summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algs.py12
-rwxr-xr-xWrappers/Python/ccpi/optimisation/funcs.py10
2 files changed, 11 insertions, 11 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algs.py b/Wrappers/Python/ccpi/optimisation/algs.py
index 6cae65a..a45100c 100755
--- a/Wrappers/Python/ccpi/optimisation/algs.py
+++ b/Wrappers/Python/ccpi/optimisation/algs.py
@@ -20,7 +20,7 @@
import numpy
import time
-from ccpi.optimisation.funcs import BaseFunction
+from ccpi.optimisation.funcs import Function
def FISTA(x_init, f=None, g=None, opt=None):
'''Fast Iterative Shrinkage-Thresholding Algorithm
@@ -37,8 +37,8 @@ def FISTA(x_init, f=None, g=None, opt=None):
opt: additional algorithm
'''
# default inputs
- if f is None: f = BaseFunction()
- if g is None: g = BaseFunction()
+ if f is None: f = Function()
+ if g is None: g = Function()
# algorithmic parameters
if opt is None:
@@ -108,9 +108,9 @@ def FBPD(x_init, f=None, g=None, h=None, opt=None):
opt: additional algorithm
'''
# default inputs
- if f is None: f = BaseFunction()
- if g is None: g = BaseFunction()
- if h is None: h = BaseFunction()
+ if f is None: f = Function()
+ if g is None: g = Function()
+ if h is None: h = Function()
# algorithmic parameters
if opt is None:
diff --git a/Wrappers/Python/ccpi/optimisation/funcs.py b/Wrappers/Python/ccpi/optimisation/funcs.py
index da6a3de..d11d6c3 100755
--- a/Wrappers/Python/ccpi/optimisation/funcs.py
+++ b/Wrappers/Python/ccpi/optimisation/funcs.py
@@ -21,14 +21,14 @@ from ccpi.optimisation.ops import Identity, FiniteDiff2D
import numpy
-class BaseFunction(object):
+class Function(object):
def __init__(self):
self.op = Identity()
def __call__(self,x): return 0
def grad(self,x): return 0
def prox(self,x,tau): return x
-class Norm2(BaseFunction):
+class Norm2(Function):
def __init__(self,
gamma=1.0,
@@ -63,7 +63,7 @@ class TV2D(Norm2):
# Define a class for squared 2-norm
-class Norm2sq(BaseFunction):
+class Norm2sq(Function):
'''
f(x) = c*||A*x-b||_2^2
@@ -98,7 +98,7 @@ class Norm2sq(BaseFunction):
return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
-class ZeroFun(BaseFunction):
+class ZeroFun(Function):
def __init__(self,gamma=0,L=1):
self.gamma = gamma
@@ -113,7 +113,7 @@ class ZeroFun(BaseFunction):
# A more interesting example, least squares plus 1-norm minimization.
# Define class to represent 1-norm including prox function
-class Norm1(BaseFunction):
+class Norm1(Function):
def __init__(self,gamma):
# Do nothing