practical advices: - * Full 3D reconstruction provides much better results than 2D. In the case of ring artifacts, 3D is almost necessary - * Depending on data it is better to use TV-LLT combination in order to achieve piecewise-smooth solution. The DemoRD2 shows one possible example when smoother surfaces required. - * L (Lipshitz constant) if tweaked can lead to faster convergence than automatic values - * Students’t penalty is generally quite stable in practice, however some tweaking of L might require for the real data - * You can choose between SplitBregman-TV and FISTA-TV modules. The former is slower but requires less memory (for 3D volume U it can take up to 6 x U), the latter is faster but can take more memory (for 3D volume U it can take up to 11 x U). Also the SplitBregman is quite good in improving contrast. - - ### Compiling: - - It is very important to check that OMP support is activated for the optimal use of all CPU cores. -#### Windows - In Windows enable OMP support, e.g.: -edit C:\Users\Username\AppData\Roaming\MathWorks\MATLAB\R2012b\mexopts.bat -In the file, edit 'OPTIMFLAGS' line as shown below (add /openmp entry at the end): -OPTIMFLAGS = /O2 /Oy- /DNDEBUG /openmp -define and set the number of CPU cores -PROC = feature('numCores'); -PROCS = num2str(PROC); -setenv('OMP_NUM_THREADS', PROCS); % you can check how many CPU's by: getenv -OMP_NUM_THREADS +### Demos: + * --- -#### Linux -In Linux in terminal: export OMP_NUM_THREADS = (the numer of CPU cores) -then run Matlab as normal -to compile with OMP support from Matlab in Windows run: -mex *.cpp CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" -to compile with OMP support from Matlab in Linux ->rename *cpp to *c and compile: -mex *.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" +### Installation: +#### Python (conda-build) +``` + export CIL_VERSION=0.9.2 +``` +#### Matlab ### References: -[1] Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences,2(1), pp.183-202. -[2] Kazantsev, D., Bleichrodt, F., van Leeuwen, T., Kaestner, A., Withers, P.J., Batenburg, K.J., 2017. A novel tomographic reconstruction method based on the robust Student's t function for suppressing data outliers, IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING (to appear) +[1] Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268. +[2] Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434. [3] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -[4] Paleo, P. and Mirone, A., 2015. Ring artifacts correction in compressed sensing tomographic reconstruction. Journal of synchrotron radiation, 22(5), pp.1268-1278. -[5] Sidky, E.Y., Jakob, H.J. and Pan, X., 2012. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Physics in medicine and biology, 57(10), p.3065. -D. Kazantsev / Harwell Campus / 16.03.17 +### Acknowledgment: +CCPi-RUT is a product of the [CCPi project](https://pages.github.com/) any questions/comments please e-mail to daniil.kazantsev@manchester.ac.uk diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx index 60e8627..f993e54 100644 --- a/Wrappers/Python/src/cpu_regularizers.pyx +++ b/Wrappers/Python/src/cpu_regularizers.pyx @@ -21,6 +21,10 @@ cimport numpy as np cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); + +#****************************************************************# +#********************** Total-variation ROF *********************# +#****************************************************************# def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb, marching_step_parameter): if inputData.ndim == 2: return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter) @@ -58,8 +62,12 @@ def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, # Run ROF iterations for 3D data TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2]) - return outputData - + return outputData + +#****************************************************************# +#********************** Total-variation FGP *********************# +#****************************************************************# +#******** Total-variation Fast-Gradient-Projection (FGP)*********# def TV_FGP_CPU(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM): if inputData.ndim == 2: return TV_FGP_2D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM) diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx index f96156a..a44bd1d 100644 --- a/Wrappers/Python/src/gpu_regularizers.pyx +++ b/Wrappers/Python/src/gpu_regularizers.pyx @@ -18,59 +18,9 @@ import cython import numpy as np cimport numpy as np - -cdef extern void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, - float sigma, int iter, float tau, float lambdaf); -cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, - int N, int M, int Z, int dimension, - int SearchW, int SimilW, - int SearchW_real, float denh2, float lambdaf); cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); -# padding function -cdef extern float pad_crop(float *A, float *Ap, - int OldSizeX, int OldSizeY, int OldSizeZ, - int NewSizeX, int NewSizeY, int NewSizeZ, - int padXY, int switchpad_crop); - -#Diffusion 4th order regularizer -def Diff4thHajiaboli(inputData, - edge_preserv_parameter, - iterations, - time_marching_parameter, - regularization_parameter): - if inputData.ndim == 2: - return Diff4thHajiaboli2D(inputData, - edge_preserv_parameter, - iterations, - time_marching_parameter, - regularization_parameter) - elif inputData.ndim == 3: - return Diff4thHajiaboli3D(inputData, - edge_preserv_parameter, - iterations, - time_marching_parameter, - regularization_parameter) -# patch-based nonlocal regularization -def NML(inputData, - SearchW_real, - SimilW, - h, - lambdaf): - if inputData.ndim == 2: - return NML2D(inputData, - SearchW_real, - SimilW, - h, - lambdaf) - elif inputData.ndim == 3: - return NML3D(inputData, - SearchW_real, - SimilW, - h, - lambdaf) - # Total-variation Rudin-Osher-Fatemi (ROF) def TV_ROF_GPU(inputData, regularization_parameter, @@ -111,255 +61,10 @@ def TV_FGP_GPU(inputData, methodTV, nonneg, printM) + +#****************************************************************# +#********************** Total-variation ROF *********************# #****************************************************************# -def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float edge_preserv_parameter, - int iterations, - float time_marching_parameter, - float regularization_parameter): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - N = dims[0] + 2; - M = dims[1] + 2; - - #A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); - #B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] A_L = \ - np.zeros([N,M], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B_L = \ - np.zeros([N,M], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \ - np.zeros([dims[0],dims[1]], dtype='float32') - #A = inputData - - # copy A to the bigger A_L with boundaries - #pragma omp parallel for shared(A_L, A) private(i,j) - cdef int i, j; - for i in range(N): - for j in range(M): - if (((i > 0) and (i < N-1)) and ((j > 0) and (j < M-1))): - #A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)] - A_L[i][j] = inputData[i-1][j-1] - - # Running CUDA code here - #Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); - Diff4th_GPU_kernel( - #<float*> A_L.data, <float*> B_L.data, - &A_L[0,0], &B_L[0,0], - N, M, 0, - edge_preserv_parameter, - iterations , - time_marching_parameter, - regularization_parameter); - # copy the processed B_L to a smaller B - for i in range(N): - for j in range(M): - if (((i > 0) and (i < N-1)) and ((j > 0) and (j < M-1))): - B[i-1][j-1] = B_L[i][j] - ##pragma omp parallel for shared(B_L, B) private(i,j) - #for (i=0; i < N; i++) { - # for (j=0; j < M; j++) { - # if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j]; - # }} - - return B - -def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float edge_preserv_parameter, - int iterations, - float time_marching_parameter, - float regularization_parameter): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - N = dims[0] + 2 - M = dims[1] + 2 - Z = dims[2] + 2 - - - #A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); - #B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] A_L = \ - np.zeros([N,M,Z], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B_L = \ - np.zeros([N,M,Z], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - #A = inputData - - # copy A to the bigger A_L with boundaries - #pragma omp parallel for shared(A_L, A) private(i,j) - cdef int i, j, k; - for i in range(N): - for j in range(M): - for k in range(Z): - if (((i > 0) and (i < N-1)) and \ - ((j > 0) and (j < M-1)) and \ - ((k > 0) and (k < Z-1))): - A_L[i][j][k] = inputData[i-1][j-1][k-1]; - - # Running CUDA code here - #Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); - Diff4th_GPU_kernel( - #<float*> A_L.data, <float*> B_L.data, - &A_L[0,0,0], &B_L[0,0,0], - N, M, Z, - edge_preserv_parameter, - iterations , - time_marching_parameter, - regularization_parameter); - # copy the processed B_L to a smaller B - for i in range(N): - for j in range(M): - for k in range(Z): - if (((i > 0) and (i < N-1)) and \ - ((j > 0) and (j < M-1)) and \ - ((k > 0) and (k < Z-1))): - B[i-1][j-1][k-1] = B_L[i][j][k] - - - return B - - -def NML2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - SearchW_real, - SimilW, - h, - lambdaf): - N = inputData.shape[0] - M = inputData.shape[1] - Z = 0 - numdims = inputData.ndim - - if h < 0: - raise ValueError('Parameter for the PB filtering function must be > 0') - - SearchW = SearchW_real + 2*SimilW; - - SearchW_full = 2*SearchW + 1; #/* the full searching window size */ - SimilW_full = 2*SimilW + 1; #/* the full similarity window size */ - h2 = h*h; - - padXY = SearchW + 2*SimilW; #/* padding sizes */ - newsizeX = N + 2*(padXY); #/* the X size of the padded array */ - newsizeY = M + 2*(padXY); #/* the Y size of the padded array */ - #newsizeZ = Z + 2*(padXY); #/* the Z size of the padded array */ - - #output - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \ - np.zeros([N,M], dtype='float32') - #/*allocating memory for the padded arrays */ - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] Ap = \ - np.zeros([newsizeX, newsizeY], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] Bp = \ - np.zeros([newsizeX, newsizeY], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] Eucl_Vec = \ - np.zeros([SimilW_full*SimilW_full], dtype='float32') - - #/*Gaussian kernel */ - cdef int count, i_n, j_n; - cdef float val; - count = 0 - for i_n in range (-SimilW, SimilW +1): - for j_n in range(-SimilW, SimilW +1): - val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW) - Eucl_Vec[count] = np.exp(-val) - count = count + 1 - - #/*Perform padding of image A to the size of [newsizeX * newsizeY] */ - switchpad_crop = 0; # /*padding*/ - pad_crop(&inputData[0,0], &Ap[0,0], M, N, 0, newsizeY, newsizeX, 0, padXY, - switchpad_crop); - - #/* Do PB regularization with the padded array */ - NLM_GPU_kernel(&Ap[0,0], &Bp[0,0], &Eucl_Vec[0], newsizeY, newsizeX, 0, - numdims, SearchW, SimilW, SearchW_real, - h2, lambdaf); - - switchpad_crop = 1; #/*cropping*/ - pad_crop(&Bp[0,0], &B[0,0], M, N, 0, newsizeX, newsizeY, 0, padXY, - switchpad_crop) - - return B - -def NML3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - SearchW_real, - SimilW, - h, - lambdaf): - N = inputData.shape[0] - M = inputData.shape[1] - Z = inputData.shape[2] - numdims = inputData.ndim - - if h < 0: - raise ValueError('Parameter for the PB filtering function must be > 0') - - SearchW = SearchW_real + 2*SimilW; - - SearchW_full = 2*SearchW + 1; #/* the full searching window size */ - SimilW_full = 2*SimilW + 1; #/* the full similarity window size */ - h2 = h*h; - - padXY = SearchW + 2*SimilW; #/* padding sizes */ - newsizeX = N + 2*(padXY); #/* the X size of the padded array */ - newsizeY = M + 2*(padXY); #/* the Y size of the padded array */ - newsizeZ = Z + 2*(padXY); #/* the Z size of the padded array */ - - #output - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \ - np.zeros([N,M,Z], dtype='float32') - #/*allocating memory for the padded arrays */ - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Ap = \ - np.zeros([newsizeX, newsizeY, newsizeZ], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Bp = \ - np.zeros([newsizeX, newsizeY, newsizeZ], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] Eucl_Vec = \ - np.zeros([SimilW_full*SimilW_full*SimilW_full], - dtype='float32') - - - #/*Gaussian kernel */ - cdef int count, i_n, j_n, k_n; - cdef float val; - count = 0 - for i_n in range (-SimilW, SimilW +1): - for j_n in range(-SimilW, SimilW +1): - for k_n in range(-SimilW, SimilW+1): - val = (i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW) - Eucl_Vec[count] = np.exp(-val) - count = count + 1 - - #/*Perform padding of image A to the size of [newsizeX * newsizeY] */ - switchpad_crop = 0; # /*padding*/ - pad_crop(&inputData[0,0,0], &Ap[0,0,0], - M, N, Z, - newsizeY, newsizeX, newsizeZ, - padXY, - switchpad_crop); - - #/* Do PB regularization with the padded array */ - NLM_GPU_kernel(&Ap[0,0,0], &Bp[0,0,0], &Eucl_Vec[0], - newsizeY, newsizeX, newsizeZ, - numdims, SearchW, SimilW, SearchW_real, - h2, lambdaf); - - switchpad_crop = 1; #/*cropping*/ - pad_crop(&Bp[0,0,0], &B[0,0,0], - M, N, Z, - newsizeX, newsizeY, newsizeZ, - padXY, - switchpad_crop) - - return B - -# Total-variation ROF def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularization_parameter, int iterations, @@ -404,8 +109,10 @@ def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, dims[0], dims[1], dims[2]); return outputData - -# Total-variation Fast-Gradient-Projection (FGP) +#****************************************************************# +#********************** Total-variation FGP *********************# +#****************************************************************# +#******** Total-variation Fast-Gradient-Projection (FGP)*********# def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularization_parameter, int iterations, |