From 4129fe6a81d20b5f7d05554222d3a78f18f014f0 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Fri, 12 Apr 2019 11:56:51 +0100 Subject: convert eol to unix --- .../Python/ccpi/framework/BlockDataContainer.py | 827 +++++++++++---------- 1 file changed, 450 insertions(+), 377 deletions(-) diff --git a/Wrappers/Python/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/ccpi/framework/BlockDataContainer.py index 85cd05a..fee0cda 100755 --- a/Wrappers/Python/ccpi/framework/BlockDataContainer.py +++ b/Wrappers/Python/ccpi/framework/BlockDataContainer.py @@ -1,377 +1,450 @@ - # -*- coding: utf-8 -*- -""" -Created on Tue Mar 5 16:04:45 2019 - -@author: ofn77899 -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals - -import numpy -from numbers import Number -import functools -from ccpi.framework import DataContainer -#from ccpi.framework import AcquisitionData, ImageData -#from ccpi.optimisation.operators import Operator, LinearOperator - -class BlockDataContainer(object): - '''Class to hold DataContainers as column vector''' - __array_priority__ = 1 - def __init__(self, *args, **kwargs): - '''''' - self.containers = args - self.index = 0 - shape = kwargs.get('shape', None) - if shape is None: - shape = (len(args),1) -# shape = (len(args),1) - self.shape = shape - - n_elements = functools.reduce(lambda x,y: x*y, shape, 1) - if len(args) != n_elements: - raise ValueError( - 'Dimension and size do not match: expected {} got {}' - .format(n_elements, len(args))) - - - def __iter__(self): - '''BlockDataContainer is Iterable''' - return self - def next(self): - '''python2 backwards compatibility''' - return self.__next__() - def __next__(self): - try: - out = self[self.index] - except IndexError as ie: - raise StopIteration() - self.index+=1 - return out - - def is_compatible(self, other): - '''basic check if the size of the 2 objects fit''' - - #for i in range(len(self.containers)): - # if type(self.containers[i])==type(self): - # self = self.containers[i] - - if isinstance(other, Number): - return True - elif isinstance(other, list): - for ot in other: - if not isinstance(ot, (Number,\ - numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\ - numpy.float, numpy.float16, numpy.float32, numpy.float64, \ - numpy.complex)): - raise ValueError('List/ numpy array can only contain numbers {}'\ - .format(type(ot))) - return len(self.containers) == len(other) - elif isinstance(other, numpy.ndarray): - return len(self.containers) == len(other) - elif issubclass(other.__class__, DataContainer): - ret = True - for i, el in enumerate(self.containers): - if isinstance(el, BlockDataContainer): - a = el.is_compatible(other) - else: - a = el.shape == other.shape - print ("current element" , el.shape, "other ", other.shape, "same shape" , a) - ret = ret and a - return ret - #return self.get_item(0).shape == other.shape - return len(self.containers) == len(other.containers) - - def get_item(self, row): - if row > self.shape[0]: - raise ValueError('Requested row {} > max {}'.format(row, self.shape[0])) - return self.containers[row] - - def __getitem__(self, row): - return self.get_item(row) - - def add(self, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for add') - out = kwargs.get('out', None) - #print ("args" , *args) - if isinstance(other, Number): - return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - elif issubclass(other.__class__, DataContainer): - # try to do algebra with one DataContainer. Will raise error if not compatible - return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape) - - return type(self)( - *[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], - shape=self.shape) - - def subtract(self, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for subtract') - out = kwargs.get('out', None) - if isinstance(other, Number): - return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - elif issubclass(other.__class__, DataContainer): - # try to do algebra with one DataContainer. Will raise error if not compatible - return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape) - return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], - shape=self.shape) - - def multiply(self, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('{} Incompatible for multiply'.format(other)) - out = kwargs.get('out', None) - if isinstance(other, Number): - return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list): - return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - elif isinstance(other, numpy.ndarray): - return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - elif issubclass(other.__class__, DataContainer): - # try to do algebra with one DataContainer. Will raise error if not compatible - return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape) - return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], - shape=self.shape) - - def divide(self, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for divide') - out = kwargs.get('out', None) - if isinstance(other, Number): - return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - elif issubclass(other.__class__, DataContainer): - # try to do algebra with one DataContainer. Will raise error if not compatible - if out is not None: - kw = kwargs.copy() - for i,el in enumerate(self.containers): - kw['out'] = out.get_item(i) - el.divide(other, *args, **kw) - return - else: - return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape) - return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], - shape=self.shape) - def binary_operations(self, operation, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for divide') - out = kwargs.get('out', None) - if isinstance(other, Number) or issubclass(other.__class__, DataContainer): - # try to do algebra with one DataContainer. Will raise error if not compatible - if out is not None: - kw = kwargs.copy() - for i,el in enumerate(self.containers): - kw['out'] = out.get_item(i) - el.divide(other, *args, **kw) - return - else: - return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], - shape=self.shape) - - - def power(self, other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for power') - out = kwargs.get('out', None) - if isinstance(other, Number): - return type(self)(*[ el.power(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape) - - def maximum(self,other, *args, **kwargs): - if not self.is_compatible(other): - raise ValueError('Incompatible for maximum') - out = kwargs.get('out', None) - if isinstance(other, Number): - return type(self)(*[ el.maximum(other, *args, **kwargs) for el in self.containers], shape=self.shape) - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) - return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape) - - ## unary operations - def abs(self, *args, **kwargs): - return type(self)(*[ el.abs(*args, **kwargs) for el in self.containers], shape=self.shape) - def sign(self, *args, **kwargs): - return type(self)(*[ el.sign(*args, **kwargs) for el in self.containers], shape=self.shape) - def sqrt(self, *args, **kwargs): - return type(self)(*[ el.sqrt(*args, **kwargs) for el in self.containers], shape=self.shape) - def conjugate(self, out=None): - return type(self)(*[el.conjugate() for el in self.containers], shape=self.shape) - - ## reductions - def sum(self, *args, **kwargs): - return numpy.sum([ el.sum(*args, **kwargs) for el in self.containers]) - def squared_norm(self): - y = numpy.asarray([el.squared_norm() for el in self.containers]) - return y.sum() - def norm(self): - return numpy.sqrt(self.squared_norm()) - def copy(self): - '''alias of clone''' - return self.clone() - def clone(self): - return type(self)(*[el.copy() for el in self.containers], shape=self.shape) - def fill(self, other): - if isinstance (other, BlockDataContainer): - if not self.is_compatible(other): - raise ValueError('Incompatible containers') - for el,ot in zip(self.containers, other.containers): - el.fill(ot) - else: - return ValueError('Cannot fill with object provided {}'.format(type(other))) - - def __add__(self, other): - return self.add( other ) - # __radd__ - - def __sub__(self, other): - return self.subtract( other ) - # __rsub__ - - def __mul__(self, other): - return self.multiply(other) - # __rmul__ - - def __div__(self, other): - return self.divide(other) - # __rdiv__ - def __truediv__(self, other): - return self.divide(other) - - def __pow__(self, other): - return self.power(other) - # reverse operand - def __radd__(self, other): - '''Reverse addition - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return self + other - # __radd__ - - def __rsub__(self, other): - '''Reverse subtraction - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return (-1 * self) + other - # __rsub__ - - def __rmul__(self, other): - '''Reverse multiplication - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return self * other - # __rmul__ - - def __rdiv__(self, other): - '''Reverse division - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return pow(self / other, -1) - # __rdiv__ - def __rtruediv__(self, other): - '''Reverse truedivision - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return self.__rdiv__(other) - - def __rpow__(self, other): - '''Reverse power - - to make sure that this method is called rather than the __mul__ of a numpy array - the class constant __array_priority__ must be set > 0 - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ - ''' - return other.power(self) - - def __iadd__(self, other): - '''Inline addition''' - if isinstance (other, BlockDataContainer): - for el,ot in zip(self.containers, other.containers): - el += ot - elif isinstance(other, Number): - for el in self.containers: - el += other - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - if not self.is_compatible(other): - raise ValueError('Incompatible for __iadd__') - for el,ot in zip(self.containers, other): - el += ot - return self - # __iadd__ - - def __isub__(self, other): - '''Inline subtraction''' - if isinstance (other, BlockDataContainer): - for el,ot in zip(self.containers, other.containers): - el -= ot - elif isinstance(other, Number): - for el in self.containers: - el -= other - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - if not self.is_compatible(other): - raise ValueError('Incompatible for __isub__') - for el,ot in zip(self.containers, other): - el -= ot - return self - # __isub__ - - def __imul__(self, other): - '''Inline multiplication''' - if isinstance (other, BlockDataContainer): - for el,ot in zip(self.containers, other.containers): - el *= ot - elif isinstance(other, Number): - for el in self.containers: - el *= other - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - if not self.is_compatible(other): - raise ValueError('Incompatible for __imul__') - for el,ot in zip(self.containers, other): - el *= ot - return self - # __imul__ - - def __idiv__(self, other): - '''Inline division''' - if isinstance (other, BlockDataContainer): - for el,ot in zip(self.containers, other.containers): - el /= ot - elif isinstance(other, Number): - for el in self.containers: - el /= other - elif isinstance(other, list) or isinstance(other, numpy.ndarray): - if not self.is_compatible(other): - raise ValueError('Incompatible for __idiv__') - for el,ot in zip(self.containers, other): - el /= ot - return self - # __rdiv__ - def __itruediv__(self, other): - '''Inline truedivision''' - return self.__idiv__(other) - + # -*- coding: utf-8 -*- +""" +Created on Tue Mar 5 16:04:45 2019 + +@author: ofn77899 +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +import numpy +from numbers import Number +import functools +from ccpi.framework import DataContainer +#from ccpi.framework import AcquisitionData, ImageData +#from ccpi.optimisation.operators import Operator, LinearOperator + +class BlockDataContainer(object): + '''Class to hold DataContainers as column vector + + Provides basic algebra between BlockDataContainer's, DataContainer's and + subclasses and Numbers + + 1) algebra between `BlockDataContainer`s will be element-wise, only if + the shape of the 2 `BlockDataContainer`s is the same, otherwise it + will fail + 2) algebra between `BlockDataContainer`s and `list` or `numpy array` will + work as long as the number of `rows` and element of the arrays match, + indipendently on the fact that the `BlockDataContainer` could be nested + 3) algebra between `BlockDataContainer` and one `DataContainer` is possible. + It will require that all the `DataContainers` in the block to be + compatible with the `DataContainer` we want to algebra with. Should we + require that the `DataContainer` is the same type? Like `ImageData` or `AcquisitionData`? + 4) algebra between `BlockDataContainer` and a `Number` is possible and it + will be done with each element of the `BlockDataContainer` even if nested + + A = [ [B,C] , D] + A * 3 = [ 3 * [B,C] , 3* D] = [ [ 3*B, 3*C] , 3*D ] + + ''' + ADD = 'add' + SUBTRACT = 'subtract' + MULTIPLY = 'multiply' + DIVIDE = 'divide' + POWER = 'power' + __array_priority__ = 1 + def __init__(self, *args, **kwargs): + '''''' + self.containers = args + self.index = 0 + shape = kwargs.get('shape', None) + if shape is None: + shape = (len(args),1) +# shape = (len(args),1) + self.shape = shape + + n_elements = functools.reduce(lambda x,y: x*y, shape, 1) + if len(args) != n_elements: + raise ValueError( + 'Dimension and size do not match: expected {} got {}' + .format(n_elements, len(args))) + + + def __iter__(self): + '''BlockDataContainer is Iterable''' + return self + def next(self): + '''python2 backwards compatibility''' + return self.__next__() + def __next__(self): + try: + out = self[self.index] + except IndexError as ie: + raise StopIteration() + self.index+=1 + return out + + def is_compatible(self, other): + '''basic check if the size of the 2 objects fit''' + + if isinstance(other, Number): + return True + elif isinstance(other, (list, numpy.ndarray)) : + for ot in other: + if not isinstance(ot, (Number,\ + numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\ + numpy.float, numpy.float16, numpy.float32, numpy.float64, \ + numpy.complex)): + raise ValueError('List/ numpy array can only contain numbers {}'\ + .format(type(ot))) + return len(self.containers) == len(other) + elif issubclass(other.__class__, DataContainer): + ret = True + for i, el in enumerate(self.containers): + if isinstance(el, BlockDataContainer): + a = el.is_compatible(other) + else: + a = el.shape == other.shape + print ("current element" , el.shape, "other ", other.shape, "same shape" , a) + ret = ret and a + return ret + #return self.get_item(0).shape == other.shape + return len(self.containers) == len(other.containers) + + def get_item(self, row): + if row > self.shape[0]: + raise ValueError('Requested row {} > max {}'.format(row, self.shape[0])) + return self.containers[row] + + def __getitem__(self, row): + return self.get_item(row) + + def add(self, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for add') + out = kwargs.get('out', None) + #print ("args" , *args) + if isinstance(other, Number): + return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + return type(self)(*[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif issubclass(other.__class__, DataContainer): + # try to do algebra with one DataContainer. Will raise error if not compatible + return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape) + + return type(self)( + *[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], + shape=self.shape) + + def subtract(self, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for subtract') + out = kwargs.get('out', None) + if isinstance(other, Number): + return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif issubclass(other.__class__, DataContainer): + # try to do algebra with one DataContainer. Will raise error if not compatible + return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape) + return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], + shape=self.shape) + + def multiply(self, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('{} Incompatible for multiply'.format(other)) + out = kwargs.get('out', None) + if isinstance(other, Number): + return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list): + return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif isinstance(other, numpy.ndarray): + return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif issubclass(other.__class__, DataContainer): + # try to do algebra with one DataContainer. Will raise error if not compatible + return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape) + return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], + shape=self.shape) + + def divide_old(self, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for divide') + out = kwargs.get('out', None) + if isinstance(other, Number): + return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif issubclass(other.__class__, DataContainer): + # try to do algebra with one DataContainer. Will raise error if not compatible + if out is not None: + kw = kwargs.copy() + for i,el in enumerate(self.containers): + kw['out'] = out.get_item(i) + el.divide(other, *args, **kw) + return + else: + return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape) + return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], + shape=self.shape) + def divide(self, other, *args, **kwargs): + out = kwargs.get('out', None) + if out is not None: + self.binary_operations(BlockDataContainer.DIVIDE, other, *args, **kwargs) + else: + return self.binary_operations(BlockDataContainer.DIVIDE, other, *args, **kwargs) + + def binary_operations(self, operation, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for divide') + out = kwargs.get('out', None) + if isinstance(other, Number) or issubclass(other.__class__, DataContainer): + # try to do algebra with one DataContainer. Will raise error if not compatible + kw = kwargs.copy() + res = [] + for i,el in enumerate(self.containers): + if operation == BlockDataContainer.ADD: + op = el.add + elif operation == BlockDataContainer.SUBTRACT: + op = el.subtract + elif operation == BlockDataContainer.MULTIPLY: + op = el.multiply + elif operation == BlockDataContainer.DIVIDE: + op = el.divide + elif operation == BlockDataContainer.POWER: + op = el.power + else: + raise ValueError('Unsupported operation', operation) + if out is not None: + kw['out'] = out.get_item(i) + op(other, *args, **kw) + else: + res.append(op(other, *args, **kw)) + if out is not None: + return + else: + return type(self)(*res, shape=self.shape) + elif isinstance(other, (list, numpy.ndarray)): + # try to do algebra with one DataContainer. Will raise error if not compatible + kw = kwargs.copy() + res = [] + for i,zel in enumerate(zip ( self.containers, other) ): + el = zel[0] + ot = zel[1] + if operation == BlockDataContainer.ADD: + op = el.add + elif operation == BlockDataContainer.SUBTRACT: + op = el.subtract + elif operation == BlockDataContainer.MULTIPLY: + op = el.multiply + elif operation == BlockDataContainer.DIVIDE: + op = el.divide + elif operation == BlockDataContainer.POWER: + op = el.power + else: + raise ValueError('Unsupported operation', operation) + if out is not None: + kw['out'] = out.get_item(i) + op(ot, *args, **kw) + else: + res.append(op(ot, *args, **kw)) + if out is not None: + return + else: + return type(self)(*res, shape=self.shape) + return type(self)(*[ operation(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + elif isinstance(other, BlockDataContainer): + return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], + shape=self.shape) + else: + raise ValueError('Incompatible type {}'.format(type(other))) + + + def power(self, other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for power') + out = kwargs.get('out', None) + if isinstance(other, Number): + return type(self)(*[ el.power(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape) + + def maximum(self,other, *args, **kwargs): + if not self.is_compatible(other): + raise ValueError('Incompatible for maximum') + out = kwargs.get('out', None) + if isinstance(other, Number): + return type(self)(*[ el.maximum(other, *args, **kwargs) for el in self.containers], shape=self.shape) + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape) + return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape) + + ## unary operations + def abs(self, *args, **kwargs): + return type(self)(*[ el.abs(*args, **kwargs) for el in self.containers], shape=self.shape) + def sign(self, *args, **kwargs): + return type(self)(*[ el.sign(*args, **kwargs) for el in self.containers], shape=self.shape) + def sqrt(self, *args, **kwargs): + return type(self)(*[ el.sqrt(*args, **kwargs) for el in self.containers], shape=self.shape) + def conjugate(self, out=None): + return type(self)(*[el.conjugate() for el in self.containers], shape=self.shape) + + ## reductions + def sum(self, *args, **kwargs): + return numpy.sum([ el.sum(*args, **kwargs) for el in self.containers]) + def squared_norm(self): + y = numpy.asarray([el.squared_norm() for el in self.containers]) + return y.sum() + def norm(self): + return numpy.sqrt(self.squared_norm()) + def copy(self): + '''alias of clone''' + return self.clone() + def clone(self): + return type(self)(*[el.copy() for el in self.containers], shape=self.shape) + def fill(self, other): + if isinstance (other, BlockDataContainer): + if not self.is_compatible(other): + raise ValueError('Incompatible containers') + for el,ot in zip(self.containers, other.containers): + el.fill(ot) + else: + return ValueError('Cannot fill with object provided {}'.format(type(other))) + + def __add__(self, other): + return self.add( other ) + # __radd__ + + def __sub__(self, other): + return self.subtract( other ) + # __rsub__ + + def __mul__(self, other): + return self.multiply(other) + # __rmul__ + + def __div__(self, other): + return self.divide(other) + # __rdiv__ + def __truediv__(self, other): + return self.divide(other) + + def __pow__(self, other): + return self.power(other) + # reverse operand + def __radd__(self, other): + '''Reverse addition + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self + other + # __radd__ + + def __rsub__(self, other): + '''Reverse subtraction + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return (-1 * self) + other + # __rsub__ + + def __rmul__(self, other): + '''Reverse multiplication + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self * other + # __rmul__ + + def __rdiv__(self, other): + '''Reverse division + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return pow(self / other, -1) + # __rdiv__ + def __rtruediv__(self, other): + '''Reverse truedivision + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self.__rdiv__(other) + + def __rpow__(self, other): + '''Reverse power + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return other.power(self) + + def __iadd__(self, other): + '''Inline addition''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el += ot + elif isinstance(other, Number): + for el in self.containers: + el += other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __iadd__') + for el,ot in zip(self.containers, other): + el += ot + return self + # __iadd__ + + def __isub__(self, other): + '''Inline subtraction''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el -= ot + elif isinstance(other, Number): + for el in self.containers: + el -= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __isub__') + for el,ot in zip(self.containers, other): + el -= ot + return self + # __isub__ + + def __imul__(self, other): + '''Inline multiplication''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el *= ot + elif isinstance(other, Number): + for el in self.containers: + el *= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __imul__') + for el,ot in zip(self.containers, other): + el *= ot + return self + # __imul__ + + def __idiv__(self, other): + '''Inline division''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el /= ot + elif isinstance(other, Number): + for el in self.containers: + el /= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __idiv__') + for el,ot in zip(self.containers, other): + el /= ot + return self + # __rdiv__ + def __itruediv__(self, other): + '''Inline truedivision''' + return self.__idiv__(other) + -- cgit v1.2.3