summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-01-25 21:53:55 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-30 12:03:59 +0000
commitb0af00c358ababaa47afdc581734018b2faf4f0f (patch)
treeacfcdd1beb1ce4da72240c925bec09ade7ad8292
parent9c341f9187d5f973e3d14425392a306e796524b8 (diff)
downloadregularization-b0af00c358ababaa47afdc581734018b2faf4f0f.tar.gz
regularization-b0af00c358ababaa47afdc581734018b2faf4f0f.tar.bz2
regularization-b0af00c358ababaa47afdc581734018b2faf4f0f.tar.xz
regularization-b0af00c358ababaa47afdc581734018b2faf4f0f.zip
WIP
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu26
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h2
-rw-r--r--Wrappers/Python/src/fista_module_gpu.pyx75
3 files changed, 86 insertions, 17 deletions
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
index 1089539..0f18b41 100644
--- a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
@@ -237,3 +237,29 @@ extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M
checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+ /* padding-cropping function */
+ int i,j,k;
+ if (NewSizeZ > 1) {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ for (k=0; k < NewSizeZ; k++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
+ if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+ }
+ }}}
+ }
+ else {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
+ if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+ }
+ }}
+ }
+ return *Ap;
+} \ No newline at end of file
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
index f370d0d..3c2bbc5 100644
--- a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
@@ -3,5 +3,5 @@
#include "CCPiDefines.h"
extern "C" CCPI_EXPORT void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda);
-
+extern "C" CCPI_EXPORT float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
#endif
diff --git a/Wrappers/Python/src/fista_module_gpu.pyx b/Wrappers/Python/src/fista_module_gpu.pyx
index da86c0a..41cf4a6 100644
--- a/Wrappers/Python/src/fista_module_gpu.pyx
+++ b/Wrappers/Python/src/fista_module_gpu.pyx
@@ -74,14 +74,14 @@ def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
# Running CUDA code here
#Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-# Diff4th_GPU_kernel(
-# #<float*> A_L.data, <float*> B_L.data,
-# &A_L[0,0], &B_L[0,0],
-# N, M, 0,
-# edge_preserving_parameter,
-# iterations ,
-# tau,
-# regularization_parameter)
+ Diff4th_GPU_kernel(
+ #<float*> A_L.data, <float*> B_L.data,
+ &A_L[0,0], &B_L[0,0],
+ N, M, 0,
+ edge_preserving_parameter,
+ iterations ,
+ tau,
+ regularization_parameter)
# copy the processed B_L to a smaller B
for i in range(N):
for j in range(M):
@@ -131,14 +131,14 @@ def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
# Running CUDA code here
#Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-# Diff4th_GPU_kernel(
-# #<float*> A_L.data, <float*> B_L.data,
-# &A_L[0,0,0], &B_L[0,0,0],
-# N, M, Z,
-# edge_preserving_parameter,
-# iterations ,
-# tau,
-# regularization_parameter)
+ Diff4th_GPU_kernel(
+ #<float*> A_L.data, <float*> B_L.data,
+ &A_L[0,0,0], &B_L[0,0,0],
+ N, M, Z,
+ edge_preserving_parameter,
+ iterations ,
+ tau,
+ regularization_parameter)
# copy the processed B_L to a smaller B
for i in range(N):
for j in range(M):
@@ -152,3 +152,46 @@ def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
return B
+def NML(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter):
+ if inputData.ndim == 2:
+ return NML2D(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter)
+ elif inputData.ndim == 3:
+ return NML3D(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter)
+
+ #SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+ #SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
+ #h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ #lambda = (float) mxGetScalar(prhs[4]);
+
+def NML2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ SearchW_real,
+ SimilW,
+ h,
+ lambdaf):
+ N, M = inputData.shape
+ if h < 0:
+ raise ValueError('Parameter for the PB filtering function must be > 0')
+
+ SearchW = SearchW_real + 2*SimilW;
+
+ SearchW_full = 2*SearchW + 1; #/* the full searching window size */
+ SimilW_full = 2*SimilW + 1; #/* the full similarity window size */
+ h2 = h*h;
+
+ padXY = SearchW + 2*SimilW; #/* padding sizes */
+ newsizeX = N + 2*(padXY); #/* the X size of the padded array */
+ newsizeY = M + 2*(padXY); #/* the Y size of the padded array */
+ newsizeZ = Z + 2*(padXY); #/* the Z size of the padded array */
+
+ B = np.zeros((N,M), dtype=np.float )
+
+ \ No newline at end of file