summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py3
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py3
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py7
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py3
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py10
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__init__.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py9
-rw-r--r--Wrappers/Python/test/test_functions.py459
8 files changed, 67 insertions, 429 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
index bc9b62d..d6c98c4 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
@@ -7,7 +7,8 @@ Created on Fri Mar 8 10:01:31 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import BlockDataContainer
class BlockFunction(Function):
diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
index a67b884..0f3defe 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
@@ -7,7 +7,8 @@ Created on Fri Mar 8 09:55:36 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
class FunctionOperatorComposition(Function):
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
index ec7aa5b..f83de6f 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -7,12 +7,13 @@ Created on Wed Mar 6 19:42:34 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import DataContainer, ImageData, ImageGeometry
############################ L1NORM FUNCTIONS #############################
-class SimpleL1NormEdo(Function):
+class SimpleL1Norm(Function):
def __init__(self, alpha=1):
@@ -35,7 +36,7 @@ class SimpleL1NormEdo(Function):
def proximal_conjugate(self, x, tau):
return x.divide((x.abs()/self.alpha).maximum(1.0))
-class L1Norm(SimpleL1NormEdo):
+class L1Norm(SimpleL1Norm):
def __init__(self, alpha=1, **kwargs):
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index 8b73be6..5817317 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -9,7 +9,8 @@ Created on Thu Feb 7 13:10:56 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import DataContainer, ImageData, ImageGeometry
diff --git a/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py b/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py
index b41cc26..9def741 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py
@@ -7,7 +7,8 @@ Created on Wed Mar 6 19:44:10 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import DataContainer, ImageData
from ccpi.framework import BlockDataContainer
@@ -33,8 +34,11 @@ class ZeroFun(Function):
else:
return x.maximum(0).sum() + x.maximum(0).sum()
- def proximal(self,x,tau):
- return x.copy()
+ def proximal(self,x,tau, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
def proximal_conjugate(self, x, tau):
return 0 \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
index 7ce617a..c4ba0a6 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/__init__.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
-
+from .Function import Function
from .ZeroFun import ZeroFun
from .L1Norm import *
from .L2NormSquared import *
diff --git a/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py b/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py
index 0ce1d28..8fe8620 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py
@@ -7,9 +7,10 @@ Created on Wed Mar 6 19:43:12 2019
"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import DataContainer, ImageData, ImageGeometry
-
+from ccpi.optimisation.functions.FunctionOperatorComposition import FunctionOperatorComposition
############################ mixed_L1,2NORM FUNCTIONS #############################
@@ -59,7 +60,7 @@ class mixed_L12Norm(Function):
def composition_with(self, operator):
if self.b is None:
- return FunctionComposition(mixed_L12Norm(self.alpha), operator)
+ return FunctionOperatorComposition(operator, mixed_L12Norm(self.alpha))
else:
- return FunctionComposition(mixed_L12Norm(self.alpha, b=self.b), operator)
+ return FunctionOperatorComposition(operator, mixed_L12Norm(self.alpha, b=self.b))
diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py
index 54a952a..0741d1c 100644
--- a/Wrappers/Python/test/test_functions.py
+++ b/Wrappers/Python/test/test_functions.py
@@ -6,438 +6,67 @@ Created on Sat Mar 2 19:24:37 2019
@author: evangelos
"""
-# -*- coding: utf-8 -*-
-
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 7 13:10:56 2019
-
-@author: evangelos
-"""
import numpy as np
-from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
from ccpi.framework import DataContainer, ImageData, ImageGeometry
-from operators import CompositeDataContainer, Identity, CompositeOperator
+from ccpi.optimisation.operators import Identity
+from ccpi.optimisation.operators import BlockOperator
+from ccpi.framework import BlockDataContainer
from numbers import Number
-from GradientOperator import Gradient
-
-
-class SimpleL2NormSq(Function):
-
- def __init__(self, alpha=1):
-
- super(SimpleL2NormSq, self).__init__()
- self.alpha = alpha
-
- def __call__(self, x):
- return self.alpha * x.power(2).sum()
-
- def gradient(self,x):
- return 2 * self.alpha * x
-
- def convex_conjugate(self,x):
- return (1/(4*self.alpha)) * x.power(2).sum()
-
- def proximal(self, x, tau):
- return x.divide(1+2*tau*self.alpha)
-
- def proximal_conjugate(self, x, tau):
- return x.divide(1 + tau/(2*self.alpha) )
-
-
-############################ L2NORM FUNCTIONS #############################
-class L2NormSq(SimpleL2NormSq):
-
- def __init__(self, alpha, **kwargs):
-
- super(L2NormSq, self).__init__(alpha)
- self.alpha = alpha
- self.b = kwargs.get('b',None)
- self.L = 1
-
- def __call__(self, x):
-
- if self.b is None:
- return SimpleL2NormSq.__call__(self, x)
- else:
- return SimpleL2NormSq.__call__(self, x - self.b)
-
- def gradient(self, x):
-
- if self.b is None:
- return 2*self.alpha * x
- else:
- return 2*self.alpha * (x - self.b)
-
- def composition_with(self, operator):
-
- if self.b is None:
- return FunctionComposition(L2NormSq(self.alpha), operator)
- else:
- return FunctionComposition(L2NormSq(self.alpha, b=self.b), operator)
-
- def convex_conjugate(self, x):
-
- ''' The convex conjugate corresponds to the simple functional i.e.,
- f(x) = alpha * ||x - b||_{2}^{2}
- '''
-
- if self.b is None:
- return SimpleL2NormSq.convex_conjugate(self, x)
- else:
- return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum()
-
- def proximal(self, x, tau):
-
- ''' The proximal operator corresponds to the simple functional i.e.,
- f(x) = alpha * ||x - b||_{2}^{2}
-
- argmin_x { 0.5||x - u||^{2} + tau f(x) }
- '''
-
- if self.b is None:
- return SimpleL2NormSq.proximal(self, x, tau)
- else:
- return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau)
-
-
- def proximal_conjugate(self, x, tau):
-
- ''' The proximal operator corresponds to the simple convex conjugate
- functional i.e., f^{*}(x^{)
- argmin_x { 0.5||x - u||^{2} + tau f(x) }
- '''
- if self.b is None:
- return SimpleL2NormSq.proximal_conjugate(self, x, tau)
- else:
- return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau)
-
-
-############################ L1NORM FUNCTIONS #############################
-class SimpleL1Norm(Function):
-
- def __init__(self, alpha=1):
-
- super(SimpleL1Norm, self).__init__()
- self.alpha = alpha
-
- def __call__(self, x):
- return self.alpha * x.abs().sum()
-
- def gradient(self,x):
- return ValueError('Not Differentiable')
-
- def convex_conjugate(self,x):
- return 0
-
- def proximal(self, x, tau):
- ''' Soft Threshold'''
- return x.sign() * (x.abs() - tau * self.alpha).maximum(1.0)
-
- def proximal_conjugate(self, x, tau):
- return x.divide((x.abs()/self.alpha).maximum(1.0))
-
-class L1Norm(SimpleL1Norm):
-
- def __init__(self, alpha=1, **kwargs):
-
- super(L1Norm, self).__init__()
- self.alpha = alpha
-
- self.A = kwargs.get('A',None)
- self.b = kwargs.get('b',None)
-
- def __call__(self, x):
-
- if self.b is None:
- return SimpleL1Norm.__call__(self, self.A.direct(x))
- else:
- return SimpleL1Norm.__call__(self, self.A.direct(x) - self.b)
-
- def eval_norm(self, x):
-
- return SimpleL1Norm.__call__(self, x)
-
- def gradient(self, x):
- return ValueError('Not Differentiable')
-
- def convex_conjugate(self,x):
- if self.b is None:
- return SimpleL1Norm.convex_conjugate(self, x)
- else:
- return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
-
- def proximal(self, x, tau):
-
- if self.b is None:
- return SimpleL1Norm.proximal(self, x, tau)
- else:
- return self.b + SimpleL1Norm.proximal(self, x + self.b , tau)
-
- def proximal_conjugate(self, x, tau):
-
- if self.b is None:
- return SimpleL1Norm.proximal_conjugate(self, x, tau)
- else:
- return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
-
-
-############################ mixed_L1,2NORM FUNCTIONS #############################
-class mixed_L12Norm(Function):
-
- def __init__(self, alpha, **kwargs):
+from ccpi.optimisation.operators import Gradient
- super(mixed_L12Norm, self).__init__()
-
- self.alpha = alpha
- self.b = kwargs.get('b',None)
- self.sym_grad = kwargs.get('sym_grad',False)
-
- def __call__(self,x):
-
- if self.b is None:
- tmp1 = x
- else:
- tmp1 = x - self.b
-#
- if self.sym_grad:
- tmp = np.sqrt(tmp1.as_array()[0]**2 + tmp1.as_array()[1]**2 + 2*tmp1.as_array()[2]**2)
- else:
- tmp = ImageData(tmp1.power(2).sum(axis=0)).sqrt()
-
- return self.alpha*tmp.sum()
-
- def gradient(self,x):
- return ValueError('Not Differentiable')
-
- def convex_conjugate(self,x):
- return 0
-
- def proximal(self, x, tau):
- pass
-
- def proximal_conjugate(self, x, tau):
-
- if self.sym_grad:
- tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
- res = x.divide(ImageData(tmp2).maximum(1.0))
- else:
- res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
-
- return res
-
- def composition_with(self, operator):
-
- if self.b is None:
- return FunctionComposition(mixed_L12Norm(self.alpha), operator)
- else:
- return FunctionComposition(mixed_L12Norm(self.alpha, b=self.b), operator)
-
+from ccpi.optimisation.functions import SimpleL2NormSq
+from ccpi.optimisation.functions import L2NormSq
+from ccpi.optimisation.functions import SimpleL1Norm
+from ccpi.optimisation.functions import L1Norm
+# from ccpi.optimisation.functions.L2NormSquared import SimpleL2NormSq, L2NormSq
+# from ccpi.optimisation.functions.L1Norm import SimpleL1Norm, L1Norm
+from ccpi.optimisation.functions import mixed_L12Norm
+from ccpi.optimisation.functions import ZeroFun
-#%%
-
-class ZeroFun(Function):
-
- def __init__(self):
- super(ZeroFun, self).__init__()
-
- def __call__(self,x):
- return 0
-
- def convex_conjugate(self, x):
- ''' This is the support function sup <x, x^{*}> which in fact is the
- indicator function for the set = {0}
- So 0 if x=0, or inf if x neq 0
- '''
-
- if x.shape[0]==1:
- return x.maximum(0).sum()
- else:
- return x.get_item(0).maximum(0).sum() + x.get_item(1).maximum(0).sum()
-
- def proximal(self,x,tau):
- return x.copy()
-
- def proximal_conjugate(self, x, tau):
- return 0
-
-
-class CompositeFunction(Function):
-
- def __init__(self, *functions, blockMatrix):
-
- self.blockMatrix = blockMatrix
- self.functions = functions
- self.length = len(self.functions)
-
- def get_item(self, ind):
- return self.functions[ind]
-
- def __call__(self,x):
-
- t = 0
- for i in range(x.shape[0]):
- t += self.functions[i](x.get_item(i))
- return t
-
-
- def convex_conjugate(self, x):
-
- z = 0
- t = 0
- for i in range(x.shape[0]):
- t += self.functions[z].convex_conjugate(x.get_item(i))
- z += 1
-
- return t
-
- def proximal(self, x, tau, out = None):
-
- if isinstance(tau, Number):
- tau = CompositeDataContainer(tau)
- out = [None]*self.length
- for i in range(self.length):
- out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(0))
- return CompositeDataContainer(*out)
+from ccpi.optimisation.functions import FunctionOperatorComposition
+import unittest
-
- def proximal_conjugate(self, x, tau, out = None):
-
- if isinstance(tau, Number):
- tau = CompositeDataContainer(tau)
- if isinstance(x, ImageData):
- x = CompositeDataContainer(x)
- out = [None]*self.length
- for i in range(self.length):
- out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(0))
- return CompositeDataContainer(*out)
-
#
-class FunctionComposition(Function):
-
- def __init__(self, function, operator):
-
- self.function = function
- self.alpha = self.function.alpha
- self.b = self.function.b
- self.operator = operator
-
-
- super(FunctionComposition, self).__init__()
-
- ''' overide call and gradient '''
- def __call__(self, x):
- return self.function(x)
-
- def gradient(self,x):
- return self.operator.adjoint(self.function.gradient(self.operator.direct(x)))
-
- ''' Same as in the parent class'''
- def proximal(self,x, tau):
- return self.function.proximal(x, tau)
-
- def proximal_conjugate(self,x, tau):
- return self.function.proximal_conjugate(x, tau)
- def convex_conjugate(self,x):
- return self.function.convex_conjugate(x)
-
-class FunctionComposition_new(Function):
+class TestFunction(unittest.TestCase):
+ def test_Function(self):
+
- def __init__(self, operator, *functions):
+ N = 3
+ ig = (N,N)
+ ag = ig
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Form Composite Operator
+ operator = BlockOperator((2,1), op1, op2 )
- self.functions = functions
- self.operator = operator
- self.length = len(self.functions)
+ # Create functions
+ noisy_data = ImageData(np.random.randint(10, size=ag))
-# if self.length==1:
-# self.L = self.functions[0].alpha*(self.operator.norm()**2)
-
- # length == to operator.shape[0]#
- super(FunctionComposition_new, self).__init__()
-
- def __call__(self, x):
-
- if isinstance(x, ImageData):
- x = CompositeDataContainer(x)
+ d = ImageData(np.random.randint(10, size=ag))
- t = 0
- for i in range(x.shape[0]):
- t += self.functions[i](x.get_item(i))
- return t
-
- def convex_conjugate(self, x):
-
- if isinstance(x, ImageData):
- x = CompositeDataContainer(x)
+ f = mixed_L12Norm(alpha = 1).composition_with(op1)
+ g = L2NormSq(alpha=0.5, b=noisy_data)
- t = 0
- for i in range(x.shape[0]):
- t += self.functions[i].convex_conjugate(x.get_item(i))
- return t
-
- def proximal_conjugate(self, x, tau, out = None):
-
- if isinstance(x, ImageData):
- x = CompositeDataContainer(x)
-
- out = [None]*self.length
- for i in range(self.length):
- out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+ # Compare call of f
+ a1 = ImageData(op1.direct(d).power(2).sum(axis=0)).sqrt().sum()
+ #print(a1, f(d))
+ self.assertEqual (a1, f(d))
- if self.length==1:
- return ImageData(*out)
- else:
- return CompositeDataContainer(*out)
-
- def proximal(self, x, tau, out = None):
-
- if isinstance(x, ImageData):
- x = CompositeDataContainer(x)
-
- out = [None]*self.length
- for i in range(self.length):
- out[i] = self.functions[i].proximal(x.get_item(i), tau)
+ # Compare call of g
+ a2 = g.alpha*(d - noisy_data).power(2).sum()
+ #print(a2, g(d))
+ self.assertEqual(a2, g(d))
- if self.length==1:
- return ImageData(*out)
- else:
- return CompositeDataContainer(*out)
-
-
-if __name__ == '__main__':
-
- N = 3
- ig = (N,N)
- ag = ig
- op1 = Gradient(ig)
- op2 = Identity(ig, ag)
-
- # Form Composite Operator
- operator = CompositeOperator((2,1), op1, op2 )
-
- # Create functions
- noisy_data = ImageData(np.random.randint(10, size=ag))
-
- d = ImageData(np.random.randint(10, size=ag))
-
- f = mixed_L12Norm(alpha = 1).composition_with(op1)
- g = L2NormSq(alpha=0.5, b=noisy_data)
-
- # Compare call of f
- a1 = ImageData(op1.direct(d).power(2).sum(axis=0)).sqrt().sum()
- print(a1, f(d))
-
- # Compare call of g
- a2 = g.alpha*(d - noisy_data).power(2).sum()
- print(a2, g(d))
-
- # Compare convex conjugate of g
- a3 = 0.5 * d.power(2).sum() + (d*noisy_data).sum()
- print( a3, g.convex_conjugate(d))
+ # Compare convex conjugate of g
+ a3 = 0.5 * d.power(2).sum() + (d*noisy_data).sum()
+ self.assertEqual(a3, g.convex_conjugate(d))
+ #print( a3, g.convex_conjugate(d))