diff options
| author | dkazanc <dkazanc@hotmail.com> | 2019-12-13 17:57:21 +0000 | 
|---|---|---|
| committer | dkazanc <dkazanc@hotmail.com> | 2019-12-13 17:57:21 +0000 | 
| commit | 1e9d5bc4ad830ff6ddb3cd9fbb8239d7a93b43be (patch) | |
| tree | 4b5f18adc97ed89ff8164179f8c8397ccff1676a | |
| parent | c9fa02f93c506dcbed963ad5b51202c071e3d53d (diff) | |
| download | regularization-1e9d5bc4ad830ff6ddb3cd9fbb8239d7a93b43be.tar.gz regularization-1e9d5bc4ad830ff6ddb3cd9fbb8239d7a93b43be.tar.bz2 regularization-1e9d5bc4ad830ff6ddb3cd9fbb8239d7a93b43be.tar.xz regularization-1e9d5bc4ad830ff6ddb3cd9fbb8239d7a93b43be.zip  | |
initial modification of NDF
| -rw-r--r-- | Readme.md | 14 | ||||
| -rw-r--r-- | src/Core/regularisers_CPU/Diffusion_core.c | 88 | ||||
| -rw-r--r-- | src/Core/regularisers_GPU/NonlDiff_GPU_core.cu | 48 | 
3 files changed, 104 insertions, 46 deletions
@@ -101,13 +101,13 @@ conda install ccpi-regulariser -c ccpi -c conda-forge  #### Python (conda-build)  ``` -	export CIL_VERSION=19.10 (Unix) / set CIL_VERSION=19.10 (Windows) -	conda build recipe/ --numpy 1.15 --python 3.7 -	conda install ccpi-regulariser=${CIL_VERSION} --use-local --force-reinstall # doesn't work? -	conda install -c file://${CONDA_PREFIX}/conda-bld/ ccpi-regulariser=${CIL_VERSION} --force-reinstall # try this one -	cd demos/ -	python demo_cpu_regularisers.py # to run CPU demo -	python demo_gpu_regularisers.py # to run GPU demo +export CIL_VERSION=19.10.1 (Unix) / set CIL_VERSION=19.10 (Windows) +conda build recipe/ --numpy 1.15 --python 3.7 +conda install ccpi-regulariser=${CIL_VERSION} --use-local --force-reinstall # doesn't work? +conda install -c file://${CONDA_PREFIX}/conda-bld/ ccpi-regulariser=${CIL_VERSION} --force-reinstall # try this one +cd demos/ +python demo_cpu_regularisers.py # to run CPU demo +python demo_gpu_regularisers.py # to run GPU demo  ```  #### Python build diff --git a/src/Core/regularisers_CPU/Diffusion_core.c b/src/Core/regularisers_CPU/Diffusion_core.c index f0039c7..1a05c39 100644 --- a/src/Core/regularisers_CPU/Diffusion_core.c +++ b/src/Core/regularisers_CPU/Diffusion_core.c @@ -38,7 +38,7 @@ int signNDFc(float x) {   * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion   * 4. Number of iterations, for explicit scheme >= 150 is recommended   * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight + * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight, 4 - Threshold-constrained Linear   * 7. eplsilon - tolerance constant   *   * Output: @@ -60,14 +60,14 @@ float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float l      re = 0.0f; re1 = 0.0f;      int count = 0;      DimTotal = (long)(dimX*dimY*dimZ); -     +      if (epsil != 0.0f) Output_prev = calloc(DimTotal, sizeof(float)); -     +      /* copy into output */      copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); -     +      for(i=0; i < iterationsNumb; i++) { -         +          if ((epsil != 0.0f)  && (i % 5 == 0)) copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));          if (dimZ == 1) {              /* running 2D diffusion iterations */ @@ -93,7 +93,7 @@ float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float l              if (count > 3) break;          }      } -     +      free(Output_prev);      /*adding info into info_vector */      infovector[0] = (float)(i);  /*iterations number (if stopped earlier based on tolerance)*/ @@ -109,7 +109,7 @@ float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long  {      long i,j,i1,i2,j1,j2,index;      float e,w,n,s,e1,w1,n1,s1; -     +  #pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)      for(j=0; j<dimY; j++) {          /* symmetric boundary conditions (Neuman) */ @@ -120,17 +120,17 @@ float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long              i1 = i+1; if (i1 == dimX) i1 = i-1;              i2 = i-1; if (i2 < 0) i2 = i+1;              index = j*dimX+i; -             +              e = Output[j*dimX+i1];              w = Output[j*dimX+i2];              n = Output[j1*dimX+i];              s = Output[j2*dimX+i]; -             +              e1 = e - Output[index];              w1 = w - Output[index];              n1 = n - Output[index];              s1 = s - Output[index]; -             +              Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));          }}      return *Output; @@ -141,7 +141,7 @@ float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaP  {      long i,j,i1,i2,j1,j2,index;      float e,w,n,s,e1,w1,n1,s1; -     +  #pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)      for(j=0; j<dimY; j++) {          /* symmetric boundary conditions (Neuman) */ @@ -152,28 +152,28 @@ float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaP              i1 = i+1; if (i1 == dimX) i1 = i-1;              i2 = i-1; if (i2 < 0) i2 = i+1;              index = j*dimX+i; -             +              e = Output[j*dimX+i1];              w = Output[j*dimX+i2];              n = Output[j1*dimX+i];              s = Output[j2*dimX+i]; -             +              e1 = e - Output[index];              w1 = w - Output[index];              n1 = n - Output[index];              s1 = s - Output[index]; -             +              if (penaltytype == 1){                  /* Huber penalty */                  if (fabs(e1) > sigmaPar) e1 =  signNDFc(e1);                  else e1 = e1/sigmaPar; -                 +                  if (fabs(w1) > sigmaPar) w1 =  signNDFc(w1);                  else w1 = w1/sigmaPar; -                 +                  if (fabs(n1) > sigmaPar) n1 =  signNDFc(n1);                  else n1 = n1/sigmaPar; -                 +                  if (fabs(s1) > sigmaPar) s1 =  signNDFc(s1);                  else s1 = s1/sigmaPar;              } @@ -195,8 +195,18 @@ float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaP                  if (fabs(s1) <= sigmaPar) s1 =  s1*powf((1.0f - powf((s1/sigmaPar),2)), 2);                  else s1 = 0.0f;              } +            else if (penaltytype == 4) { +                /* Threshold-constrained linear diffusion +                This means that the linear diffusion will be performed on pixels with +                absolute difference less than the threshold. +                */ +                if (fabs(e1) > sigmaPar) e1 = 0.0f; +                if (fabs(w1) > sigmaPar) w1 = 0.0f; +                if (fabs(n1) > sigmaPar) n1 = 0.0f; +                if (fabs(s1) > sigmaPar) s1 = 0.0f; +            }              else { -                printf("%s \n", "No penalty function selected! Use 1,2 or 3."); +                printf("%s \n", "No penalty function selected! Use 1,2,3 or 4.");                  break;              }              Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); @@ -211,7 +221,7 @@ float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long  {      long i,j,k,i1,i2,j1,j2,k1,k2,index;      float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; -     +  #pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)      for(k=0; k<dimZ; k++) {          k1 = k+1; if (k1 == dimZ) k1 = k-1; @@ -225,21 +235,21 @@ float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long                  i1 = i+1; if (i1 == dimX) i1 = i-1;                  i2 = i-1; if (i2 < 0) i2 = i+1;                  index = (dimX*dimY)*k + j*dimX+i; -                 +                  e = Output[(dimX*dimY)*k + j*dimX+i1];                  w = Output[(dimX*dimY)*k + j*dimX+i2];                  n = Output[(dimX*dimY)*k + j1*dimX+i];                  s = Output[(dimX*dimY)*k + j2*dimX+i];                  u = Output[(dimX*dimY)*k1 + j*dimX+i];                  d = Output[(dimX*dimY)*k2 + j*dimX+i]; -                 +                  e1 = e - Output[index];                  w1 = w - Output[index];                  n1 = n - Output[index];                  s1 = s - Output[index];                  u1 = u - Output[index];                  d1 = d - Output[index]; -                 +                  Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));              }}}      return *Output; @@ -249,7 +259,7 @@ float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaP  {      long i,j,k,i1,i2,j1,j2,k1,k2,index;      float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; -     +  #pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)      for(k=0; k<dimZ; k++) {          k1 = k+1; if (k1 == dimZ) k1 = k-1; @@ -263,38 +273,38 @@ float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaP                  i1 = i+1; if (i1 == dimX) i1 = i-1;                  i2 = i-1; if (i2 < 0) i2 = i+1;                  index = (dimX*dimY)*k + j*dimX+i; -                 +                  e = Output[(dimX*dimY)*k + j*dimX+i1];                  w = Output[(dimX*dimY)*k + j*dimX+i2];                  n = Output[(dimX*dimY)*k + j1*dimX+i];                  s = Output[(dimX*dimY)*k + j2*dimX+i];                  u = Output[(dimX*dimY)*k1 + j*dimX+i];                  d = Output[(dimX*dimY)*k2 + j*dimX+i]; -                 +                  e1 = e - Output[index];                  w1 = w - Output[index];                  n1 = n - Output[index];                  s1 = s - Output[index];                  u1 = u - Output[index];                  d1 = d - Output[index]; -                 +                  if (penaltytype == 1){                      /* Huber penalty */                      if (fabs(e1) > sigmaPar) e1 =  signNDFc(e1);                      else e1 = e1/sigmaPar; -                     +                      if (fabs(w1) > sigmaPar) w1 =  signNDFc(w1);                      else w1 = w1/sigmaPar; -                     +                      if (fabs(n1) > sigmaPar) n1 =  signNDFc(n1);                      else n1 = n1/sigmaPar; -                     +                      if (fabs(s1) > sigmaPar) s1 =  signNDFc(s1);                      else s1 = s1/sigmaPar; -                     +                      if (fabs(u1) > sigmaPar) u1 =  signNDFc(u1);                      else u1 = u1/sigmaPar; -                     +                      if (fabs(d1) > sigmaPar) d1 =  signNDFc(d1);                      else d1 = d1/sigmaPar;                  } @@ -322,11 +332,23 @@ float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaP                      if (fabs(d1) <= sigmaPar) d1 =  d1*powf((1.0f - powf((d1/sigmaPar),2)), 2);                      else d1 = 0.0f;                  } +                else if (penaltytype == 4) { +                    /* Threshold-constrained linear diffusion +                    This means that the linear diffusion will be performed on pixels with +                    absolute difference less than the threshold. +                    */ +                    if (fabs(e1) > sigmaPar) e1 = 0.0f; +                    if (fabs(w1) > sigmaPar) w1 = 0.0f; +                    if (fabs(n1) > sigmaPar) n1 = 0.0f; +                    if (fabs(s1) > sigmaPar) s1 = 0.0f; +                    if (fabs(u1) > sigmaPar) u1 = 0.0f; +                    if (fabs(d1) > sigmaPar) d1 = 0.0f; +                }                  else { -                    printf("%s \n", "No penalty function selected! Use 1,2 or 3."); +                    printf("%s \n", "No penalty function selected! Use 1,2,3 or 4.");                      break;                  } -                 +                  Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));              }}}      return *Output; diff --git a/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu b/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu index de9abd4..a8876cd 100644 --- a/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu +++ b/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu @@ -32,7 +32,7 @@ limitations under the License.   * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion   * 4. Number of iterations, for explicit scheme >= 150 is recommended   * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight + * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight, 4 - Threshold-constrained Linear   * 7. eplsilon: tolerance constant    * Output: @@ -108,8 +108,8 @@ __global__ void LinearDiff2D_kernel(float *Input, float *Output, float lambdaPar          if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) {              /* boundary conditions (Neumann reflections) */ -			i1 = i+1; if (i1 == N) i1 = i-1; -			i2 = i-1; if (i2 < 0) i2 = i+1; +			      i1 = i+1; if (i1 == N) i1 = i-1; +			      i2 = i-1; if (i2 < 0) i2 = i+1;              j1 = j+1; if (j1 == M) j1 = j-1;              j2 = j-1; if (j2 < 0) j2 = j+1; @@ -155,7 +155,32 @@ __global__ void LinearDiff2D_kernel(float *Input, float *Output, float lambdaPar              if (abs(s1) <= sigmaPar) s1 =  s1*pow((1.0f - pow((s1/sigmaPar),2)), 2);              else s1 = 0.0f;              } -            else printf("%s \n", "No penalty function selected! Use 1,2 or 3."); +            else if (penaltytype == 4) { +                /* Threshold-constrained linear diffusion +                This means that the linear diffusion will be performed on pixels with +                absolute difference less than the threshold. +                */ +                if (abs(e1) <= 1.5f*sigmaPar) { +                if (abs(e1) > sigmaPar) e1 =  signNDF(e1); +                else e1 = e1/sigmaPar;} +                else e1 = 0.0f; + +                if (abs(w1) <= 1.5f*sigmaPar) { +                if (abs(w1) > sigmaPar) w1 =  signNDF(w1); +                else w1 = w1/sigmaPar;} +                else w1 = 0.0f; + +                if (abs(n1) <= 1.5f*sigmaPar) { +                if (abs(n1) > sigmaPar) n1 =  signNDF(n1); +                else n1 = n1/sigmaPar; } +                else n1 = 0.0f; + +                if (abs(s1) <= 1.5f*sigmaPar) { +                if (abs(s1) > sigmaPar) s1 =  signNDF(s1); +                else s1 = s1/sigmaPar; } +                else s1 = 0.0f; +            } +            else printf("%s \n", "No penalty function selected! Use 1,2,3 or 4.");              Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));  		} @@ -281,8 +306,19 @@ __global__ void NonLinearDiff3D_kernel(float *Input, float *Output, float lambda              if (abs(d1) <= sigmaPar) d1 =  d1*pow((1.0f - pow((d1/sigmaPar),2)), 2);              else d1 = 0.0f;              } -            else printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - +            else if (penaltytype == 4) { +                /* Threshold-constrained linear diffusion +                This means that the linear diffusion will be performed on pixels with +                absolute difference less than the threshold. +                */ +                if (abs(e1) > sigmaPar) e1 = 0.0f; +                if (abs(w1) > sigmaPar) w1 = 0.0f; +                if (abs(n1) > sigmaPar) n1 = 0.0f; +                if (abs(s1) > sigmaPar) s1 = 0.0f; +                if (abs(u1) > sigmaPar) u1 = 0.0f; +                if (abs(d1) > sigmaPar) d1 = 0.0f; +            } +            else printf("%s \n", "No penalty function selected! Use 1,2,3 or 4.");              Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));  		}  	}  | 
