summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py88
1 files changed, 7 insertions, 81 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
index 79040a0..37c2016 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -60,7 +60,7 @@ class L1Norm(Function):
y = 0
if self.b is not None:
- y = 0 + (self.b * x).sum()
+ y = 0 + self.b.dot(x)
return y
def proximal(self, x, tau, out=None):
@@ -95,98 +95,24 @@ class L1Norm(Function):
return ScaledFunction(self, scalar)
-#import numpy as np
-##from ccpi.optimisation.funcs import Function
-#from ccpi.optimisation.functions import Function
-#from ccpi.framework import DataContainer, ImageData
-#
-#
-############################# L1NORM FUNCTIONS #############################
-#class SimpleL1Norm(Function):
-#
-# def __init__(self, alpha=1):
-#
-# super(SimpleL1Norm, self).__init__()
-# self.alpha = alpha
-#
-# def __call__(self, x):
-# return self.alpha * x.abs().sum()
-#
-# def gradient(self,x):
-# return ValueError('Not Differentiable')
-#
-# def convex_conjugate(self,x):
-# return 0
-#
-# def proximal(self, x, tau):
-# ''' Soft Threshold'''
-# return x.sign() * (x.abs() - tau * self.alpha).maximum(0)
-#
-# def proximal_conjugate(self, x, tau):
-# return x.divide((x.abs()/self.alpha).maximum(1.0))
-
-#class L1Norm(SimpleL1Norm):
-#
-# def __init__(self, alpha=1, **kwargs):
-#
-# super(L1Norm, self).__init__()
-# self.alpha = alpha
-# self.b = kwargs.get('b',None)
-#
-# def __call__(self, x):
-#
-# if self.b is None:
-# return SimpleL1Norm.__call__(self, x)
-# else:
-# return SimpleL1Norm.__call__(self, x - self.b)
-#
-# def gradient(self, x):
-# return ValueError('Not Differentiable')
-#
-# def convex_conjugate(self,x):
-# if self.b is None:
-# return SimpleL1Norm.convex_conjugate(self, x)
-# else:
-# return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
-#
-# def proximal(self, x, tau):
-#
-# if self.b is None:
-# return SimpleL1Norm.proximal(self, x, tau)
-# else:
-# return self.b + SimpleL1Norm.proximal(self, x - self.b , tau)
-#
-# def proximal_conjugate(self, x, tau):
-#
-# if self.b is None:
-# return SimpleL1Norm.proximal_conjugate(self, x, tau)
-# else:
-# return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
-#
-
-###############################################################################
-
-
-
-
if __name__ == '__main__':
from ccpi.framework import ImageGeometry
import numpy
- N, M = 40,40
+ N, M = 400,400
ig = ImageGeometry(N, M)
scalar = 10
- b = ig.allocate('random_int')
- u = ig.allocate('random_int')
+ b = ig.allocate('random')
+ u = ig.allocate('random')
f = L1Norm()
f_scaled = scalar * L1Norm()
-
+
f_b = L1Norm(b=b)
f_scaled_b = scalar * L1Norm(b=b)
- # call
-
+ # call
+
a1 = f(u)
a2 = f_scaled(u)
numpy.testing.assert_equal(scalar * a1, a2)