summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising.py291
-rwxr-xr-xWrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising.py266
-rw-r--r--Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py96
3 files changed, 628 insertions, 25 deletions
diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising.py
new file mode 100755
index 0000000..761c025
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising.py
@@ -0,0 +1,291 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+"""
+
+Total Generalised Variation (TGV) Denoising using PDHG algorithm:
+
+
+Problem: min_{x} \alpha * ||\nabla x - w||_{2,1} +
+ \beta * || E w ||_{2,1} +
+ fidelity
+
+ where fidelity can be as follows depending on the noise characteristics
+ of the data:
+ * Norm2Squared \frac{1}{2} * || x - g ||_{2}^{2}
+ * KullbackLeibler
+ * L1Norm
+
+ \alpha: Regularization parameter
+ \beta: Regularization parameter
+
+ \nabla: Gradient operator
+ E: Symmetrized Gradient operator
+
+ g: Noisy Data with Salt & Pepper Noise
+
+ Method = 0 ( PDHG - split ) : K = [ \nabla, - Identity
+ ZeroOperator, E
+ Identity, ZeroOperator]
+
+
+ Method = 1 (PDHG - explicit ): K = [ \nabla, - Identity
+ ZeroOperator, E ]
+
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, \
+ Gradient, SymmetrizedGradient, ZeroOperator
+from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
+ MixedL21Norm, BlockFunction, KullbackLeibler, L2NormSquared
+import sys
+if int(numpy.version.version.split('.')[1]) > 12:
+ from skimage.util import random_noise
+else:
+ from demoutil import random_noise
+
+
+
+# user supplied input
+if len(sys.argv) > 1:
+ which_noise = int(sys.argv[1])
+else:
+ which_noise = 0
+print ("Applying {} noise")
+
+if len(sys.argv) > 2:
+ method = sys.argv[2]
+else:
+ method = '1'
+print ("method ", method)
+# Create phantom for TGV SaltPepper denoising
+
+N = 100
+
+x1 = np.linspace(0, int(N/2), N)
+x2 = np.linspace(int(N/2), 0., N)
+xv, yv = np.meshgrid(x1, x2)
+
+xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T
+
+#data = xv
+
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+data = ig.allocate()
+data.fill(xv/xv.max())
+ag = ig
+
+# Create noisy data.
+# Apply Salt & Pepper noise
+# gaussian
+# poisson
+noises = ['gaussian', 'poisson', 's&p']
+noise = noises[which_noise]
+if noise == 's&p':
+ n1 = random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2, seed=10)
+elif noise == 'poisson':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+elif noise == 'gaussian':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+else:
+ raise ValueError('Unsupported Noise ', noise)
+noisy_data = ImageData(n1)
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(10,5))
+plt.subplot(1,2,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(1,2,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+# Regularisation Parameters
+if noise == 's&p':
+ alpha = 0.8
+elif noise == 'poisson':
+ alpha = .1
+elif noise == 'gaussian':
+ alpha = .3
+
+beta = numpy.sqrt(2)* alpha
+
+# fidelity
+if noise == 's&p':
+ f3 = L1Norm(b=noisy_data)
+elif noise == 'poisson':
+ f3 = KullbackLeibler(noisy_data)
+elif noise == 'gaussian':
+ f3 = L2NormSquared(b=noisy_data)
+
+if method == '0':
+
+ # Create operators
+ op11 = Gradient(ig)
+ op12 = Identity(op11.range_geometry())
+
+ op22 = SymmetrizedGradient(op11.domain_geometry())
+ op21 = ZeroOperator(ig, op22.range_geometry())
+
+ op31 = Identity(ig, ag)
+ op32 = ZeroOperator(op22.domain_geometry(), ag)
+
+ operator = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) )
+
+ f1 = alpha * MixedL21Norm()
+ f2 = beta * MixedL21Norm()
+ # f3 depends on the noise characteristics
+
+ f = BlockFunction(f1, f2, f3)
+ g = ZeroFunction()
+
+else:
+
+ # Create operators
+ op11 = Gradient(ig)
+ op12 = Identity(op11.range_geometry())
+ op22 = SymmetrizedGradient(op11.domain_geometry())
+ op21 = ZeroOperator(ig, op22.range_geometry())
+
+ operator = BlockOperator(op11, -1*op12, op21, op22, shape=(2,2) )
+
+ f1 = alpha * MixedL21Norm()
+ f2 = beta * MixedL21Norm()
+
+ f = BlockFunction(f1, f2)
+ g = BlockFunction(f3, ZeroFunction())
+
+## Compute operator Norm
+normK = operator.norm()
+#
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 200
+pdhg.run(2000, verbose = True)
+
+#%%
+plt.figure(figsize=(20,5))
+plt.subplot(1,4,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(1,4,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(1,4,3)
+plt.imshow(pdhg.get_output()[0].as_array())
+plt.title('TGV Reconstruction')
+plt.colorbar()
+plt.subplot(1,4,4)
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'TGV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+if cvx_not_installable:
+
+ u = Variable(ig.shape)
+ w1 = Variable((N, N))
+ w2 = Variable((N, N))
+
+ # create TGV regulariser
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u) - vec(w1), \
+ DY.matrix() * vec(u) - vec(w2)]), 2, axis = 0)) + \
+ beta * sum(norm(vstack([ DX.matrix().transpose() * vec(w1), DY.matrix().transpose() * vec(w2), \
+ 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ), \
+ 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ) ]), 2, axis = 0 ) )
+
+ constraints = []
+ fidelity = pnorm(u - noisy_data.as_array(),1)
+ solver = MOSEK
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+ diff_cvx = numpy.abs( pdhg.get_output()[0].as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output()[0].as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
+
+
+
+
diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising.py
new file mode 100755
index 0000000..0f1effa
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising.py
@@ -0,0 +1,266 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+
+Problem: min_x, x>0 \alpha * ||\nabla x||_{2,1} + ||x-g||_{1}
+
+ \alpha: Regularization parameter
+
+ \nabla: Gradient operator
+
+ g: Noisy Data with Salt & Pepper Noise
+
+
+ Method = 0 ( PDHG - split ) : K = [ \nabla,
+ Identity]
+
+
+ Method = 1 (PDHG - explicit ): K = \nabla
+
+
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
+ MixedL21Norm, BlockFunction, L2NormSquared,\
+ KullbackLeibler
+from ccpi.framework import TestData
+import os, sys
+if int(numpy.version.version.split('.')[1]) > 12:
+ from skimage.util import random_noise
+else:
+ from demoutil import random_noise
+
+# user supplied input
+if len(sys.argv) > 1:
+ which_noise = int(sys.argv[1])
+else:
+ which_noise = 0
+print ("Applying {} noise")
+
+if len(sys.argv) > 2:
+ method = sys.argv[2]
+else:
+ method = '0'
+print ("method ", method)
+# Create phantom for TV Salt & Pepper denoising
+N = 100
+
+loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,N))
+data = loader.load(TestData.PEPPERS, size=(N,N))
+ig = data.geometry
+ag = ig
+
+# Create noisy data.
+# Apply Salt & Pepper noise
+# gaussian
+# poisson
+noises = ['gaussian', 'poisson', 's&p']
+noise = noises[which_noise]
+if noise == 's&p':
+ n1 = random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2)
+elif noise == 'poisson':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+elif noise == 'gaussian':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+else:
+ raise ValueError('Unsupported Noise ', noise)
+noisy_data = ig.allocate()
+noisy_data.fill(n1)
+#noisy_data = ImageData(n1)
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(10,5))
+plt.subplot(1,2,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(1,2,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+# Regularisation Parameter
+alpha = .2
+
+# fidelity
+if noise == 's&p':
+ f2 = L1Norm(b=noisy_data)
+elif noise == 'poisson':
+ f2 = KullbackLeibler(noisy_data)
+elif noise == 'gaussian':
+ f2 = L2NormSquared(b=noisy_data)
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig, correlation=Gradient.CORRELATION_SPACECHANNEL)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+ f1 = alpha * MixedL21Norm()
+ #f2 = L1Norm(b = noisy_data)
+ f = BlockFunction(f1, f2)
+
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * MixedL21Norm()
+ #g = L1Norm(b = noisy_data)
+ g = f2
+
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+opt = {'niter':2000, 'memopt': True}
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+if data.geometry.channels > 1:
+ plt.figure(figsize=(20,15))
+ for row in range(data.geometry.channels):
+
+ plt.subplot(3,4,1+row*4)
+ plt.imshow(data.subset(channel=row).as_array())
+ plt.title('Ground Truth')
+ plt.colorbar()
+ plt.subplot(3,4,2+row*4)
+ plt.imshow(noisy_data.subset(channel=row).as_array())
+ plt.title('Noisy Data')
+ plt.colorbar()
+ plt.subplot(3,4,3+row*4)
+ plt.imshow(pdhg.get_output().subset(channel=row).as_array())
+ plt.title('TV Reconstruction')
+ plt.colorbar()
+ plt.subplot(3,4,4+row*4)
+ plt.plot(np.linspace(0,N,N), data.subset(channel=row).as_array()[int(N/2),:], label = 'GTruth')
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().subset(channel=row).as_array()[int(N/2),:], label = 'TV reconstruction')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+else:
+ plt.figure(figsize=(20,5))
+ plt.subplot(1,4,1)
+ plt.imshow(data.subset(channel=0).as_array())
+ plt.title('Ground Truth')
+ plt.colorbar()
+ plt.subplot(1,4,2)
+ plt.imshow(noisy_data.subset(channel=0).as_array())
+ plt.title('Noisy Data')
+ plt.colorbar()
+ plt.subplot(1,4,3)
+ plt.imshow(pdhg.get_output().subset(channel=0).as_array())
+ plt.title('TV Reconstruction')
+ plt.colorbar()
+ plt.subplot(1,4,4)
+ plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+
+##%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+ fidelity = pnorm( u - noisy_data.as_array(),1)
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+ diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py
index 7b73c1a..f00f1cc 100644
--- a/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py
+++ b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py
@@ -39,7 +39,7 @@ Problem: min_{x} \alpha * ||\nabla x||_{2}^{2} + \frac{1}{2} * || x - g ||_{
"""
-from ccpi.framework import ImageData, ImageGeometry
+from ccpi.framework import ImageData, ImageGeometry, TestData
import numpy as np
import numpy
@@ -48,40 +48,83 @@ import matplotlib.pyplot as plt
from ccpi.optimisation.algorithms import PDHG
from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared,\
+ BlockFunction, KullbackLeibler, L1Norm
-from skimage.util import random_noise
+import sys, os
+if int(numpy.version.version.split('.')[1]) > 12:
+ from skimage.util import random_noise
+else:
+ from demoutil import random_noise
+
+
+# user supplied input
+if len(sys.argv) > 1:
+ which_noise = int(sys.argv[1])
+else:
+ which_noise = 0
+print ("Applying {} noise")
+
+if len(sys.argv) > 2:
+ method = sys.argv[2]
+else:
+ method = '0'
+print ("method ", method)
# Create phantom for TV Salt & Pepper denoising
N = 100
-data = np.zeros((N,N))
-data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-data = ImageData(data)
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,N))
+ig = data.geometry
ag = ig
# Create noisy data. Apply Salt & Pepper noise
-n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2)
+# Create noisy data.
+# Apply Salt & Pepper noise
+# gaussian
+# poisson
+noises = ['gaussian', 'poisson', 's&p']
+noise = noises[which_noise]
+if noise == 's&p':
+ n1 = random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2)
+elif noise == 'poisson':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+elif noise == 'gaussian':
+ n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+else:
+ raise ValueError('Unsupported Noise ', noise)
noisy_data = ImageData(n1)
+# fidelity
+if noise == 's&p':
+ f2 = L1Norm(b=noisy_data)
+elif noise == 'poisson':
+ f2 = KullbackLeibler(noisy_data)
+elif noise == 'gaussian':
+ f2 = 0.5 * L2NormSquared(b=noisy_data)
+
# Show Ground Truth and Noisy Data
-plt.figure(figsize=(15,15))
-plt.subplot(2,1,1)
+plt.figure(figsize=(10,5))
+plt.subplot(1,2,1)
plt.imshow(data.as_array())
plt.title('Ground Truth')
plt.colorbar()
-plt.subplot(2,1,2)
+plt.subplot(1,2,2)
plt.imshow(noisy_data.as_array())
plt.title('Noisy Data')
plt.colorbar()
plt.show()
-# Regularisation Parameter
-alpha = 4
-method = '1'
+# Regularisation Parameter
+# no edge preservation alpha is big
+if noise == 's&p':
+ alpha = 8.
+elif noise == 'poisson':
+ alpha = 8.
+elif noise == 'gaussian':
+ alpha = 8.
if method == '0':
@@ -95,7 +138,8 @@ if method == '0':
# Create functions
f1 = alpha * L2NormSquared()
- f2 = 0.5 * L2NormSquared(b = noisy_data)
+ # f2 must change according to noise
+ #f2 = 0.5 * L2NormSquared(b = noisy_data)
f = BlockFunction(f1, f2)
g = ZeroFunction()
@@ -104,7 +148,9 @@ else:
# Without the "Block Framework"
operator = Gradient(ig)
f = alpha * L2NormSquared()
- g = 0.5 * L2NormSquared(b = noisy_data)
+ # g must change according to noise
+ #g = 0.5 * L2NormSquared(b = noisy_data)
+ g = f2
# Compute operator Norm
@@ -119,31 +165,31 @@ opt = {'niter':2000, 'memopt': True}
pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
pdhg.max_iteration = 2000
pdhg.update_objective_interval = 50
-pdhg.run(2000)
+pdhg.run(1500)
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
+plt.figure(figsize=(20,5))
+plt.subplot(1,4,1)
plt.imshow(data.as_array())
plt.title('Ground Truth')
plt.colorbar()
-plt.subplot(3,1,2)
+plt.subplot(1,4,2)
plt.imshow(noisy_data.as_array())
plt.title('Noisy Data')
plt.colorbar()
-plt.subplot(3,1,3)
+plt.subplot(1,4,3)
plt.imshow(pdhg.get_output().as_array())
plt.title('Tikhonov Reconstruction')
plt.colorbar()
-plt.show()
-##
+plt.subplot(1,4,4)
plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
plt.legend()
plt.title('Middle Line Profiles')
plt.show()
+
##%% Check with CVX solution
from ccpi.optimisation.operators import SparseFiniteDiff