summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/astra/astra_ops.py6
-rw-r--r--Wrappers/Python/ccpi/framework.py278
-rwxr-xr-xWrappers/Python/ccpi/processors.py357
-rw-r--r--Wrappers/Python/ccpi/reconstruction/algs.py89
-rw-r--r--Wrappers/Python/ccpi/reconstruction/ops.py85
-rwxr-xr-xWrappers/Python/wip/simple_demo_astra.py189
-rwxr-xr-xWrappers/Python/wip/simple_demo_ccpi.py270
7 files changed, 1183 insertions, 91 deletions
diff --git a/Wrappers/Python/ccpi/astra/astra_ops.py b/Wrappers/Python/ccpi/astra/astra_ops.py
index 5f25eec..d8c2f4b 100644
--- a/Wrappers/Python/ccpi/astra/astra_ops.py
+++ b/Wrappers/Python/ccpi/astra/astra_ops.py
@@ -18,7 +18,7 @@
from ccpi.reconstruction.ops import Operator
import numpy
import astra
-from ccpi.framework import AcquisitionData, ImageData
+from ccpi.framework import AcquisitionData, ImageData, DataContainer
from ccpi.reconstruction.ops import PowerMethodNonsquare
from ccpi.astra.astra_processors import AstraForwardProjector, AstraBackProjector, \
AstraForwardProjectorMC, AstraBackProjectorMC
@@ -68,6 +68,10 @@ class AstraProjectorSimple(Operator):
self.sinogram_geometry.pixel_num_h), \
(self.volume_geometry.voxel_num_x, \
self.volume_geometry.voxel_num_y) )
+
+ def create_image_data(self):
+ inputsize = self.size()[1]
+ return DataContainer(numpy.random.randn(inputsize[0],inputsize[1]))
class AstraProjectorMC(Operator):
"""ASTRA Multichannel projector"""
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 877becf..15dbe30 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -83,6 +83,20 @@ class ImageGeometry:
else:
return 0
+ def clone(self):
+ '''returns a copy of ImageGeometry'''
+ return ImageGeometry(
+ self.voxel_num_x,
+ self.voxel_num_y,
+ self.voxel_num_z,
+ self.voxel_size_x,
+ self.voxel_size_y,
+ self.voxel_size_z,
+ self.center_x,
+ self.center_y,
+ self.center_z,
+ self.channels)
+
class AcquisitionGeometry:
@@ -137,6 +151,31 @@ class AcquisitionGeometry:
self.pixel_size_v = pixel_size_v
self.channels = channels
+
+ def clone(self):
+ '''returns a copy of the AcquisitionGeometry'''
+ return AcquisitionGeometry(self.geom_type,
+ self.dimension,
+ self.angles,
+ self.pixel_num_h,
+ self.pixel_size_h,
+ self.pixel_num_v,
+ self.pixel_size_v,
+ self.dist_source_center,
+ self.dist_center_detector,
+ self.channels)
+
+ def __str__ (self):
+ repres = ""
+ repres += "Number of dimensions: {0}\n".format(self.dimension)
+ repres += "angles: {0}\n".format(len(self.angles))
+ repres += "voxel_num : h{0},v{1}\n".format(self.pixel_num_h, self.pixel_num_v)
+ repres += "voxel size: h{0},v{1}\n".format(self.pixel_size_h, self.pixel_size_v)
+ repres += "geometry type: {0}\n".format(self.geom_type)
+ repres += "distance source-detector: {0}\n".format(self.dist_source_center)
+ repres += "distance center-detector: {0}\n".format(self.dist_source_center)
+ repres += "number of channels: {0}\n".format(self.channels)
+ return repres
@@ -178,6 +217,25 @@ class DataContainer(object):
# assume it is parallel beam
pass
+ def get_dimension_size(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ acq_size = -1
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ acq_size = self.shape[k]
+ return acq_size
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels))
+ def get_dimension_axis(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ return k
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels.values()))
+
def as_array(self, dimensions=None):
'''Returns the DataContainer as Numpy Array
@@ -194,7 +252,15 @@ class DataContainer(object):
'''Creates a DataContainer containing a subset of self according to the
labels in dimensions'''
if dimensions is None:
- return self.array.copy()
+ if kw == {}:
+ return self.array.copy()
+ else:
+ reduced_dims = [v for k,v in self.dimension_labels.items()]
+ for dim_l, dim_v in kw.items():
+ for k,v in self.dimension_labels.items():
+ if v == dim_l:
+ reduced_dims.pop(k)
+ return self.subset(dimensions=reduced_dims, **kw)
else:
# check that all the requested dimensions are in the array
# this is done by checking the dimension_labels
@@ -258,14 +324,31 @@ class DataContainer(object):
return type(self)(cleaned , True, dimensions)
- def fill(self, array):
+ def fill(self, array, **dimension):
'''fills the internal numpy array with the one provided'''
- if numpy.shape(array) != numpy.shape(self.array):
- raise ValueError('Cannot fill with the provided array.' + \
- 'Expecting {0} got {1}'.format(
- numpy.shape(self.array),
- numpy.shape(array)))
- self.array = array[:]
+ if dimension == {}:
+ if numpy.shape(array) != numpy.shape(self.array):
+ raise ValueError('Cannot fill with the provided array.' + \
+ 'Expecting {0} got {1}'.format(
+ numpy.shape(self.array),
+ numpy.shape(array)))
+ self.array = array[:]
+ else:
+
+ command = 'self.array['
+ i = 0
+ for k,v in self.dimension_labels.items():
+ for dim_label, dim_value in dimension.items():
+ if dim_label == v:
+ command = command + str(dim_value)
+ else:
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ i += 1
+ command = command + "] = array[:]"
+ exec(command)
+
def check_dimensions(self, other):
return self.shape == other.shape
@@ -301,7 +384,7 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
geometry=self.geometry)
else:
- raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
+ raise ValueError('__sub__ Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() - other,
@@ -325,7 +408,7 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
geometry=self.geometry)
else:
- raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
+ raise ValueError('__div__ Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() / other,
@@ -346,7 +429,7 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
geometry=self.geometry)
else:
- raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
+ raise ValueError('__pow__ Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() ** other,
@@ -354,7 +437,7 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
geometry=self.geometry)
else:
- raise TypeError('Cannot {0} DataContainer with {1}'.format("power" ,
+ raise TypeError('pow: Cannot {0} DataContainer with {1}'.format("power" ,
type(other)))
# __pow__
@@ -367,7 +450,7 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
geometry=self.geometry)
else:
- raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
+ raise ValueError('*:Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() * other,
@@ -464,12 +547,13 @@ class DataContainer(object):
return self / other
# __idiv__
- def __str__ (self):
+ def __str__ (self, representation=False):
repres = ""
repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions)
repres += "Shape: {0}\n".format(self.shape)
repres += "Axis labels: {0}\n".format(self.dimension_labels)
- repres += "Representation: \n{0}\n".format(self.array)
+ if representation:
+ repres += "Representation: \n{0}\n".format(self.array)
return repres
def clone(self):
@@ -479,6 +563,40 @@ class DataContainer(object):
dimension_labels=self.dimension_labels,
deep_copy=True,
geometry=self.geometry )
+
+ def get_data_axes_order(self,new_order=None):
+ '''returns the axes label of self as a list
+
+ if new_order is None returns the labels of the axes as a sorted-by-key list
+ if new_order is a list of length number_of_dimensions, returns a list
+ with the indices of the axes in new_order with respect to those in
+ self.dimension_labels: i.e.
+ self.dimension_labels = {0:'horizontal',1:'vertical'}
+ new_order = ['vertical','horizontal']
+ returns [1,0]
+ '''
+ if new_order is None:
+
+ axes_order = [i for i in range(len(self.shape))]
+ for k,v in self.dimension_labels.items():
+ axes_order[k] = v
+ return axes_order
+ else:
+ if len(new_order) == self.number_of_dimensions:
+ axes_order = [i for i in range(self.number_of_dimensions)]
+
+ for i in range(len(self.shape)):
+ found = False
+ for k,v in self.dimension_labels.items():
+ if new_order[i] == v:
+ axes_order[i] = k
+ found = True
+ if not found:
+ raise ValueError('Axis label {0} not found.'.format(new_order[i]))
+ return axes_order
+ else:
+ raise ValueError('Expecting {0} axes, got {2}'\
+ .format(len(self.shape),len(new_order)))
@@ -501,29 +619,45 @@ class ImageData(DataContainer):
horiz_y = geometry.voxel_num_y
vert = 1 if geometry.voxel_num_z is None\
else geometry.voxel_num_z # this should be 1 for 2D
-
- if channels > 1:
- if vert > 1:
- shape = (channels, vert, horiz_y, horiz_x)
- dim_labels = ['channel' ,'vertical' , 'horizontal_y' ,
- 'horizontal_x']
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, vert, horiz_y, horiz_x)
+ dim_labels = ['channel' ,'vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ else:
+ shape = (channels , horiz_y, horiz_x)
+ dim_labels = ['channel' , 'horizontal_y' ,
+ 'horizontal_x']
else:
- shape = (channels , horiz_y, horiz_x)
- dim_labels = ['channel' , 'horizontal_y' ,
- 'horizontal_x']
+ if vert > 1:
+ shape = (vert, horiz_y, horiz_x)
+ dim_labels = ['vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ else:
+ shape = (horiz_y, horiz_x)
+ dim_labels = ['horizontal_y' ,
+ 'horizontal_x']
+ dimension_labels = dim_labels
else:
- if vert > 1:
- shape = (vert, horiz_y, horiz_x)
- dim_labels = ['vertical' , 'horizontal_y' ,
- 'horizontal_x']
- else:
- shape = (horiz_y, horiz_x)
- dim_labels = ['horizontal_y' ,
- 'horizontal_x']
-
+ shape = []
+ for dim in dimension_labels:
+ if dim == 'channel':
+ shape.append(channels)
+ elif dim == 'horizontal_y':
+ shape.append(horiz_y)
+ elif dim == 'vertical':
+ shape.append(vert)
+ elif dim == 'horizontal_x':
+ shape.append(horiz_x)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes'.format(
+ len(dimension_labels) - len(shape)))
+ shape = tuple(shape)
+
array = numpy.zeros( shape , dtype=numpy.float32)
super(ImageData, self).__init__(array, deep_copy,
- dim_labels, **kwargs)
+ dimension_labels, **kwargs)
else:
raise ValueError('Please pass either a DataContainer, ' +\
@@ -571,6 +705,12 @@ class ImageData(DataContainer):
if key == 'spacing' :
self.spacing = value
+ def subset(self, dimensions=None, **kw):
+ out = super(ImageData, self).subset(dimensions, **kw)
+ #out.geometry = self.recalculate_geometry(dimensions , **kw)
+ out.geometry = self.geometry
+ return out
+
class AcquisitionData(DataContainer):
'''DataContainer for holding 2D or 3D sinogram'''
@@ -582,37 +722,54 @@ class AcquisitionData(DataContainer):
self.geometry = None
if array is None:
if 'geometry' in kwargs.keys():
- geometry = kwargs['geometry']
+ geometry = kwargs['geometry']
self.geometry = geometry
- channels = geometry.channels
- horiz = geometry.pixel_num_h
- vert = geometry.pixel_num_v
- angles = geometry.angles
+ channels = geometry.channels
+ horiz = geometry.pixel_num_h
+ vert = geometry.pixel_num_v
+ angles = geometry.angles
num_of_angles = numpy.shape(angles)[0]
-
- if channels > 1:
- if vert > 1:
- shape = (channels, num_of_angles , vert, horiz)
- dim_labels = ['channel' , ' angle' ,
- 'vertical' , 'horizontal']
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, num_of_angles , vert, horiz)
+ dim_labels = ['channel' , ' angle' ,
+ 'vertical' , 'horizontal']
+ else:
+ shape = (channels , num_of_angles, horiz)
+ dim_labels = ['channel' , 'angle' ,
+ 'horizontal']
else:
- shape = (channels , num_of_angles, horiz)
- dim_labels = ['channel' , 'angle' ,
- 'horizontal']
+ if vert > 1:
+ shape = (num_of_angles, vert, horiz)
+ dim_labels = ['angle' , 'vertical' ,
+ 'horizontal']
+ else:
+ shape = (num_of_angles, horiz)
+ dim_labels = ['angle' ,
+ 'horizontal']
+
+ dimension_labels = dim_labels
else:
- if vert > 1:
- shape = (num_of_angles, vert, horiz)
- dim_labels = ['angles' , 'vertical' ,
- 'horizontal']
- else:
- shape = (num_of_angles, horiz)
- dim_labels = ['angles' ,
- 'horizontal']
-
+ shape = []
+ for dim in dimension_labels:
+ if dim == 'channel':
+ shape.append(channels)
+ elif dim == 'angle':
+ shape.append(num_of_angles)
+ elif dim == 'vertical':
+ shape.append(vert)
+ elif dim == 'horizontal':
+ shape.append(horiz)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes'.format(
+ len(dimension_labels) - len(shape)))
+ shape = tuple(shape)
+
array = numpy.zeros( shape , dtype=numpy.float32)
super(AcquisitionData, self).__init__(array, deep_copy,
- dim_labels, **kwargs)
+ dimension_labels, **kwargs)
else:
if type(array) == DataContainer:
@@ -732,6 +889,9 @@ class DataSetProcessor(object):
def process(self):
raise NotImplementedError('process must be implemented')
+
+
+
class DataSetProcessor23D(DataSetProcessor):
'''Regularizers DataSetProcessor
@@ -945,7 +1105,7 @@ if __name__ == '__main__':
# create VolumeData from geometry
vgeometry = ImageGeometry(voxel_num_x=2, voxel_num_y=3, channels=2)
- vol = VolumeData(geometry=vgeometry)
+ vol = ImageData(geometry=vgeometry)
sgeometry = AcquisitionGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20),
geom_type='parallel', pixel_num_v=3,
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py
index 3010053..d98ef12 100755
--- a/Wrappers/Python/ccpi/processors.py
+++ b/Wrappers/Python/ccpi/processors.py
@@ -17,12 +17,16 @@
# See the License for the specific language governing permissions and
# limitations under the License
-from ccpi.framework import DataSetProcessor, DataSet, AcquisitionData,\
- AcquisitionGeometry
+from ccpi.framework import DataSetProcessor, DataContainer, AcquisitionData,\
+ AcquisitionGeometry, ImageGeometry, ImageData
+from ccpi.reconstruction.parallelbeam import alg as pbalg
import numpy
import h5py
from scipy import ndimage
+import matplotlib.pyplot as plt
+
+
class Normalizer(DataSetProcessor):
'''Normalization based on flat and dark
@@ -130,7 +134,8 @@ class CenterOfRotationFinder(DataSetProcessor):
if dataset.geometry.geom_type == 'parallel':
return True
else:
- raise ValueError('This algorithm is suitable only for parallel beam geometry')
+ raise ValueError('{0} is suitable only for parallel beam geometry'\
+ .format(self.__class__.__name__))
else:
raise ValueError("Expected input dimensions is 3, got {0}"\
.format(dataset.number_of_dimensions))
@@ -385,6 +390,275 @@ class CenterOfRotationFinder(DataSetProcessor):
return cor
+class CCPiForwardProjector(DataSetProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self,
+ image_geometry = None,
+ acquisition_geometry = None,
+ output_axes_order = None):
+ if output_axes_order is None:
+ # default ccpi projector image storing order
+ output_axes_order = ['angle','vertical','horizontal']
+
+ kwargs = {
+ 'image_geometry' : image_geometry,
+ 'acquisition_geometry' : acquisition_geometry,
+ 'output_axes_order' : output_axes_order,
+ 'default_image_axes_order' : ['horizontal_x','horizontal_y','vertical'],
+ 'default_acquisition_axes_order' : ['angle','vertical','horizontal']
+ }
+
+ super(CCPiForwardProjector, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3 or dataset.number_of_dimensions == 2:
+ # sort in the order that this projector needs it
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self):
+
+ volume = self.get_input()
+ volume_axes = volume.get_data_axes_order(new_order=self.default_image_axes_order)
+ if not volume_axes == [0,1,2]:
+ volume.array = numpy.transpose(volume.array, volume_axes)
+ pixel_per_voxel = 1 # should be estimated from image_geometry and
+ # acquisition_geometry
+ if self.acquisition_geometry.geom_type == 'parallel':
+ #int msize = ndarray_volume.shape(0) > ndarray_volume.shape(1) ? ndarray_volume.shape(0) : ndarray_volume.shape(1);
+ #int detector_width = msize;
+ # detector_width is the max between the shape[0] and shape[1]
+
+
+ #double rotation_center = (double)detector_width/2.;
+ #int detector_height = ndarray_volume.shape(2);
+
+ #int number_of_projections = ndarray_angles.shape(0);
+
+ ##numpy_3d pixels(reinterpret_cast<float*>(ndarray_volume.get_data()),
+ #boost::extents[number_of_projections][detector_height][detector_width]);
+
+ pixels = pbalg.pb_forward_project(volume.as_array(),
+ self.acquisition_geometry.angles,
+ pixel_per_voxel)
+ out = AcquisitionData(geometry=self.acquisition_geometry,
+ label_dimensions=self.default_acquisition_axes_order)
+ out.fill(pixels)
+ out_axes = out.get_data_axes_order(new_order=self.output_axes_order)
+ if not out_axes == [0,1,2]:
+ out.array = numpy.transpose(out.array, out_axes)
+ return out
+ else:
+ raise ValueError('Cannot process cone beam')
+
+class CCPiBackwardProjector(DataSetProcessor):
+ '''Backward projector
+
+ This processor reads in a AcquisitionData and performs a backward projection,
+ i.e. project to reconstruction space.
+ Notice that it assumes that the center of rotation is in the middle
+ of the horizontal axis: in case when that's not the case it can be chained
+ with the AcquisitionDataPadder.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self,
+ image_geometry = None,
+ acquisition_geometry = None,
+ output_axes_order=None):
+ if output_axes_order is None:
+ # default ccpi projector image storing order
+ output_axes_order = ['horizontal_x','horizontal_y','vertical']
+ kwargs = {
+ 'image_geometry' : image_geometry,
+ 'acquisition_geometry' : acquisition_geometry,
+ 'output_axes_order' : output_axes_order,
+ 'default_image_axes_order' : ['horizontal_x','horizontal_y','vertical'],
+ 'default_acquisition_axes_order' : ['angle','vertical','horizontal']
+ }
+
+ super(CCPiBackwardProjector, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3 or dataset.number_of_dimensions == 2:
+ #number_of_projections][detector_height][detector_width
+
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self):
+ projections = self.get_input()
+ projections_axes = projections.get_data_axes_order(new_order=self.default_acquisition_axes_order)
+ if not projections_axes == [0,1,2]:
+ projections.array = numpy.transpose(projections.array, projections_axes)
+
+ pixel_per_voxel = 1 # should be estimated from image_geometry and acquisition_geometry
+ image_geometry = ImageGeometry(voxel_num_x = self.acquisition_geometry.pixel_num_h,
+ voxel_num_y = self.acquisition_geometry.pixel_num_h,
+ voxel_num_z = self.acquisition_geometry.pixel_num_v)
+ # input centered/padded acquisitiondata
+ center_of_rotation = projections.get_dimension_size('horizontal') / 2
+ #print (center_of_rotation)
+ if self.acquisition_geometry.geom_type == 'parallel':
+ back = pbalg.pb_backward_project(
+ projections.as_array(),
+ self.acquisition_geometry.angles,
+ center_of_rotation,
+ pixel_per_voxel
+ )
+ out = ImageData(geometry=self.image_geometry,
+ dimension_labels=self.default_image_axes_order)
+
+ out_axes = out.get_data_axes_order(new_order=self.output_axes_order)
+ if not out_axes == [0,1,2]:
+ back = numpy.transpose(back, out_axes)
+ out.fill(back)
+
+ return out
+
+ else:
+ raise ValueError('Cannot process cone beam')
+
+class AcquisitionDataPadder(DataSetProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self,
+ center_of_rotation = None,
+ acquisition_geometry = None,
+ pad_value = 1e-5):
+ kwargs = {
+ 'acquisition_geometry' : acquisition_geometry,
+ 'center_of_rotation' : center_of_rotation,
+ 'pad_value' : pad_value
+ }
+
+ super(AcquisitionDataPadder, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if self.acquisition_geometry is None:
+ self.acquisition_geometry = dataset.geometry
+ if dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self):
+ projections = self.get_input()
+ w = projections.get_dimension_size('horizontal')
+ delta = w - 2 * cor
+
+ padded_width = int (
+ numpy.ceil(abs(delta)) + w
+ )
+ delta_pix = padded_width - w
+
+ voxel_per_pixel = 1
+ geom = pbalg.pb_setup_geometry_from_acquisition(projections.as_array(),
+ self.acquisition_geometry.angles,
+ self.center_of_rotation,
+ voxel_per_pixel )
+
+ padded_geometry = self.acquisition_geometry.clone()
+
+ padded_geometry.pixel_num_h = geom['n_h']
+ padded_geometry.pixel_num_v = geom['n_v']
+
+ delta_pix_h = padded_geometry.pixel_num_h - self.acquisition_geometry.pixel_num_h
+ delta_pix_v = padded_geometry.pixel_num_v - self.acquisition_geometry.pixel_num_v
+
+ if delta_pix_h == 0:
+ delta_pix_h = delta_pix
+ padded_geometry.pixel_num_h = padded_width
+ #initialize a new AcquisitionData with values close to 0
+ out = AcquisitionData(geometry=padded_geometry)
+ out = out + self.pad_value
+
+
+ #pad in the horizontal-vertical plane -> slice on angles
+ if delta > 0:
+ #pad left of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(delta_pix_h, delta_pix_h+w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ else:
+ #pad right of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(0, w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ #cleaned = eval(command)
+ exec(command)
+ return out
+
+#class FiniteDifferentiator(DataSetProcessor):
+# def __init__(self):
+# kwargs = {
+#
+# }
+#
+# super(FiniteDifferentiator, self).__init__(**kwargs)
+#
+# def check_input(self, dataset):
+# return True
+#
+# def process(self):
+# axis = 0
+# d1 = numpy.diff(x,n=1,axis=axis)
+# d1 = numpy.resize(d1, numpy.shape(x))
+
+
+
def loadNexus(filename):
'''Load a dataset stored in a NeXuS file (HDF5)'''
###########################################################################
@@ -437,35 +711,94 @@ if __name__ == '__main__':
pixel_num_h=numpy.shape(proj)[2],
pixel_num_v=numpy.shape(proj)[1],
)
- sino = AcquisitionData( proj , geometry=parallelbeam)
+
+ dim_labels = ['angles' , 'vertical' , 'horizontal']
+ sino = AcquisitionData( proj , geometry=parallelbeam,
+ dimension_labels=dim_labels)
normalizer = Normalizer()
normalizer.set_input(sino)
normalizer.set_flat_field(flat)
normalizer.set_dark_field(dark)
norm = normalizer.get_output()
- print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
+ #print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
- norm1 = numpy.asarray(
- [Normalizer.normalize_projection( p, flat, dark, 1e-5 )
- for p in proj]
- )
+ #norm1 = numpy.asarray(
+ # [Normalizer.normalize_projection( p, flat, dark, 1e-5 )
+ # for p in proj]
+ # )
- print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
+ #print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
cor_finder = CenterOfRotationFinder()
cor_finder.set_input(sino)
cor = cor_finder.get_output()
print ("center of rotation {0} == 86.25?".format(cor))
+
+ padder = AcquisitionDataPadder(center_of_rotation=cor,
+ pad_value=0.75,
+ acquisition_geometry=normalizer.get_output().geometry)
+ #padder.set_input(normalizer.get_output())
+ padder.set_input_processor(normalizer)
+
+ #print ("padder ", padder.get_output())
+
+ volume_geometry = ImageGeometry()
+
+ back = CCPiBackwardProjector(acquisition_geometry=parallelbeam,
+ image_geometry=volume_geometry)
+ back.set_input_processor(padder)
+ #back.set_input(padder.get_output())
+ #print (back.image_geometry)
+ forw = CCPiForwardProjector(acquisition_geometry=parallelbeam,
+ image_geometry=volume_geometry)
+ forw.set_input_processor(back)
+
+
+ out = padder.get_output()
+ fig = plt.figure()
+ # projections row
+ a = fig.add_subplot(1,4,1)
+ a.imshow(norm.array[80])
+ a.set_title('orig')
+ a = fig.add_subplot(1,4,2)
+ a.imshow(out.array[80])
+ a.set_title('padded')
+
+ a = fig.add_subplot(1,4,3)
+ a.imshow(back.get_output().as_array()[15])
+ a.set_title('back')
+
+ a = fig.add_subplot(1,4,4)
+ a.imshow(forw.get_output().as_array()[80])
+ a.set_title('forw')
+
+
+ plt.show()
+
+# back = CCPiBackwardProjector(acquisition_geometry=parallelbeam,
+# image_geometry=volume_geometry)
+
+# int msize = ndarray_volume.shape(0) > ndarray_volume.shape(1) ? ndarray_volume.shape(0) : ndarray_volume.shape(1);#
+# int detector_width = msize;
+
+# double rotation_center = (double)detector_width/2.;
+# int detector_height = ndarray_volume.shape(2);
+# int number_of_projections = ndarray_angles.shape(0);
+# std::cout << "pb_forward_project rotation_center " << rotation_center << std::endl;
+# boost::extents[number_of_projections][detector_height][detector_width]);
+
+
conebeam = AcquisitionGeometry('cone', '3D' ,
angles=angles,
pixel_num_h=numpy.shape(proj)[2],
pixel_num_v=numpy.shape(proj)[1],
)
- sino = AcquisitionData( proj , geometry=conebeam)
+
try:
- cor_finder.set_input(sino)
+ sino2 = AcquisitionData( proj , geometry=conebeam)
+ cor_finder.set_input(sino2)
cor = cor_finder.get_output()
except ValueError as err:
print (err) \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/reconstruction/algs.py b/Wrappers/Python/ccpi/reconstruction/algs.py
index ec52fee..46865a8 100644
--- a/Wrappers/Python/ccpi/reconstruction/algs.py
+++ b/Wrappers/Python/ccpi/reconstruction/algs.py
@@ -23,14 +23,36 @@ import time
from ccpi.reconstruction.funcs import BaseFunction
def FISTA(x_init, f=None, g=None, opt=None):
-
+ '''Fast Iterative Shrinkage-Thresholding Algorithm
+
+ Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding
+ algorithm for linear inverse problems.
+ SIAM journal on imaging sciences,2(1), pp.183-202.
+
+ Parameters:
+ x_init: initial guess
+ f: data fidelity
+ g: regularizer
+ h:
+ opt: additional algorithm
+ '''
# default inputs
if f is None: f = BaseFunction()
if g is None: g = BaseFunction()
- if opt is None: opt = {'tol': 1e-4, 'iter': 1000}
-
+
# algorithmic parameters
- tol = opt['tol']
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
max_iter = opt['iter']
# initialization
@@ -76,15 +98,33 @@ def FISTA(x_init, f=None, g=None, opt=None):
return x, it, timing, criter
def FBPD(x_init, f=None, g=None, h=None, opt=None):
-
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
# default inputs
if f is None: f = BaseFunction()
if g is None: g = BaseFunction()
if h is None: h = BaseFunction()
- if opt is None: opt = {'tol': 1e-4, 'iter': 1000}
-
+
# algorithmic parameters
- tol = opt['tol']
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
max_iter = opt['iter']
# step-sizes
@@ -127,13 +167,34 @@ def FBPD(x_init, f=None, g=None, h=None, opt=None):
return x, it, timing, criter
-def CGLS(A,b,max_iter,x_init):
- '''Conjugate Gradient Least Squares algorithm'''
+def CGLS(x_init, operator , data , opt=None):
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ opt: additional algorithm
+ '''
+
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
- r = b.clone()
+ r = data.clone()
x = x_init.clone()
- d = A.adjoint(r)
+ d = operator.adjoint(r)
normr2 = (d**2).sum()
@@ -145,11 +206,11 @@ def CGLS(A,b,max_iter,x_init):
t = time.time()
- Ad = A.direct(d)
+ Ad = operator.direct(d)
alpha = normr2/( (Ad**2).sum() )
x = x + alpha*d
r = r - alpha*Ad
- s = A.adjoint(r)
+ s = operator.adjoint(r)
normr2_new = (s**2).sum()
beta = normr2_new/normr2
diff --git a/Wrappers/Python/ccpi/reconstruction/ops.py b/Wrappers/Python/ccpi/reconstruction/ops.py
index d6f31eb..fa30b0c 100644
--- a/Wrappers/Python/ccpi/reconstruction/ops.py
+++ b/Wrappers/Python/ccpi/reconstruction/ops.py
@@ -19,7 +19,8 @@
import numpy
from scipy.sparse.linalg import svds
-from ccpi.framework import DataContainer
+from ccpi.framework import DataContainer, ImageGeometry , ImageData
+from ccpi.processors import CCPiBackwardProjector, CCPiForwardProjector
# Maybe operators need to know what types they take as inputs/outputs
# to not just use generic DataContainer
@@ -110,7 +111,13 @@ class FiniteDiff2D(Operator):
def adjoint(self,x):
'''Backward differences, Newumann BC.'''
- Nrows, Ncols, Nchannels = x.as_array().shape
+ #Nrows, Ncols, Nchannels = x.as_array().shape
+ print (x)
+ Nrows = x.get_dimension_size('horizontal_x')
+ Ncols = x.get_dimension_size('horizontal_x')
+ Nchannels = 1
+ if len(x.shape) == 4:
+ Nchannels = x.get_dimension_size('channel')
zer = numpy.zeros((Nrows,1))
xxx = x.as_array()[:,:-1,0]
h = numpy.concatenate((zer,xxx), 1) - numpy.concatenate((xxx,zer), 1)
@@ -129,13 +136,27 @@ class FiniteDiff2D(Operator):
def PowerMethodNonsquare(op,numiters):
# Initialise random
- inputsize = op.size()[1]
- x0 = DataContainer(numpy.random.randn(inputsize[0],inputsize[1]))
+ # Jakob's
+ #inputsize = op.size()[1]
+ #x0 = ImageContainer(numpy.random.randn(*inputsize)
+ # Edo's
+ #vg = ImageGeometry(voxel_num_x=inputsize[0],
+ # voxel_num_y=inputsize[1],
+ # voxel_num_z=inputsize[2])
+ #
+ #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x'])
+ #print (x0)
+ #x0.fill(numpy.random.randn(*x0.shape))
+
+ x0 = op.create_image_data()
+
s = numpy.zeros(numiters)
# Loop
for it in numpy.arange(numiters):
x1 = op.adjoint(op.direct(x0))
x1norm = numpy.sqrt((x1**2).sum())
+ #print ("x0 **********" ,x0)
+ #print ("x1 **********" ,x1)
s[it] = (x1*x0).sum() / (x0*x0).sum()
x0 = (1.0/x1norm)*x1
return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
@@ -150,4 +171,58 @@ def PowerMethodNonsquare(op,numiters):
# x1norm = np.sqrt(np.sum(np.dot(x1,x1)))
# s[it] = np.dot(x1,x0) / np.dot(x1,x0)
# x0 = (1.0/x1norm)*x1
-# return s, x0 \ No newline at end of file
+# return s, x0
+
+class CCPiProjectorSimple(Operator):
+ """ASTRA projector modified to use DataSet and geometry."""
+ def __init__(self, geomv, geomp):
+ super(CCPiProjectorSimple, self).__init__()
+
+ # Store volume and sinogram geometries.
+ self.acquisition_geometry = geomp
+ self.volume_geometry = geomv
+
+ self.fp = CCPiForwardProjector(image_geometry=geomv,
+ acquisition_geometry=geomp,
+ output_axes_order=['angle','vertical','horizontal'])
+
+ self.bp = CCPiBackwardProjector(image_geometry=geomv,
+ acquisition_geometry=geomp,
+ output_axes_order=['horizontal_x','horizontal_y','vertical'])
+
+ # Initialise empty for singular value.
+ self.s1 = None
+
+ def direct(self, image_data):
+ self.fp.set_input(image_data)
+ out = self.fp.get_output()
+ return out
+
+ def adjoint(self, acquisition_data):
+ self.bp.set_input(acquisition_data)
+ out = self.bp.get_output()
+ return out
+
+ #def delete(self):
+ # astra.data2d.delete(self.proj_id)
+
+ def get_max_sing_val(self):
+ a = PowerMethodNonsquare(self,10)
+ self.s1 = a[0]
+ return self.s1
+
+ def size(self):
+ # Only implemented for 3D
+ return ( (self.acquisition_geometry.angles.size, \
+ self.acquisition_geometry.pixel_num_v,
+ self.acquisition_geometry.pixel_num_h), \
+ (self.volume_geometry.voxel_num_x, \
+ self.volume_geometry.voxel_num_y,
+ self.volume_geometry.voxel_num_z) )
+ def create_image_data(self):
+ x0 = ImageData(geometry = self.volume_geometry,
+ dimension_labels=self.bp.output_axes_order)#\
+ #.subset(['horizontal_x','horizontal_y','vertical'])
+ print (x0)
+ x0.fill(numpy.random.randn(*x0.shape))
+ return x0
diff --git a/Wrappers/Python/wip/simple_demo_astra.py b/Wrappers/Python/wip/simple_demo_astra.py
new file mode 100755
index 0000000..3365504
--- /dev/null
+++ b/Wrappers/Python/wip/simple_demo_astra.py
@@ -0,0 +1,189 @@
+#import sys
+#sys.path.append("..")
+
+from ccpi.framework import ImageData , ImageGeometry, AcquisitionGeometry
+from ccpi.reconstruction.algs import FISTA, FBPD, CGLS
+from ccpi.reconstruction.funcs import Norm2sq, Norm1 , TV2D
+from ccpi.astra.astra_ops import AstraProjectorSimple
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+test_case = 1 # 1=parallel2D, 2=cone2D
+
+# Set up phantom
+N = 128
+
+
+vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N)
+Phantom = ImageData(geometry=vg)
+
+x = Phantom.as_array()
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+plt.imshow(x)
+plt.show()
+
+# Set up measurement geometry
+angles_num = 20; # angles number
+
+if test_case==1:
+ angles = np.linspace(0,np.pi,angles_num,endpoint=False)
+elif test_case==2:
+ angles = np.linspace(0,2*np.pi,angles_num,endpoint=False)
+else:
+ NotImplemented
+
+det_w = 1.0
+det_num = N
+SourceOrig = 200
+OrigDetec = 0
+
+# Parallelbeam geometry test
+if test_case==1:
+ pg = AcquisitionGeometry('parallel',
+ '2D',
+ angles,
+ det_num,det_w)
+elif test_case==2:
+ pg = AcquisitionGeometry('cone',
+ '2D',
+ angles,
+ det_num,
+ det_w,
+ dist_source_center=SourceOrig,
+ dist_center_detector=OrigDetec)
+
+# ASTRA operator using volume and sinogram geometries
+Aop = AstraProjectorSimple(vg, pg, 'cpu')
+
+# Unused old astra projector without geometry
+# Aop_old = AstraProjector(det_w, det_num, SourceOrig,
+# OrigDetec, angles,
+# N,'fanbeam','gpu')
+
+# Try forward and backprojection
+b = Aop.direct(Phantom)
+out2 = Aop.adjoint(b)
+
+plt.imshow(b.array)
+plt.show()
+
+plt.imshow(out2.array)
+plt.show()
+
+# Create least squares object instance with projector and data.
+f = Norm2sq(Aop,b,c=0.5)
+
+# Initial guess
+x_init = ImageData(np.zeros(x.shape),geometry=vg)
+
+# Run FISTA for least squares without regularization
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None)
+
+plt.imshow(x_fista0.array)
+plt.title('FISTA0')
+plt.show()
+
+# Now least squares plus 1-norm regularization
+lam = 0.1
+g0 = Norm1(lam)
+
+# Run FISTA for least squares plus 1-norm function.
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0)
+
+plt.imshow(x_fista1.array)
+plt.title('FISTA1')
+plt.show()
+
+plt.semilogy(criter1)
+plt.show()
+
+# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm
+opt = {'tol': 1e-4, 'iter': 100}
+x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt)
+
+plt.imshow(x_fbpd1.array)
+plt.title('FBPD1')
+plt.show()
+
+plt.semilogy(criter_fbpd1)
+plt.show()
+
+# Now FBPD for least squares plus TV
+#lamtv = 1
+#gtv = TV2D(lamtv)
+
+#x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt)
+
+#plt.imshow(x_fbpdtv.array)
+#plt.show()
+
+#plt.semilogy(criter_fbpdtv)
+#plt.show()
+
+
+# Run CGLS, which should agree with the FISTA0
+x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt )
+
+plt.imshow(x_CGLS.array)
+plt.title('CGLS')
+#plt.title('CGLS recon, compare FISTA0')
+plt.show()
+
+plt.semilogy(criter_CGLS)
+plt.title('CGLS criterion')
+plt.show()
+
+
+#%%
+
+clims = (0,1)
+cols = 3
+rows = 2
+current = 1
+fig = plt.figure()
+# projections row
+a=fig.add_subplot(rows,cols,current)
+a.set_title('phantom {0}'.format(np.shape(Phantom.as_array())))
+
+imgplot = plt.imshow(Phantom.as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FISTA0')
+imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FISTA1')
+imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FBPD1')
+imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('CGLS')
+imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1])
+
+#current = current + 1
+#a=fig.add_subplot(rows,cols,current)
+#a.set_title('FBPD TV')
+#imgplot = plt.imshow(x_fbpdtv.as_array(),vmin=clims[0],vmax=clims[1])
+
+fig = plt.figure()
+# projections row
+b=fig.add_subplot(1,1,1)
+b.set_title('criteria')
+imgplot = plt.loglog(criter0 , label='FISTA0')
+imgplot = plt.loglog(criter1 , label='FISTA1')
+imgplot = plt.loglog(criter_fbpd1, label='FBPD1')
+imgplot = plt.loglog(criter_CGLS, label='CGLS')
+#imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV')
+b.legend(loc='right')
+plt.show()
+#%% \ No newline at end of file
diff --git a/Wrappers/Python/wip/simple_demo_ccpi.py b/Wrappers/Python/wip/simple_demo_ccpi.py
new file mode 100755
index 0000000..4eeaaae
--- /dev/null
+++ b/Wrappers/Python/wip/simple_demo_ccpi.py
@@ -0,0 +1,270 @@
+#import sys
+#sys.path.append("..")
+
+from ccpi.framework import ImageData , AcquisitionData, ImageGeometry, AcquisitionGeometry
+from ccpi.reconstruction.algs import FISTA, FBPD, CGLS
+from ccpi.reconstruction.funcs import Norm2sq, Norm1 , TV2D
+from ccpi.astra.astra_ops import AstraProjectorSimple
+from ccpi.reconstruction.ops import CCPiProjectorSimple
+from ccpi.reconstruction.parallelbeam import alg as pbalg
+from ccpi.processors import CCPiForwardProjector, CCPiBackwardProjector
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+test_case = 1 # 1=parallel2D, 2=cone2D, 3=parallel3D
+
+# Set up phantom
+N = 128
+vert = 1
+# Set up measurement geometry
+angles_num = 20; # angles number
+det_w = 1.0
+det_num = N
+SourceOrig = 200
+OrigDetec = 0
+
+if test_case==1:
+ angles = np.linspace(0,np.pi,angles_num,endpoint=False,dtype=np.float32)*180/np.pi
+ #nangles = angles_num
+ #angles = np.linspace(0,360, nangles, dtype=np.float32)
+
+elif test_case==2:
+ angles = np.linspace(0,2*np.pi,angles_num,endpoint=False)
+elif test_case == 3:
+ angles = np.linspace(0,np.pi,angles_num,endpoint=False)
+else:
+ NotImplemented
+
+
+def setupCCPiGeometries(voxel_num_x, voxel_num_y, voxel_num_z, angles, counter):
+ vg = ImageGeometry(voxel_num_x=voxel_num_x,voxel_num_y=voxel_num_y, voxel_num_z=voxel_num_z)
+ Phantom_ccpi = ImageData(geometry=vg,
+ dimension_labels=['horizontal_x','horizontal_y','vertical'])
+ #.subset(['horizontal_x','horizontal_y','vertical'])
+ # ask the ccpi code what dimensions it would like
+
+ voxel_per_pixel = 1
+ geoms = pbalg.pb_setup_geometry_from_image(Phantom_ccpi.as_array(),
+ angles,
+ voxel_per_pixel )
+
+ pg = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ geoms['n_h'],det_w,
+ geoms['n_v'], det_w #2D in 3D is a slice 1 pixel thick
+ )
+
+ center_of_rotation = Phantom_ccpi.get_dimension_size('horizontal_x') / 2
+ ad = AcquisitionData(geometry=pg,dimension_labels=['angle','vertical','horizontal'])
+ geoms_i = pbalg.pb_setup_geometry_from_acquisition(ad.as_array(),
+ angles,
+ center_of_rotation,
+ voxel_per_pixel )
+
+ #print (counter)
+ counter+=1
+ #print (geoms , geoms_i)
+ if counter < 4:
+ if (not ( geoms_i == geoms )):
+ print ("not equal and {0}".format(counter))
+ X = max(geoms['output_volume_x'], geoms_i['output_volume_x'])
+ Y = max(geoms['output_volume_y'], geoms_i['output_volume_y'])
+ Z = max(geoms['output_volume_z'], geoms_i['output_volume_z'])
+ return setupCCPiGeometries(X,Y,Z,angles, counter)
+ else:
+ print ("return geoms {0}".format(geoms))
+ return geoms
+ else:
+ print ("return geoms_i {0}".format(geoms_i))
+ return geoms_i
+
+geoms = setupCCPiGeometries(N,N,vert,angles,0)
+#%%
+#geoms = {'n_v': 12, 'output_volume_y': 128, 'n_angles': 20,
+# 'output_volume_x': 128, 'output_volume_z': 12, 'n_h': 128}
+vg = ImageGeometry(voxel_num_x=geoms['output_volume_x'],
+ voxel_num_y=geoms['output_volume_y'],
+ voxel_num_z=geoms['output_volume_z'])
+Phantom = ImageData(geometry=vg,dimension_labels=['horizontal_x','horizontal_y','vertical']) + 0.1
+
+
+#x = Phantom.as_array()
+i = 0
+while i < geoms['n_v']:
+ #x = Phantom.subset(vertical=i, dimensions=['horizontal_x','horizontal_y']).array
+ x = Phantom.subset(vertical=i).array
+ x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+ x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.98
+ Phantom.fill(x, vertical=i)
+ i += 1
+
+plt.imshow(Phantom.subset(vertical=0).as_array())
+plt.show()
+
+
+
+# Parallelbeam geometry test
+if test_case==1:
+ #Phantom_ccpi = Phantom.subset(['horizontal_x','horizontal_y','vertical'])
+ #Phantom_ccpi.geometry = vg.clone()
+ center_of_rotation = Phantom.get_dimension_size('horizontal_x') / 2
+
+ pg = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ geoms['n_h'],det_w,
+ geoms['n_v'], det_w #2D in 3D is a slice 1 pixel thick
+ )
+elif test_case==2:
+ raise NotImplemented('cone beam projector not yet available')
+ pg = AcquisitionGeometry('cone',
+ '2D',
+ angles,
+ det_num,
+ det_w,
+ vert, det_w, #2D in 3D is a slice 1 pixel thick
+ dist_source_center=SourceOrig,
+ dist_center_detector=OrigDetec)
+
+# ASTRA operator using volume and sinogram geometries
+#Aop = AstraProjectorSimple(vg, pg, 'cpu')
+Cop = CCPiProjectorSimple(vg, pg)
+
+# Try forward and backprojection
+b = Cop.direct(Phantom)
+out2 = Cop.adjoint(b)
+
+#%%
+for i in range(b.get_dimension_size('vertical')):
+ plt.imshow(b.subset(vertical=i).array)
+ #plt.imshow(Phantom.subset( vertical=i).array)
+ #plt.imshow(b.array[:,i,:])
+ plt.show()
+#%%
+
+plt.imshow(out2.subset( vertical=0).array)
+plt.show()
+
+# Create least squares object instance with projector and data.
+f = Norm2sq(Cop,b,c=0.5)
+
+# Initial guess
+x_init = ImageData(geometry=vg, dimension_labels=['horizontal_x','horizontal_y','vertical'])
+#invL = 0.5
+#g = f.grad(x_init)
+#print (g)
+#u = x_init - invL*f.grad(x_init)
+
+#%%
+# Run FISTA for least squares without regularization
+opt = {'tol': 1e-4, 'iter': 100}
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt=opt)
+
+plt.imshow(x_fista0.subset(vertical=0).array)
+plt.title('FISTA0')
+plt.show()
+
+# Now least squares plus 1-norm regularization
+lam = 0.1
+g0 = Norm1(lam)
+
+# Run FISTA for least squares plus 1-norm function.
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0,opt=opt)
+
+plt.imshow(x_fista0.subset(vertical=0).array)
+plt.title('FISTA1')
+plt.show()
+
+plt.semilogy(criter1)
+plt.show()
+
+# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm
+x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt)
+
+plt.imshow(x_fbpd1.subset(vertical=0).array)
+plt.title('FBPD1')
+plt.show()
+
+plt.semilogy(criter_fbpd1)
+plt.show()
+
+# Now FBPD for least squares plus TV
+#lamtv = 1
+#gtv = TV2D(lamtv)
+
+#x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt)
+
+#plt.imshow(x_fbpdtv.subset(vertical=0).array)
+#plt.show()
+
+#plt.semilogy(criter_fbpdtv)
+#plt.show()
+
+
+# Run CGLS, which should agree with the FISTA0
+x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Cop, b, opt=opt)
+
+plt.imshow(x_CGLS.subset(vertical=0).array)
+plt.title('CGLS')
+plt.title('CGLS recon, compare FISTA0')
+plt.show()
+
+plt.semilogy(criter_CGLS)
+plt.title('CGLS criterion')
+plt.show()
+
+
+#%%
+
+clims = (0,1)
+cols = 3
+rows = 2
+current = 1
+fig = plt.figure()
+# projections row
+a=fig.add_subplot(rows,cols,current)
+a.set_title('phantom {0}'.format(np.shape(Phantom.as_array())))
+
+imgplot = plt.imshow(Phantom.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FISTA0')
+imgplot = plt.imshow(x_fista0.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FISTA1')
+imgplot = plt.imshow(x_fista1.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FBPD1')
+imgplot = plt.imshow(x_fbpd1.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('CGLS')
+imgplot = plt.imshow(x_CGLS.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+plt.show()
+#%%
+#current = current + 1
+#a=fig.add_subplot(rows,cols,current)
+#a.set_title('FBPD TV')
+#imgplot = plt.imshow(x_fbpdtv.subset(vertical=0).as_array(),vmin=clims[0],vmax=clims[1])
+
+fig = plt.figure()
+# projections row
+b=fig.add_subplot(1,1,1)
+b.set_title('criteria')
+imgplot = plt.loglog(criter0 , label='FISTA0')
+imgplot = plt.loglog(criter1 , label='FISTA1')
+imgplot = plt.loglog(criter_fbpd1, label='FBPD1')
+imgplot = plt.loglog(criter_CGLS, label='CGLS')
+#imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV')
+b.legend(loc='right')
+plt.show()
+#%% \ No newline at end of file