diff options
author | Tomas Kulhanek <tomas.kulhanek@stfc.ac.uk> | 2019-01-23 10:09:32 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-01-23 10:09:32 +0000 |
commit | b9b1254ea345330326db3883aafd8a8a66c6c67a (patch) | |
tree | 2ee787e5203e23ebb1c199e890ae6e701cd895c6 | |
parent | 00bcc569758d9429ecb3234e64c7ac05b3f8e3c1 (diff) | |
download | regularization-b9b1254ea345330326db3883aafd8a8a66c6c67a.tar.gz regularization-b9b1254ea345330326db3883aafd8a8a66c6c67a.tar.bz2 regularization-b9b1254ea345330326db3883aafd8a8a66c6c67a.tar.xz regularization-b9b1254ea345330326db3883aafd8a8a66c6c67a.zip |
Update Readme.md
-rw-r--r-- | Readme.md | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -1,5 +1,5 @@ Master: [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) -Development status (PR, non-master branch): [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/badge/icon)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) +Development status (PR, non-master branch): [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) # CCPi-Regularisation Toolkit (CCPi-RGL) **Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** |