summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algorithms/CGLS.py129
-rw-r--r--Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py106
-rw-r--r--Wrappers/Python/demos/CGLS_examples/CGLS_Tomography.py211
-rw-r--r--Wrappers/Python/demos/CGLS_examples/LinearSystem.py82
-rw-r--r--Wrappers/Python/demos/CGLS_examples/Regularised_CGLS_Denoising.py146
-rw-r--r--Wrappers/Python/demos/CompareAlgorithms/CGLS_FISTA_PDHG_LeastSquares.py110
-rwxr-xr-xWrappers/Python/demos/PDHG_examples/GatherAll/phantom.matbin5583 -> 0 bytes
-rwxr-xr-xWrappers/Python/test/test_algorithms.py2
8 files changed, 559 insertions, 227 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
index 15acc31..d3aea8e 100755
--- a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
@@ -34,90 +34,72 @@ class CGLS(Algorithm):
x_init: initial guess
operator: operator for forward/backward projections
data: data to operate on
+ tolerance: tolerance to stop algorithm
+
+ Reference:
+ https://web.stanford.edu/group/SOL/software/cgls/
+
'''
+
+
+
def __init__(self, **kwargs):
+
super(CGLS, self).__init__()
self.x = kwargs.get('x_init', None)
self.operator = kwargs.get('operator', None)
self.data = kwargs.get('data', None)
+ self.tolerance = kwargs.get('tolerance', 1e-6)
if self.x is not None and self.operator is not None and \
self.data is not None:
- print ("Calling from creator")
+ print (self.__class__.__name__ , "set_up called from creator")
self.set_up(x_init =kwargs['x_init'],
operator=kwargs['operator'],
data =kwargs['data'])
-
+
+
def set_up(self, x_init, operator , data ):
- self.r = data.copy()
- self.x = x_init * 0
-
- self.operator = operator
- self.d = operator.adjoint(self.r)
-
+ self.x = x_init * 0.
+ self.r = data - self.operator.direct(self.x)
+ self.s = self.operator.adjoint(self.r)
- self.normr2 = self.d.squared_norm()
+ self.p = self.s
+ self.norms0 = self.s.norm()
- self.s = self.operator.domain_geometry().allocate()
- #if isinstance(self.normr2, Iterable):
- # self.normr2 = sum(self.normr2)
- #self.normr2 = numpy.sqrt(self.normr2)
- #print ("set_up" , self.normr2)
- n = Norm2Sq(operator, self.data)
- self.loss.append(n(x_init))
- self.configured = True
-
- def update(self):
- self.update_new()
- def update_old(self):
- Ad = self.operator.direct(self.d)
- #norm = (Ad*Ad).sum()
- #if isinstance(norm, Iterable):
- # norm = sum(norm)
- norm = Ad.squared_norm()
+ ##
+ self.norms = self.s.norm()
+ ##
- alpha = self.normr2/norm
- self.x += (self.d * alpha)
- self.r -= (Ad * alpha)
- s = self.operator.adjoint(self.r)
-
- normr2_new = s.squared_norm()
- #if isinstance(normr2_new, Iterable):
- # normr2_new = sum(normr2_new)
- #normr2_new = numpy.sqrt(normr2_new)
- #print (normr2_new)
- beta = normr2_new/self.normr2
- self.normr2 = normr2_new
- self.d = s + beta*self.d
-
- def update_new(self):
+ self.gamma = self.norms0**2
+ self.normx = self.x.norm()
+ self.xmax = self.normx
+
+ self.loss.append(self.r.squared_norm())
+ self.configured = True
- Ad = self.operator.direct(self.d)
- norm = Ad.squared_norm()
- if norm == 0.:
- print ('norm = 0, cannot update solution')
- print ("self.d norm", self.d.squared_norm(), self.d.as_array())
- raise StopIteration()
- alpha = self.normr2/norm
- if alpha == 0.:
- print ('alpha = 0, cannot update solution')
- raise StopIteration()
- self.d *= alpha
- Ad *= alpha
- self.r -= Ad
- self.x += self.d
+ def update(self):
- self.operator.adjoint(self.r, out=self.s)
- s = self.s
-
- normr2_new = s.squared_norm()
+ self.q = self.operator.direct(self.p)
+ delta = self.q.squared_norm()
+ alpha = self.gamma/delta
+
+ self.x += alpha * self.p
+ self.r -= alpha * self.q
+
+ self.s = self.operator.adjoint(self.r)
+
+ self.norms = self.s.norm()
+ self.gamma1 = self.gamma
+ self.gamma = self.norms**2
+ self.beta = self.gamma/self.gamma1
+ self.p = self.s + self.beta * self.p
- beta = normr2_new/self.normr2
- self.normr2 = normr2_new
- self.d *= (beta/alpha)
- self.d += s
+ self.normx = self.x.norm()
+ self.xmax = numpy.maximum(self.xmax, self.normx)
+
def update_objective(self):
a = self.r.squared_norm()
@@ -125,10 +107,17 @@ class CGLS(Algorithm):
raise StopIteration()
self.loss.append(a)
-# def should_stop(self):
-# if self.iteration > 0:
-# x = self.get_last_objective()
-# a = x > 0
-# return self.max_iteration_stop_cryterion() or (not a)
-# else:
-# return False
+ def should_stop(self):
+ return self.flag() or self.max_iteration_stop_cryterion()
+
+ def flag(self):
+ flag = (self.norms <= self.norms0 * self.tolerance) or (self.normx * self.tolerance >= 1)
+
+ if flag:
+ self.update_objective()
+ if self.iteration > self._iteration[-1]:
+ print (self.verbose_output())
+ print('Tolerance is reached: {}'.format(self.tolerance))
+
+ return flag
+
diff --git a/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py b/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py
deleted file mode 100644
index 653e191..0000000
--- a/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py
+++ /dev/null
@@ -1,106 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-Compare solutions of PDHG & "Block CGLS" algorithms for
-
-
-Problem: min_x alpha * ||\grad x ||^{2}_{2} + || A x - g ||_{2}^{2}
-
-
- A: Projection operator
- g: Sinogram
-
-"""
-
-
-from ccpi.framework import AcquisitionGeometry, BlockDataContainer, AcquisitionData
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import CGLS
-from ccpi.optimisation.operators import BlockOperator, Gradient
-
-from ccpi.framework import TestData
-import os, sys
-from ccpi.astra.ops import AstraProjectorSimple
-
-# Load Data
-loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-N = 150
-M = 150
-data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,M), scale=(0,1))
-
-ig = data.geometry
-
-detectors = N
-angles = np.linspace(0, np.pi, N, dtype=np.float32)
-
-ag = AcquisitionGeometry('parallel','2D', angles, detectors)
-
-device = input('Available device: GPU==1 / CPU==0 ')
-if device=='1':
- dev = 'gpu'
-else:
- dev = 'cpu'
-
-Aop = AstraProjectorSimple(ig, ag, dev)
-sin = Aop.direct(data)
-
-noisy_data = AcquisitionData( sin.as_array() + np.random.normal(0,3,ig.shape))
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(10,10))
-plt.subplot(2,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(2,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-# Setup and run the CGLS algorithm
-#alpha = 50
-#Grad = Gradient(ig)
-#
-## Form Tikhonov as a Block CGLS structure
-#op_CGLS = BlockOperator( Aop, alpha * Grad, shape=(2,1))
-#block_data = BlockDataContainer(noisy_data, Grad.range_geometry().allocate())
-#
-#x_init = ig.allocate()
-#cgls = CGLS(x_init=x_init, operator=op_CGLS, data=block_data)
-#cgls.max_iteration = 1000
-#cgls.update_objective_interval = 200
-#cgls.run(1000,verbose=False)
-
-#%%
-# Show results
-plt.figure(figsize=(5,5))
-plt.imshow(cgls.get_output().as_array())
-plt.title('CGLS reconstruction')
-plt.colorbar()
-plt.show()
-
-
diff --git a/Wrappers/Python/demos/CGLS_examples/CGLS_Tomography.py b/Wrappers/Python/demos/CGLS_examples/CGLS_Tomography.py
new file mode 100644
index 0000000..2ac050f
--- /dev/null
+++ b/Wrappers/Python/demos/CGLS_examples/CGLS_Tomography.py
@@ -0,0 +1,211 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+"""
+Conjugate Gradient for (Regularized) Least Squares for Tomography
+
+
+Problem: min_u alpha * || L x ||^{2}_{2} + || A u - g ||_{2}^{2}
+
+ A: Projection operator
+ g: Sinogram
+ L: Identity or Gradient Operator
+
+"""
+
+
+from ccpi.framework import ImageGeometry, ImageData, \
+ AcquisitionGeometry, BlockDataContainer, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import CGLS
+from ccpi.optimisation.operators import BlockOperator, Gradient, Identity
+
+import tomophantom
+from tomophantom import TomoP2D
+from ccpi.astra.operators import AstraProjectorSimple
+import os
+
+
+# Load Shepp-Logan phantom
+model = 1 # select a model number from the library
+N = 64 # set dimension of the phantom
+path = os.path.dirname(tomophantom.__file__)
+path_library2D = os.path.join(path, "Phantom2DLibrary.dat")
+phantom_2D = TomoP2D.Model(model, N, path_library2D)
+
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+data = ImageData(phantom_2D)
+
+detectors = N
+angles = np.linspace(0, np.pi, 180, dtype=np.float32)
+
+ag = AcquisitionGeometry('parallel','2D', angles, detectors)
+
+device = input('Available device: GPU==1 / CPU==0 ')
+
+if device =='1':
+ dev = 'gpu'
+else:
+ dev = 'cpu'
+
+Aop = AstraProjectorSimple(ig, ag, dev)
+sin = Aop.direct(data)
+
+np.random.seed(10)
+noisy_data = AcquisitionData( sin.as_array() + np.random.normal(0,1,ag.shape))
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(10,10))
+plt.subplot(2,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(2,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+# Setup and run the simple CGLS algorithm
+x_init = ig.allocate()
+
+cgls1 = CGLS(x_init = x_init, operator = Aop, data = noisy_data)
+cgls1.max_iteration = 20
+cgls1.update_objective_interval = 5
+cgls1.run(20, verbose = True)
+
+# Setup and run the regularised CGLS algorithm (Tikhonov with Identity)
+
+x_init = ig.allocate()
+alpha1 = 50
+op1 = Identity(ig)
+
+block_op1 = BlockOperator( Aop, alpha1 * op1, shape=(2,1))
+block_data1 = BlockDataContainer(noisy_data, op1.range_geometry().allocate())
+
+cgls2 = CGLS(x_init = x_init, operator = block_op1, data = block_data1)
+cgls2.max_iteration = 200
+cgls2.update_objective_interval = 10
+cgls2.run(200, verbose=True)
+
+# Setup and run the regularised CGLS algorithm (Tikhonov with Gradient)
+
+x_init = ig.allocate()
+alpha2 = 25
+op2 = Gradient(ig)
+
+block_op2 = BlockOperator( Aop, alpha2 * op2, shape=(2,1))
+block_data2 = BlockDataContainer(noisy_data, op2.range_geometry().allocate())
+
+cgls3 = CGLS(x_init=x_init, operator = block_op2, data = block_data2)
+cgls3.max_iteration = 200
+cgls3.update_objective_interval = 5
+cgls3.run(200, verbose = True)
+
+# Show results
+plt.figure(figsize=(8,8))
+
+plt.subplot(2,2,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+
+plt.subplot(2,2,2)
+plt.imshow(cgls1.get_output().as_array())
+plt.title('GGLS')
+
+plt.subplot(2,2,3)
+plt.imshow(cgls2.get_output().as_array())
+plt.title('Regularised GGLS L = {} * Identity'.format(alpha1))
+
+plt.subplot(2,2,4)
+plt.imshow(cgls3.get_output().as_array())
+plt.title('Regularised GGLS L = {} * Gradient'.format(alpha2))
+
+plt.show()
+
+
+
+print('Compare CVX vs Regularised CG with L = Gradient')
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+import astra
+import numpy
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(N*N)
+ #q = Variable()
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha2**2 * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+
+ # create matrix representation for Astra operator
+
+ vol_geom = astra.create_vol_geom(N, N)
+ proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
+
+ proj_id = astra.create_projector('line', proj_geom, vol_geom)
+
+ matrix_id = astra.projector.matrix(proj_id)
+
+ ProjMat = astra.matrix.get(matrix_id)
+
+ fidelity = sum_squares( ProjMat * u - noisy_data.as_array().ravel())
+
+ solver = MOSEK
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+
+plt.figure(figsize=(10,20))
+
+plt.subplot(1,3,1)
+plt.imshow(np.reshape(u.value, (N, N)))
+plt.colorbar()
+
+plt.subplot(1,3,2)
+plt.imshow(cgls3.get_output().as_array())
+plt.colorbar()
+
+plt.subplot(1,3,3)
+plt.imshow(np.abs(cgls3.get_output().as_array() - np.reshape(u.value, (N, N)) ))
+plt.colorbar()
+
+plt.show()
+
+print('Primal Objective (CVX) {} '.format(obj.value))
+print('Primal Objective (CGLS) {} '.format(cgls3.objective[-1]))
+
diff --git a/Wrappers/Python/demos/CGLS_examples/LinearSystem.py b/Wrappers/Python/demos/CGLS_examples/LinearSystem.py
new file mode 100644
index 0000000..cc398cb
--- /dev/null
+++ b/Wrappers/Python/demos/CGLS_examples/LinearSystem.py
@@ -0,0 +1,82 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+import numpy
+from ccpi.optimisation.operators import *
+from ccpi.optimisation.algorithms import *
+from ccpi.optimisation.functions import *
+from ccpi.framework import *
+
+# Problem dimension.
+m = 200
+n = 200
+
+numpy.random.seed(10)
+
+# Create matrix A and data b
+Amat = numpy.asarray( numpy.random.randn(m, n), dtype = numpy.float32)
+bmat = numpy.asarray( numpy.random.randn(m), dtype=numpy.float32)
+
+# Geometries for data and solution
+vgb = VectorGeometry(m)
+vgx = VectorGeometry(n)
+
+b = vgb.allocate(0, dtype=numpy.float32)
+b.fill(bmat)
+A = LinearOperatorMatrix(Amat)
+
+# Setup and run CGLS
+x_init = vgx.allocate()
+
+cgls = CGLS(x_init = x_init, operator = A, data = b)
+cgls.max_iteration = 2000
+cgls.update_objective_interval = 200
+cgls.run(2000, verbose = True)
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+# Compare with CVX
+x = Variable(n)
+obj = Minimize(sum_squares(A.A*x - b.as_array()))
+prob = Problem(obj)
+
+# choose solver
+if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+else:
+ solver = SCS
+
+result = prob.solve(solver = MOSEK)
+
+
+diff_sol = x.value - cgls.get_output().as_array()
+
+print('Error |CVX - CGLS| = {}'.format(numpy.sum(numpy.abs(diff_sol))))
+print('CVX objective = {}'.format(obj.value))
+print('CGLS objective = {}'.format(cgls.objective[-1]))
+
+
+
+
diff --git a/Wrappers/Python/demos/CGLS_examples/Regularised_CGLS_Denoising.py b/Wrappers/Python/demos/CGLS_examples/Regularised_CGLS_Denoising.py
new file mode 100644
index 0000000..c124fa1
--- /dev/null
+++ b/Wrappers/Python/demos/CGLS_examples/Regularised_CGLS_Denoising.py
@@ -0,0 +1,146 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+"""
+Conjugate Gradient for (Regularized) Least Squares for Tomography
+
+
+Problem: min_u alpha * || L x ||^{2}_{2} + || A u - g ||_{2}^{2}
+
+ A: Identity operator
+ g: Sinogram
+ L: Identity or Gradient Operator
+
+"""
+
+
+from ccpi.framework import ImageGeometry, ImageData, \
+ AcquisitionGeometry, BlockDataContainer, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import CGLS
+from ccpi.optimisation.operators import BlockOperator, Gradient, Identity
+from ccpi.framework import TestData
+
+import os, sys
+
+loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+data = loader.load(TestData.SHAPES)
+ig = data.geometry
+ag = ig
+
+noisy_data = ImageData(TestData.random_noise(data.as_array(), mode = 'gaussian', seed = 1))
+#noisy_data = ImageData(data.as_array())
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(10,10))
+plt.subplot(2,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(2,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+# Setup and run the regularised CGLS algorithm (Tikhonov with Gradient)
+x_init = ig.allocate()
+alpha = 2
+op = Gradient(ig)
+
+block_op = BlockOperator( Identity(ig), alpha * op, shape=(2,1))
+block_data = BlockDataContainer(noisy_data, op.range_geometry().allocate())
+
+cgls = CGLS(x_init=x_init, operator = block_op, data = block_data)
+cgls.max_iteration = 200
+cgls.update_objective_interval = 5
+cgls.run(200, verbose = True)
+
+# Show results
+plt.figure(figsize=(20,10))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy')
+plt.subplot(3,1,3)
+plt.imshow(cgls.get_output().as_array())
+plt.title('Regularised GGLS with Gradient')
+plt.show()
+
+#%%
+
+print('Compare CVX vs Regularised CG with L = Gradient')
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+ #q = Variable()
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha**2 * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+
+ fidelity = sum_squares( u - noisy_data.as_array())
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = MOSEK)
+
+
+plt.figure(figsize=(20,20))
+plt.subplot(3,1,1)
+plt.imshow(np.reshape(u.value, ig.shape))
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(cgls.get_output().as_array())
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(np.abs(cgls.get_output().as_array() - np.reshape(u.value, ig.shape) ))
+plt.colorbar()
+plt.show()
+
+print('Primal Objective (CVX) {} '.format(obj.value))
+print('Primal Objective (CGLS) {} '.format(cgls.objective[-1]))
+
diff --git a/Wrappers/Python/demos/CompareAlgorithms/CGLS_FISTA_PDHG_LeastSquares.py b/Wrappers/Python/demos/CompareAlgorithms/CGLS_FISTA_PDHG_LeastSquares.py
index 672d4bc..09e350b 100644
--- a/Wrappers/Python/demos/CompareAlgorithms/CGLS_FISTA_PDHG_LeastSquares.py
+++ b/Wrappers/Python/demos/CompareAlgorithms/CGLS_FISTA_PDHG_LeastSquares.py
@@ -20,8 +20,8 @@
#=========================================================================
"""
-Compare solutions of FISTA & PDHG
- & CGLS & Astra Built-in algorithms for Least Squares
+Compare solutions of FISTA & PDHG & CGLS
+ & Astra Built-in algorithms for Least Squares
Problem: min_x || A x - g ||_{2}^{2}
@@ -32,7 +32,7 @@ Problem: min_x || A x - g ||_{2}^{2}
"""
-from ccpi.framework import ImageData, TestData, AcquisitionGeometry
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry
import numpy as np
import numpy
@@ -43,42 +43,48 @@ from ccpi.optimisation.algorithms import PDHG, CGLS, FISTA
from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, FunctionOperatorComposition
from ccpi.astra.ops import AstraProjectorSimple
import astra
-import os, sys
+import tomophantom
+from tomophantom import TomoP2D
+import os
-# Load Data
-loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-
-N = 50
-M = 50
-data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,M), scale=(0,1))
-ig = data.geometry
+# Load Shepp-Logan phantom
+model = 1 # select a model number from the library
+N = 128 # set dimension of the phantom
+path = os.path.dirname(tomophantom.__file__)
+path_library2D = os.path.join(path, "Phantom2DLibrary.dat")
+phantom_2D = TomoP2D.Model(model, N, path_library2D)
-detectors = N
-angles = np.linspace(0, np.pi, N, dtype=np.float32)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+data = ImageData(phantom_2D)
+
+detectors = N
+angles = np.linspace(0, np.pi, 180, dtype=np.float32)
-device = input('Available device: GPU==1 / CPU==0 ')
ag = AcquisitionGeometry('parallel','2D', angles, detectors)
-if device=='1':
+
+device = input('Available device: GPU==1 / CPU==0 ')
+
+if device =='1':
dev = 'gpu'
else:
dev = 'cpu'
-
-Aop = AstraProjectorSimple(ig, ag, dev)
-sin = Aop.direct(data)
-noisy_data = sin
+Aop = AstraProjectorSimple(ig, ag, dev)
+sinogram = Aop.direct(data)
+
+
###############################################################################
# Setup and run Astra CGLS algorithm
vol_geom = astra.create_vol_geom(N, N)
proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
-proj_id = astra.create_projector('linear', proj_geom, vol_geom)
+proj_id = astra.create_projector('line', proj_geom, vol_geom)
-# Create a sinogram from a phantom
-sinogram_id, sinogram = astra.create_sino(data.as_array(), proj_id)
+# Create a sinogram id
+sinogram_id = astra.data2d.create('-sino', proj_geom, sinogram.as_array())
-# Create a data object for the reconstruction
+# Create a data id
rec_id = astra.data2d.create('-vol', vol_geom)
cgls_astra = astra.astra_dict('CGLS')
@@ -89,45 +95,51 @@ cgls_astra['ProjectorId'] = proj_id
# Create the algorithm object from the configuration structure
alg_id = astra.algorithm.create(cgls_astra)
-astra.algorithm.run(alg_id, 1000)
+astra.algorithm.run(alg_id, 500)
+recon_cgls_astra = ImageData(astra.data2d.get(rec_id))
-recon_cgls_astra = astra.data2d.get(rec_id)
-###############################################################################
-# Setup and run the CGLS algorithm
-x_init = ig.allocate()
-cgls = CGLS(x_init=x_init, operator=Aop, data=noisy_data)
-cgls.max_iteration = 1000
-cgls.update_objective_interval = 200
-cgls.run(1000, verbose=False)
+#%%
+
+# Setup and run the simple CGLS algorithm
+x_init = ig.allocate()
+
+cgls = CGLS(x_init = x_init, operator = Aop, data = sinogram)
+cgls.max_iteration = 500
+cgls.update_objective_interval = 100
+cgls.run(500, verbose = True)
+
+#%%
###############################################################################
# Setup and run the PDHG algorithm
operator = Aop
-f = L2NormSquared(b = noisy_data)
+f = L2NormSquared(b = sinogram)
g = ZeroFunction()
## Compute operator Norm
normK = operator.norm()
## Primal & dual stepsizes
-sigma = 1
+sigma = 0.02
tau = 1/(sigma*normK**2)
+
pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
pdhg.max_iteration = 1000
-pdhg.update_objective_interval = 200
+pdhg.update_objective_interval = 100
pdhg.run(1000, verbose=True)
+#%%
###############################################################################
# Setup and run the FISTA algorithm
-fidelity = FunctionOperatorComposition(L2NormSquared(b=noisy_data), Aop)
+fidelity = FunctionOperatorComposition(L2NormSquared(b=sinogram), Aop)
regularizer = ZeroFunction()
fista = FISTA(x_init=x_init , f=fidelity, g=regularizer)
-fista.max_iteration = 1000
-fista.update_objective_interval = 200
-fista.run(1000, verbose=True)
+fista.max_iteration = 500
+fista.update_objective_interval = 100
+fista.run(500, verbose = True)
#%% Show results
@@ -150,40 +162,38 @@ plt.colorbar()
plt.title('PDHG reconstruction')
plt.subplot(2,2,4)
-plt.imshow(recon_cgls_astra)
+plt.imshow(recon_cgls_astra.as_array())
plt.colorbar()
plt.title('CGLS astra')
-diff1 = pdhg.get_output() - cgls.get_output()
-diff2 = fista.get_output() - cgls.get_output()
-diff3 = ImageData(recon_cgls_astra) - cgls.get_output()
+diff1 = pdhg.get_output() - recon_cgls_astra
+diff2 = fista.get_output() - recon_cgls_astra
+diff3 = cgls.get_output() - recon_cgls_astra
plt.figure(figsize=(15,15))
plt.subplot(3,1,1)
plt.imshow(diff1.abs().as_array())
-plt.title('Diff PDHG vs CGLS')
+plt.title('Diff PDHG vs CGLS astra')
plt.colorbar()
plt.subplot(3,1,2)
plt.imshow(diff2.abs().as_array())
-plt.title('Diff FISTA vs CGLS')
+plt.title('Diff FISTA vs CGLS astra')
plt.colorbar()
plt.subplot(3,1,3)
plt.imshow(diff3.abs().as_array())
-plt.title('Diff CLGS astra vs CGLS')
+plt.title('Diff CLGS vs CGLS astra')
plt.colorbar()
-#%%
+cgls_astra_obj = fidelity(ImageData(recon_cgls_astra))
print('Primal Objective (FISTA) {} '.format(fista.objective[-1]))
print('Primal Objective (CGLS) {} '.format(cgls.objective[-1]))
print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+print('Primal Objective (CGLS_astra) {} '.format(cgls_astra_obj))
-true_obj = (Aop.direct(cglsd.get_output())-noisy_data).squared_norm()
-print('True objective {}'.format(true_obj))
-
diff --git a/Wrappers/Python/demos/PDHG_examples/GatherAll/phantom.mat b/Wrappers/Python/demos/PDHG_examples/GatherAll/phantom.mat
deleted file mode 100755
index c465bbe..0000000
--- a/Wrappers/Python/demos/PDHG_examples/GatherAll/phantom.mat
+++ /dev/null
Binary files differ
diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py
index 3bb3d57..4bcc95a 100755
--- a/Wrappers/Python/test/test_algorithms.py
+++ b/Wrappers/Python/test/test_algorithms.py
@@ -72,7 +72,7 @@ class TestAlgorithms(unittest.TestCase):
identity = Identity(ig)
alg = CGLS(x_init=x_init, operator=identity, data=b)
- alg.max_iteration = 1
+ alg.max_iteration = 200
alg.run(20, verbose=True)
self.assertNumpyArrayAlmostEqual(alg.x.as_array(), b.as_array())