summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-01-25 09:47:02 +0000
committerGitHub <noreply@github.com>2019-01-25 09:47:02 +0000
commit270b8cdb335df5c9e4d85a8135c4f7c7773a688c (patch)
tree365435cc9117b3ad2cc2b663b041b7af4eee318c
parent5b8410926219639b41039c7529c7038ee11fc1d5 (diff)
parent76552e8b96018fefba4cfe9c504345330f0d86c4 (diff)
downloadregularization-270b8cdb335df5c9e4d85a8135c4f7c7773a688c.tar.gz
regularization-270b8cdb335df5c9e4d85a8135c4f7c7773a688c.tar.bz2
regularization-270b8cdb335df5c9e4d85a8135c4f7c7773a688c.tar.xz
regularization-270b8cdb335df5c9e4d85a8135c4f7c7773a688c.zip
Merge pull request #7 from TomasKulhanek/pr2test
Update Readme.md
-rw-r--r--Readme.md5
1 files changed, 4 insertions, 1 deletions
diff --git a/Readme.md b/Readme.md
index 1745b9e..4fc23d4 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,7 +1,10 @@
+# CCPi-Regularisation Toolkit (CCPi-RGL)
+
+
+
| Master | Development |
|--------|-------------|
| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |
-# CCPi-Regularisation Toolkit (CCPi-RGL)
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**