diff options
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/CMakeLists.txt | 2 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py | 41 |
2 files changed, 29 insertions, 14 deletions
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt index 9104afd..0c24540 100644 --- a/Wrappers/Python/CMakeLists.txt +++ b/Wrappers/Python/CMakeLists.txt @@ -76,7 +76,9 @@ if (BUILD_PYTHON_WRAPPER) ) endif() #set (PYTHON_DEST ${CMAKE_INSTALL_PREFIX}/python/) + install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/build/lib/ccpi + DESTINATION ${PYTHON_DEST}) install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/data/ DESTINATION ${CMAKE_INSTALL_PREFIX}/share/ccpi) #file(TOUCH ${PYTHON_DEST}/edo/__init__.py) diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py index 6391cf7..a45c3d2 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py @@ -25,6 +25,11 @@ from ccpi.framework import ImageData, ImageGeometry, BlockGeometry, BlockDataCon import numpy import warnings +#default nThreads +import multiprocessing +cpus = multiprocessing.cpu_count() +NUM_THREADS = max(int(cpus/2),1) + NEUMANN = 'Neumann' PERIODIC = 'Periodic' C = 'c' @@ -51,10 +56,11 @@ class Gradient(LinearOperator): 'Space' or 'SpaceChannels', defaults to 'Space' * *backend* (``str``) -- 'c' or 'numpy', defaults to 'c' if correlation is 'SpaceChannels' or channels = 1 - - + * *num_threads* (``int``) -- + If backend is 'c' specify the number of threads to use. Default is number of cpus/2 + + Example (2D): - .. math:: \nabla : X -> Y \\ @@ -85,7 +91,7 @@ class Gradient(LinearOperator): if backend == NUMPY: self.operator = Gradient_numpy(gm_domain, bnd_cond=bnd_cond, **kwargs) else: - self.operator = Gradient_C(gm_domain, bnd_cond=bnd_cond) + self.operator = Gradient_C(gm_domain, bnd_cond=bnd_cond, **kwargs) def direct(self, x, out=None): @@ -183,7 +189,7 @@ class Gradient_numpy(LinearOperator): # Call FiniteDiff operator self.FD = FiniteDiff(self.gm_domain, direction = 0, bnd_cond = self.bnd_cond) - + print("Initialised GradientOperator with numpy backend") def direct(self, x, out=None): @@ -275,7 +281,8 @@ class Gradient_numpy(LinearOperator): spMat = SparseFiniteDiff(self.gm_domain, direction=self.ind[i], bnd_cond=self.bnd_cond) res.append(spMat.sum_abs_col()) return BlockDataContainer(*res) - + + import ctypes, platform # check for the extension @@ -288,14 +295,13 @@ elif platform.system() == 'Darwin': else: raise ValueError('Not supported platform, ', platform.system()) -#print ("dll location", dll) -cilacc = ctypes.cdll.LoadLibrary(dll) -#FD = ctypes.CDLL(dll) +cilacc = ctypes.cdll.LoadLibrary(dll) c_float_p = ctypes.POINTER(ctypes.c_float) cilacc.openMPtest.restypes = ctypes.c_int32 +cilacc.openMPtest.argtypes = [ctypes.c_int32] cilacc.fdiff4D.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.POINTER(ctypes.c_float), @@ -307,6 +313,7 @@ cilacc.fdiff4D.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_long, ctypes.c_long, ctypes.c_int32, + ctypes.c_int32, ctypes.c_int32] cilacc.fdiff3D.argtypes = [ctypes.POINTER(ctypes.c_float), @@ -317,6 +324,7 @@ cilacc.fdiff3D.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_long, ctypes.c_long, ctypes.c_int32, + ctypes.c_int32, ctypes.c_int32] cilacc.fdiff2D.argtypes = [ctypes.POINTER(ctypes.c_float), @@ -325,6 +333,7 @@ cilacc.fdiff2D.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_long, ctypes.c_long, ctypes.c_int32, + ctypes.c_int32, ctypes.c_int32] @@ -336,10 +345,12 @@ class Gradient_C(LinearOperator): on 2D, 3D, 4D ImageData under Neumann/Periodic boundary conditions''' - def __init__(self, gm_domain, gm_range=None, bnd_cond = NEUMANN): + def __init__(self, gm_domain, gm_range=None, bnd_cond = NEUMANN, **kwargs): super(Gradient_C, self).__init__() + self.num_threads = kwargs.get('num_threads',NUM_THREADS) + self.gm_domain = gm_domain self.gm_range = gm_range @@ -362,8 +373,9 @@ class Gradient_C(LinearOperator): self.fd = cilacc.fdiff2D else: raise ValueError('Number of dimensions not supported, expected 2, 3 or 4, got {}'.format(len(gm_domain.shape))) - - + #self.num_threads + print("Initialised GradientOperator with C backend running with ", cilacc.openMPtest(self.num_threads)," threads") + @staticmethod def datacontainer_as_c_pointer(x): ndx = x.as_array() @@ -377,9 +389,10 @@ class Gradient_C(LinearOperator): out = self.gm_range.allocate(None) return_val = True + #pass list of all arguments arg1 = [Gradient_C.datacontainer_as_c_pointer(out.get_item(i))[1] for i in range(self.gm_range.shape[0])] arg2 = [el for el in x.shape] - args = arg1 + arg2 + [self.bnd_cond, 1] + args = arg1 + arg2 + [self.bnd_cond, 1, self.num_threads] self.fd(x_p, *args) if return_val is True: @@ -397,7 +410,7 @@ class Gradient_C(LinearOperator): arg1 = [Gradient_C.datacontainer_as_c_pointer(x.get_item(i))[1] for i in range(self.gm_range.shape[0])] arg2 = [el for el in out.shape] - args = arg1 + arg2 + [self.bnd_cond, 0] + args = arg1 + arg2 + [self.bnd_cond, 0, self.num_threads] self.fd(out_p, *args) |