diff options
author | dkazanc <dkazanc@hotmail.com> | 2019-03-12 17:29:07 +0000 |
---|---|---|
committer | dkazanc <dkazanc@hotmail.com> | 2019-03-12 17:29:07 +0000 |
commit | 420e71a0dcb42e91e1aa93306c2e2f688b309620 (patch) | |
tree | 116a2e9d8cbd0ed5297497c99d3747feba5a79c2 | |
parent | b901525766f8e3473ef58a19bf3fadc178d3778c (diff) | |
download | regularization-420e71a0dcb42e91e1aa93306c2e2f688b309620.tar.gz regularization-420e71a0dcb42e91e1aa93306c2e2f688b309620.tar.bz2 regularization-420e71a0dcb42e91e1aa93306c2e2f688b309620.tar.xz regularization-420e71a0dcb42e91e1aa93306c2e2f688b309620.zip |
cmakelists fixes, matlab wrappers done
26 files changed, 106 insertions, 121 deletions
diff --git a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py index 01491d9..ca8f1d2 100644 --- a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py +++ b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -111,7 +111,7 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets - tolerance = 1e-08, # tolerance to stop outer iterations earlier + tolerance = 0.0, # tolerance to stop inner (regularisation) iterations earlier device='gpu') #%% print ("Reconstructing with ADMM method using SB-TV penalty") @@ -228,4 +228,4 @@ for i in range(0,np.size(RecADMM_reg_tgv,0)): # Saving recpnstructed data with a unique time label np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) del RecADMM_reg_tgv -#%%
\ No newline at end of file +#%% diff --git a/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py b/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py index 59ffc0e..be99afe 100644 --- a/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py +++ b/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py @@ -77,7 +77,7 @@ RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector d datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets - tolerance = 1e-08, # tolerance to stop outer iterations earlier + tolerance = 0.0, # tolerance to stop inner (regularisation) iterations earlier device='gpu') #%% param_space = 30 diff --git a/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py index 99b9fe8..ae2bfba 100644 --- a/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py +++ b/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -78,7 +78,6 @@ plt.title('3D Phantom, coronal (Y-Z) view') plt.subplot(133) plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1, cmap="PuOr") plt.title('3D Phantom, sagittal view') - """ plt.show() #%% @@ -164,7 +163,7 @@ RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector d datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets - tolerance = 1e-08, # tolerance to stop inner iterations earlier + tolerance = 0.0, # tolerance to stop inner (regularisation) iterations earlier device='gpu') #%% print ("Reconstructing with ADMM method using SB-TV penalty") diff --git a/demos/demoMatlab_3Ddenoise.m b/demos/demoMatlab_3Ddenoise.m index cf2c88a..ec0fd88 100644 --- a/demos/demoMatlab_3Ddenoise.m +++ b/demos/demoMatlab_3Ddenoise.m @@ -23,7 +23,8 @@ lambda_reg = 0.03; % regularsation parameter for all methods fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); tau_rof = 0.0025; % time-marching constant iter_rof = 300; % number of ROF iterations -tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; +epsil_tol = 0.0; % tolerance +tic; [u_rof,infovec] = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); @@ -39,8 +40,8 @@ figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); %% fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +epsil_tol = 0.0; % tolerance +tic; [u_fgp,infovec] = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); @@ -56,8 +57,8 @@ figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); %% fprintf('Denoise a volume using the SB-TV model (CPU) \n'); iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +epsil_tol = 0.0; % tolerance +tic; [u_sb,infovec] = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); @@ -76,7 +77,8 @@ lambda_ROF = lambda_reg; % ROF regularisation parameter lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter iter_LLT = 300; % iterations tau_rof_llt = 0.0025; % time-marching constant -tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +epsil_tol = 0.0; % tolerance +tic; [u_rof_llt, infovec] = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); @@ -86,7 +88,7 @@ figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); % lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter % iter_LLT = 300; % iterations % tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; % rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); % fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); % figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); @@ -96,7 +98,8 @@ iter_diff = 300; % number of diffusion iterations lambda_regDiff = 0.025; % regularisation for the diffusivity sigmaPar = 0.015; % edge-preserving parameter tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +epsil_tol = 0.0; % tolerance +tic; [u_diff, infovec] = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); @@ -106,7 +109,7 @@ figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); % lambda_regDiff = 0.025; % regularisation for the diffusivity % sigmaPar = 0.015; % edge-preserving parameter % tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; % rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); % fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); % figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); @@ -116,7 +119,8 @@ iter_diff = 300; % number of diffusion iterations lambda_regDiff = 3.5; % regularisation for the diffusivity sigmaPar = 0.02; % edge-preserving parameter tau_param = 0.0015; % time-marching constant -tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +epsil_tol = 0.0; % tolerance +tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); @@ -126,7 +130,7 @@ figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CP % lambda_regDiff = 3.5; % regularisation for the diffusivity % sigmaPar = 0.02; % edge-preserving parameter % tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; % rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); % fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); % figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); @@ -136,7 +140,8 @@ lambda_TGV = 0.03; % regularisation parameter alpha1 = 1.0; % parameter to control the first-order term alpha0 = 2.0; % parameter to control the second-order term iter_TGV = 500; % number of Primal-Dual iterations for TGV -tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +epsil_tol = 0.0; % tolerance +tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, epsil_tol); toc; rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); @@ -146,7 +151,7 @@ figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); % alpha1 = 1.0; % parameter to control the first-order term % alpha0 = 2.0; % parameter to control the second-order term % iter_TGV = 500; % number of Primal-Dual iterations for TGV -% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, epsil_tol); toc; % rmseTGV = RMSE(Ideal3D(:),u_tgv_gpu(:)); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); % figure; imshow(u_tgv_gpu(:,:,3), [0 1]); title('TGV denoised volume (GPU)'); @@ -163,7 +168,7 @@ vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance +epsil_tol = 0.0; % tolerance eta = 0.2; % Reference image gradient smoothing constant tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); @@ -179,7 +184,7 @@ vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance +epsil_tol = 0.0; % tolerance eta = 0.2; % Reference image gradient smoothing constant tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m index 7581068..377a447 100644 --- a/demos/demoMatlab_denoise.m +++ b/demos/demoMatlab_denoise.m @@ -14,10 +14,10 @@ u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; figure; imshow(u0, [0 1]); title('Noisy image'); %% fprintf('Denoise using the ROF-TV model (CPU) \n'); -lambda_reg = 0.02; % regularsation parameter for all methods +lambda_reg = 0.03; % regularsation parameter for all methods iter_rof = 2000; % number of ROF iterations -tau_rof = 0.001; % time-marching constant -epsil_tol = 0.0; % tolerance +tau_rof = 0.01; % time-marching constant +epsil_tol = 0.0; % tolerance / 1.0e-06 tic; [u_rof,infovec] = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value rmseROF = (RMSE(u_rof(:),Im(:))); @@ -26,14 +26,14 @@ fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval); figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% -% fprintf('Denoise using the ROF-TV model (GPU) \n'); -% tic; [u_rofG,infovec] = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; -% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); +%fprintf('Denoise using the ROF-TV model (GPU) \n'); +%tic; [u_rofG,infovec] = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; +%figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -lambda_reg = 0.02; +lambda_reg = 0.03; iter_fgp = 500; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance +epsil_tol = 0.0; % tolerance tic; [u_fgp,infovec] = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value rmseFGP = (RMSE(u_fgp(:),Im(:))); @@ -48,8 +48,8 @@ figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% fprintf('Denoise using the SB-TV model (CPU) \n'); lambda_reg = 0.03; -iter_sb = 300; % number of SB iterations -epsil_tol = 1.0e-06; % tolerance +iter_sb = 200; % number of SB iterations +epsil_tol = 0.0; % tolerance tic; [u_sb,infovec] = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value rmseSB = (RMSE(u_sb(:),Im(:))); @@ -67,7 +67,7 @@ iter_diff = 450; % number of diffusion iterations lambda_regDiff = 0.025; % regularisation for the diffusivity sigmaPar = 0.015; % edge-preserving parameter tau_param = 0.02; % time-marching constant -epsil_tol = 1.0e-06; % tolerance +epsil_tol = 0.0; % tolerance tic; [u_diff,infovec] = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; rmseDiffus = (RMSE(u_diff(:),Im(:))); fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); @@ -75,20 +75,17 @@ fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval); figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); %% -% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 450; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); +%fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); +%tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; +%figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); %% fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.045; % regularisation parameter +lambda_TGV = 0.035; % regularisation parameter alpha1 = 1.0; % parameter to control the first-order term alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 2500; % number of Primal-Dual iterations for TGV -tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +iter_TGV = 20; % number of Primal-Dual iterations for TGV +epsil_tol = 0.0; % tolerance +tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, epsil_tol); toc; rmseTGV = (RMSE(u_tgv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); [ssimval] = ssim(u_tgv*255,single(Im)*255); @@ -96,23 +93,15 @@ fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); %% % fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.034; % regularisation parameter -% alpha1 = 1.0; % parameter to control the first-order term -% alpha0 = 1.0; % parameter to control the second-order term -% iter_TGV = 500; % number of Primal-Dual iterations for TGV -% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); -% [ssimval] = ssim(u_tgv_gpu*255,single(Im)*255); -% fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); +% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, epsil_tol); toc; % figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); %% fprintf('Denoise using the ROF-LLT model (CPU) \n'); lambda_ROF = 0.02; % ROF regularisation parameter -lambda_LLT = 0.01; % LLT regularisation parameter -iter_LLT = 1000; % iterations -tau_rof_llt = 0.0025; % time-marching constant -epsil_tol = 1.0e-06; % tolerance +lambda_LLT = 0.015; % LLT regularisation parameter +iter_LLT = 2000; % iterations +tau_rof_llt = 0.01; % time-marching constant +epsil_tol = 0.0; % tolerance tic; [u_rof_llt,infovec] = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt,epsil_tol); toc; rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); @@ -121,21 +110,15 @@ fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval); figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); %% % fprintf('Denoise using the ROF-LLT model (GPU) \n'); -% lambda_ROF = 0.016; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.25; % LLT regularisation parameter -% iter_LLT = 500; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g); +% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; % figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); %% fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 2.5; % regularisation for the diffusivity +lambda_regDiff = 3; % regularisation for the diffusivity sigmaPar = 0.03; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -epsil_tol = 1.0e-06; % tolerance +tau_param = 0.0025; % time-marching constant +epsil_tol = 0.0; % tolerance tic; [u_diff4,infovec] = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; rmseDiffHO = (RMSE(u_diff4(:),Im(:))); fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); @@ -143,13 +126,9 @@ fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rms fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval); figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); %% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); +%fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +%tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +%figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); %% fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); SearchingWindow = 7; @@ -177,7 +156,7 @@ u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; lambda_reg = 0.04; iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance +epsil_tol = 0.0; % tolerance eta = 0.2; % Reference image gradient smoothing constant tic; [u_fgp_dtv,infovec] = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); @@ -10,17 +10,17 @@ export CIL_VERSION=19.03 # install Python modules without CUDA # cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install # install Python modules with CUDA -cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install +# cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install # install Matlab modules without CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install +#cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install # install Matlab modules with CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install +cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install make install #### Python #cp install/lib/libcilreg.so install/python/ccpi/filters # cd install/python -export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib -spyder +# export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib +# spyder ##### Matlab (Linux) #PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab -#PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/lib:$LD_LIBRARY_PATH" matlab +PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/lib:$LD_LIBRARY_PATH" matlab diff --git a/src/Matlab/CMakeLists.txt b/src/Matlab/CMakeLists.txt index 6c5e6be..0897d7a 100755 --- a/src/Matlab/CMakeLists.txt +++ b/src/Matlab/CMakeLists.txt @@ -85,10 +85,10 @@ foreach(tgt RANGE 0 ${num}) )
target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
+ PUBLIC ${CMAKE_SOURCE_DIR}/src/Core/regularisers_CPU
+ ${CMAKE_SOURCE_DIR}/src/Core/regularisers_GPU
+ ${CMAKE_SOURCE_DIR}/src/Core/inpainters_CPU
+ ${CMAKE_SOURCE_DIR}/src/Core/
${MATLAB_INCLUDE_DIR})
set_property(TARGET ${current_target} PROPERTY C_STANDARD 99)
list(APPEND CPU_MEX_TARGETS ${current_target})
@@ -131,14 +131,16 @@ message("number of GPU files " ${num}) )
target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
+ PUBLIC ${CMAKE_SOURCE_DIR}/src/Core/regularisers_CPU
+ ${CMAKE_SOURCE_DIR}/src/Core/regularisers_GPU
+ ${CMAKE_SOURCE_DIR}/src/Core/inpainters_CPU
+ ${CMAKE_SOURCE_DIR}/src/Core/
${MATLAB_INCLUDE_DIR})
list(APPEND GPU_MEX_TARGETS ${current_target})
- INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}")
+ INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}") + +
endforeach()
add_custom_target(MatlabWrapperGPU DEPENDS ${GPU_MEX_TARGETS})
diff --git a/src/Matlab/mex_compile/installed/MEXed_files_location.txt b/src/Matlab/mex_compile/installed/MEXed_files_location.txt deleted file mode 100644 index e69de29..0000000 --- a/src/Matlab/mex_compile/installed/MEXed_files_location.txt +++ /dev/null diff --git a/src/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c b/src/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c index a003596..887a76d 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c +++ b/src/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c @@ -78,9 +78,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); Diffus4th_CPU_main(Input, Output, infovec, lambda, sigma, iter_numb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c index f6db6c8..251ac52 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c @@ -89,7 +89,7 @@ void mexFunction( if (number_of_dims == 3) { Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); diff --git a/src/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/src/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c index 3122610..f1b70a8 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c @@ -101,10 +101,10 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); /* running the function */ dTV_FGP_CPU_main(Input, InputRef, Output, infovec, lambda, iter, epsil, eta, methTV, nonneg, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c b/src/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c index f630397..5c6de9d 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c +++ b/src/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c @@ -83,9 +83,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); LLT_ROF_CPU_main(Input, Output, infovec, lambdaROF, lambdaLLT, iterationsNumb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_CPU/NonlDiff.c b/src/Matlab/mex_compile/regularisers_CPU/NonlDiff.c index 57c8811..2ca17d2 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/NonlDiff.c +++ b/src/Matlab/mex_compile/regularisers_CPU/NonlDiff.c @@ -90,9 +90,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); Diffusion_CPU_main(Input, Output, infovec, lambda, sigma, iter_numb, tau, penaltytype, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c b/src/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c index 014c0a0..34b9915 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c @@ -51,8 +51,8 @@ void mexFunction( long number_of_dims, dimX, dimY, dimZ; int IterNumb, NumNeighb = 0; unsigned short *H_i, *H_j, *H_k; - const int *dim_array; - const int *dim_array2; + const mwSize *dim_array; + const mwSize *dim_array2; float *A_orig, *Output=NULL, *Weights, lambda; dim_array = mxGetDimensions(prhs[0]); diff --git a/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c b/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c index f942539..d2f6670 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c +++ b/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c @@ -53,10 +53,10 @@ void mexFunction( int number_of_dims, SearchWindow, SimilarWin, NumNeighb; mwSize dimX, dimY, dimZ; unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; - const int *dim_array; + mwSize *dim_array; float *A, *Weights = NULL, h; - int dim_array2[3]; /* for 2D data */ - int dim_array3[4]; /* for 3D data */ + mwSize dim_array2[3]; /* for 2D data */ + mwSize dim_array3[4]; /* for 3D data */ dim_array = mxGetDimensions(prhs[0]); number_of_dims = mxGetNumberOfDimensions(prhs[0]); diff --git a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c index a7d431f..ffe7b91 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c @@ -77,9 +77,9 @@ void mexFunction( Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); TV_ROF_CPU_main(Input, Output, infovec, lambda, iter_numb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c index 495f1c9..d1bdb3a 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c @@ -82,7 +82,7 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); diff --git a/src/Matlab/mex_compile/regularisers_CPU/TGV.c b/src/Matlab/mex_compile/regularisers_CPU/TGV.c index aab01b4..2c0fcbd 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/TGV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/TGV.c @@ -57,7 +57,7 @@ void mexFunction( dim_array = mxGetDimensions(prhs[0]); /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); + if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ @@ -85,7 +85,7 @@ void mexFunction( Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); diff --git a/src/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp index 7b7a220..42874ef 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp @@ -78,9 +78,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); Diffus4th_GPU_main(Input, Output, infovec, lambda, sigma, iter_numb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp index 5ccc2b2..d08e50d 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp @@ -89,10 +89,10 @@ void mexFunction( if (number_of_dims == 3) { Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); /* running the function */ TV_FGP_GPU_main(Input, Output, infovec, lambda, iter, epsil, methTV, nonneg, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp index 6662e0b..2db4556 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp @@ -101,10 +101,10 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); /* running the function */ dTV_FGP_GPU_main(Input, InputRef, Output, infovec, lambda, iter, epsil, eta, methTV, nonneg, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp index f27767e..ff5d577 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp @@ -83,9 +83,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); LLT_ROF_GPU_main(Input, Output, infovec, lambdaROF, lambdaLLT, iterationsNumb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp index 4ce983f..43627c8 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp @@ -92,9 +92,9 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); NonlDiff_GPU_main(Input, Output, infovec, lambda, sigma, iter_numb, tau, penaltytype, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp index 4172323..d9b7e83 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp @@ -75,9 +75,9 @@ void mexFunction( Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); TV_ROF_GPU_main(Input, Output, infovec, lambda, iter_numb, tau, epsil, dimX, dimY, dimZ); -}
\ No newline at end of file +} diff --git a/src/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp index 8ec95ab..562dc65 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp @@ -72,7 +72,7 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); diff --git a/src/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp index bdfd85b..eb1f043 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp @@ -60,7 +60,7 @@ void mexFunction( dim_array = mxGetDimensions(prhs[0]); /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); + if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ @@ -88,7 +88,7 @@ void mexFunction( Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); } - int vecdim[1]; + mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); |