diff options
Diffstat (limited to 'Wrappers')
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py | 2 | ||||
-rw-r--r-- | Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TGV_Tomo2D.py | 194 |
2 files changed, 1 insertions, 195 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py index 5f04363..cbdc420 100755 --- a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py @@ -104,7 +104,7 @@ class BlockOperator(Operator): index = row*self.shape[1]+col return self.operators[index] - def calculate_norm(self, **kwargs): + def norm(self, **kwargs): norm = [op.norm(**kwargs)**2 for op in self.operators] return numpy.sqrt(sum(norm)) diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TGV_Tomo2D.py b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TGV_Tomo2D.py deleted file mode 100644 index e74e1c6..0000000 --- a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TGV_Tomo2D.py +++ /dev/null @@ -1,194 +0,0 @@ -#======================================================================== -# Copyright 2019 Science Technology Facilities Council -# Copyright 2019 University of Manchester -# -# This work is part of the Core Imaging Library developed by Science Technology -# Facilities Council and University of Manchester -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0.txt -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -#========================================================================= -""" - -Total Generalised Variation (TGV) Tomography 2D using PDHG algorithm: - - -Problem: min_{x>0} \alpha * ||\nabla x - w||_{2,1} + \beta * || E w ||_{2,1} + - \frac{1}{2}||Au - g||^{2} - - min_{u>0} \alpha * ||\nabla u - w||_{2,1} + \beta * || E w ||_{2,1} + - int A u - g log(Au + \eta) - - \alpha: Regularization parameter - \beta: Regularization parameter - - \nabla: Gradient operator - E: Symmetrized Gradient operator - A: System Matrix - - g: Noisy Sinogram - - K = [ \nabla, - Identity - ZeroOperator, E - A, ZeroOperator] - -""" - -from ccpi.framework import AcquisitionGeometry, AcquisitionData, ImageData, ImageGeometry - -import numpy as np -import numpy -import matplotlib.pyplot as plt - -from ccpi.optimisation.algorithms import PDHG - -from ccpi.optimisation.operators import BlockOperator, Gradient, Identity, \ - SymmetrizedGradient, ZeroOperator -from ccpi.optimisation.functions import IndicatorBox, KullbackLeibler, ZeroFunction,\ - MixedL21Norm, BlockFunction, L2NormSquared - -from ccpi.astra.ops import AstraProjectorSimple -import os, sys - - -import tomophantom -from tomophantom import TomoP2D - -# user supplied input -if len(sys.argv) > 1: - which_noise = int(sys.argv[1]) -else: - which_noise = 1 - -# Load Piecewise smooth Shepp-Logan phantom -model = 2 # select a model number from the library -N = 128 # set dimension of the phantom -# one can specify an exact path to the parameters file -# path_library2D = '../../../PhantomLibrary/models/Phantom2DLibrary.dat' -path = os.path.dirname(tomophantom.__file__) -path_library2D = os.path.join(path, "Phantom2DLibrary.dat") -#This will generate a N_size x N_size phantom (2D) -phantom_2D = TomoP2D.Model(model, N, path_library2D) - -ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) -data = ImageData(phantom_2D) - -#Create Acquisition Data -detectors = N -angles = np.linspace(0, np.pi, N) -ag = AcquisitionGeometry('parallel','2D',angles, detectors) - -#device = input('Available device: GPU==1 / CPU==0 ') -device = '1' -if device=='1': - dev = 'gpu' -else: - dev = 'cpu' - -Aop = AstraProjectorSimple(ig, ag, 'cpu') -sin = Aop.direct(data) - -# Create noisy sinogram. -noises = ['gaussian', 'poisson'] -noise = noises[which_noise] - -if noise == 'poisson': - scale = 5 - eta = 0 - noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag) -elif noise == 'gaussian': - n1 = np.random.normal(0, 1, size = ag.shape) - noisy_data = AcquisitionData(n1 + sin.as_array(), ag) -else: - raise ValueError('Unsupported Noise ', noise) - -# Show Ground Truth and Noisy Data -plt.figure(figsize=(10,10)) -plt.subplot(1,2,2) -plt.imshow(data.as_array()) -plt.title('Ground Truth') -plt.colorbar() -plt.subplot(1,2,1) -plt.imshow(noisy_data.as_array()) -plt.title('Noisy Data') -plt.colorbar() -plt.show() - -# Create Operators -op11 = Gradient(ig) -op12 = Identity(op11.range_geometry()) - -op22 = SymmetrizedGradient(op11.domain_geometry()) -op21 = ZeroOperator(ig, op22.range_geometry()) - -op31 = Aop -op32 = ZeroOperator(op22.domain_geometry(), ag) - -operator = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) ) -normK = operator.norm() - -# Create functions -if noise == 'poisson': - alpha = 3 - beta = 6 - f3 = KullbackLeibler(noisy_data) - g = BlockFunction(IndicatorBox(lower=0), ZeroFunction()) - - # Primal & dual stepsizes - sigma = 1 - tau = 1/(sigma*normK**2) - -elif noise == 'gaussian': - alpha = 20 - beta = 50 - f3 = 0.5 * L2NormSquared(b=noisy_data) - g = BlockFunction(ZeroFunction(), ZeroFunction()) - - # Primal & dual stepsizes - sigma = 10 - tau = 1/(sigma*normK**2) - -f1 = alpha * MixedL21Norm() -f2 = beta * MixedL21Norm() -f = BlockFunction(f1, f2, f3) - -# Compute operator Norm -normK = operator.norm() - -# Setup and run the PDHG algorithm -pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) -pdhg.max_iteration = 3000 -pdhg.update_objective_interval = 500 -pdhg.run(3000) -#%% -plt.figure(figsize=(15,15)) -plt.subplot(3,1,1) -plt.imshow(data.as_array()) -plt.title('Ground Truth') -plt.colorbar() -plt.subplot(3,1,2) -plt.imshow(noisy_data.as_array()) -plt.title('Noisy Data') -plt.colorbar() -plt.subplot(3,1,3) -plt.imshow(pdhg.get_output()[0].as_array()) -plt.title('TGV Reconstruction') -plt.colorbar() -plt.show() -plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), data.as_array()[:, int(N/2)], label = 'GTruth') -plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), pdhg.get_output()[0].as_array()[:, int(N/2)], label = 'TGV reconstruction') -plt.legend() -plt.title('Middle Line Profiles') -plt.show() - - |