summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-01-28 13:24:07 +0000
committerGitHub <noreply@github.com>2019-01-28 13:24:07 +0000
commitd5ae6207e1045af233b9c27f94d78a3e1e8600bd (patch)
treefd9a560e080536b3afdab095bee5e962f3b41a49
parent0d74c50c48ae518fedb44e5d04a148eaa02b485b (diff)
parent73eab10a44572b117054c3cff2cc1f14c58fdfa7 (diff)
downloadregularization-d5ae6207e1045af233b9c27f94d78a3e1e8600bd.tar.gz
regularization-d5ae6207e1045af233b9c27f94d78a3e1e8600bd.tar.bz2
regularization-d5ae6207e1045af233b9c27f94d78a3e1e8600bd.tar.xz
regularization-d5ae6207e1045af233b9c27f94d78a3e1e8600bd.zip
Merge pull request #94 from TomasKulhanek/master
Universal build script
-rw-r--r--Readme.md5
-rwxr-xr-xbuild/jenkins-build.sh2
2 files changed, 5 insertions, 2 deletions
diff --git a/Readme.md b/Readme.md
index 1745b9e..4fc23d4 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,7 +1,10 @@
+# CCPi-Regularisation Toolkit (CCPi-RGL)
+
+
+
| Master | Development |
|--------|-------------|
| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |
-# CCPi-Regularisation Toolkit (CCPi-RGL)
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
diff --git a/build/jenkins-build.sh b/build/jenkins-build.sh
index 190ac92..5b6c9ce 100755
--- a/build/jenkins-build.sh
+++ b/build/jenkins-build.sh
@@ -1,2 +1,2 @@
#!/usr/bin/env bash
-bash <(curl -L https://raw.githubusercontent.com/TomasKulhanek/CCPi-VirtualMachine/master/scripts/jenkins-build.sh)
+bash <(curl -L https://raw.githubusercontent.com/vais-ral/CCPi-VirtualMachine/master/scripts/jenkins-build.sh)