summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/CMakeLists.txt88
-rwxr-xr-xWrappers/Python/ccpi/framework/framework.py84
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py257
-rw-r--r--Wrappers/Python/recipe/bld.bat (renamed from Wrappers/Python/conda-recipe/bld.bat)0
-rw-r--r--Wrappers/Python/recipe/build.sh (renamed from Wrappers/Python/conda-recipe/build.sh)0
-rw-r--r--Wrappers/Python/recipe/conda_build_config.yaml (renamed from Wrappers/Python/conda-recipe/conda_build_config.yaml)0
-rw-r--r--Wrappers/Python/recipe/meta.yaml (renamed from Wrappers/Python/conda-recipe/meta.yaml)0
-rw-r--r--Wrappers/Python/setup-cil.py.in70
-rwxr-xr-xWrappers/Python/test/test_DataContainer.py13
-rwxr-xr-xWrappers/Python/test/test_Gradient.py146
-rw-r--r--Wrappers/Python/test/test_Operator.py3
11 files changed, 626 insertions, 35 deletions
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
new file mode 100644
index 0000000..f325265
--- /dev/null
+++ b/Wrappers/Python/CMakeLists.txt
@@ -0,0 +1,88 @@
+option (BUILD_PYTHON_WRAPPER "Build Python Wrapper" ON)
+
+if (BUILD_PYTHON_WRAPPER)
+ find_package(PythonInterp REQUIRED)
+
+ set(PYTHON_DEST_DIR "" CACHE PATH "Directory of the Python wrappers")
+ if (PYTHON_DEST_DIR)
+ set(PYTHON_DEST "${PYTHON_DEST_DIR}")
+ else()
+ set(PYTHON_DEST "${CMAKE_INSTALL_PREFIX}/python")
+ endif()
+ message(STATUS "Python wrappers will be installed in " ${PYTHON_DEST})
+
+ message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
+
+ set(CMAKE_BUILD_TYPE "Release")
+
+ find_package(PythonLibs)
+ if (PYTHONINTERP_FOUND)
+ message(STATUS "Found PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}")
+ message(STATUS "Python version ${PYTHON_VERSION_STRING}")
+ endif()
+ if (PYTHONLIBS_FOUND)
+ message(STATUS "Found PYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS}")
+ message(STATUS "Found PYTHON_LIBRARIES=${PYTHON_LIBRARIES}")
+ endif()
+
+ if (PYTHONINTERP_FOUND)
+ message("Python found " ${PYTHON_EXECUTABLE})
+ set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup-cil.py.in")
+ set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup.py")
+ #set(DEPS "${CMAKE_CURRENT_SOURCE_DIR}/module/__init__.py")
+ set (DEPS "${CMAKE_BINARY_DIR}/")
+ set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp")
+
+ #configure_file(${SETUP_PY_IN} ${SETUP_PY})
+
+ message("Core binary dir " ${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE})
+
+ if (CONDA_BUILD)
+ add_custom_command(OUTPUT ${OUTPUT}
+ #COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
+ COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
+ #PREFIX=${CMAKE_SOURCE_DIR}/src/Core
+ #LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/Core
+ #LIBRARY_LIB=${CMAKE_BINARY_DIR}/src/Core
+ ${PYTHON_EXECUTABLE} ${SETUP_PY} -vv install
+ #echo "EDO"
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+ COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
+ DEPENDS cilacc)
+
+ else()
+ if (WIN32)
+ add_custom_command(OUTPUT ${OUTPUT}
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
+ COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
+ PREFIX=${CMAKE_SOURCE_DIR}/src/
+ LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/include
+ LIBRARY_LIB=${CMAKE_BINARY_DIR}/${CMAKE_BUILD_TYPE}
+ ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
+ COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
+ DEPENDS cilacc)
+ else()
+ add_custom_command(OUTPUT ${OUTPUT}
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
+ COMMAND ${CMAKE_COMMAND} -E env PREFIX=${CMAKE_SOURCE_DIR}/src/
+ LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/include
+ LIBRARY_LIB=${CMAKE_BINARY_DIR}/
+ ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
+ COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
+ DEPENDS cilacc
+ )
+ endif()
+ #set (PYTHON_DEST ${CMAKE_INSTALL_PREFIX}/python/)
+ install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/
+ DESTINATION ${PYTHON_DEST})
+ #file(TOUCH ${PYTHON_DEST}/edo/__init__.py)
+
+ endif()
+
+
+ add_custom_target(PythonWrapper ALL DEPENDS ${OUTPUT})
+ #install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)")
+ endif()
+
+endif() \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py
index 01ce7ef..1ab1d1e 100755
--- a/Wrappers/Python/ccpi/framework/framework.py
+++ b/Wrappers/Python/ccpi/framework/framework.py
@@ -26,6 +26,26 @@ from datetime import timedelta, datetime
import warnings
from functools import reduce
from numbers import Number
+import ctypes, platform
+
+# dll = os.path.abspath(os.path.join(
+# os.path.abspath(os.path.dirname(__file__)),
+# 'libfdiff.dll')
+# )
+
+# check for the extension
+if platform.system() == 'Linux':
+ dll = 'libcilacc.so'
+elif platform.system() == 'Windows':
+ dll = 'cilacc.dll'
+elif platform.system() == 'Darwin':
+ dll = 'libcilacc.dylib'
+else:
+ raise ValueError('Not supported platform, ', platform.system())
+
+#print ("dll location", dll)
+cilacc = ctypes.cdll.LoadLibrary(dll)
+
def find_key(dic, val):
"""return the key of dictionary dic given the value"""
@@ -802,7 +822,69 @@ class DataContainer(object):
def minimum(self,x2, out=None, *args, **kwargs):
return self.pixel_wise_binary(numpy.minimum, x2=x2, out=out, *args, **kwargs)
-
+ @staticmethod
+ def axpby(a,x,b,y,out,dtype=numpy.float32):
+ '''performs axpby with cilacc C library
+
+ Does the operation .. math:: a*x+b*y and stores the result in out
+
+ :param a: scalar
+ :param x: DataContainer
+ :param b: scalar
+ :param y: DataContainer
+ :param out: DataContainer to store the result
+ :param dtype: optional, data type of the DataContainers
+ '''
+
+ c_float_p = ctypes.POINTER(ctypes.c_float)
+ c_double_p = ctypes.POINTER(ctypes.c_double)
+ # get the reference to the data
+ ndx = x.as_array()
+ ndy = y.as_array()
+ ndout = out.as_array()
+
+ if ndx.dtype != dtype:
+ ndx = ndx.astype(dtype)
+ if ndy.dtype != dtype:
+ ndy = ndy.astype(dtype)
+
+ if dtype == numpy.float32:
+ x_p = ndx.ctypes.data_as(c_float_p)
+ y_p = ndy.ctypes.data_as(c_float_p)
+ out_p = ndout.ctypes.data_as(c_float_p)
+ f = cilacc.saxpby
+
+ elif dtype == numpy.float64:
+ ndx = ndx.astype(numpy.float64)
+ b = b.astype(numpy.float64)
+ x_p = ndx.ctypes.data_as(c_double_p)
+ y_p = ndy.ctypes.data_as(c_double_p)
+ out_p = ndout.ctypes.data_as(c_double_p)
+ f = cilacc.daxpby
+ else:
+ raise TypeError('Unsupported type {}. Expecting numpy.float32 or numpy.float64'.format(dtype))
+
+ #out = numpy.empty_like(a)
+
+
+ # int psaxpby(float * x, float * y, float * out, float a, float b, long size)
+ cilacc.saxpby.argtypes = [ctypes.POINTER(ctypes.c_float), # pointer to the first array
+ ctypes.POINTER(ctypes.c_float), # pointer to the second array
+ ctypes.POINTER(ctypes.c_float), # pointer to the third array
+ ctypes.c_float, # type of A (float)
+ ctypes.c_float, # type of B (float)
+ ctypes.c_long] # type of size of first array
+ cilacc.daxpby.argtypes = [ctypes.POINTER(ctypes.c_double), # pointer to the first array
+ ctypes.POINTER(ctypes.c_double), # pointer to the second array
+ ctypes.POINTER(ctypes.c_double), # pointer to the third array
+ ctypes.c_double, # type of A (c_double)
+ ctypes.c_double, # type of B (c_double)
+ ctypes.c_long] # type of size of first array
+
+ if f(x_p, y_p, out_p, a, b, ndx.size) != 0:
+ raise RuntimeError('axpby execution failed')
+
+
## unary operations
def pixel_wise_unary(self, pwop, *args, **kwargs):
out = kwargs.get('out', None)
diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
index 3c32a93..8e07802 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
@@ -21,15 +21,37 @@ from __future__ import print_function
from __future__ import unicode_literals
from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator
+from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff
from ccpi.framework import ImageData, ImageGeometry, BlockGeometry, BlockDataContainer
import numpy
-from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff
+import warnings
-#%%
+NEUMANN = 'Neumann'
+PERIODIC = 'Periodic'
+C = 'c'
+NUMPY = 'numpy'
+CORRELATION_SPACE = "Space"
+CORRELATION_SPACECHANNEL = "SpaceChannels"
class Gradient(LinearOperator):
+
+ """This is a class to compute the first-order forward/backward differences on ImageData
+ :param gm_domain: Set up the domain of the function
+ :type gm_domain: `ImageGeometry`
+ :param bnd_cond: Set the boundary conditions to use 'Neumann' or 'Periodic', defaults to 'Neumann'
+ :type bnd_cond: str, optional
+ :param \**kwargs:
+ See below
+
+ :Keyword Arguments:
+ * *correlation* (``str``) --
+ 'Space' or 'SpaceChannels', defaults to 'Space'
+ * *backend* (``str``) --
+ 'c' or 'numpy', defaults to 'c' if correlation is 'SpaceChannels' or channels = 1
+ """
+
r'''Gradient Operator: .. math:: \nabla : X -> Y
Computes first-order forward/backward differences
@@ -39,29 +61,82 @@ class Gradient(LinearOperator):
Example (2D): u\in X, \nabla(u) = [\partial_{y} u, \partial_{x} u]
u^{*}\in Y, \nabla^{*}(u^{*}) = \partial_{y} v1 + \partial_{x} v2
- Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
- Grad_order = ['channels', 'direction_y', 'direction_x']
- Grad_order = ['direction_z', 'direction_y', 'direction_x']
- Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
-
-
'''
+
+ #kept here for backwards compatability
+ CORRELATION_SPACE = CORRELATION_SPACE
+ CORRELATION_SPACECHANNEL = CORRELATION_SPACECHANNEL
+
+ def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs):
+ """Constructor method
+ """
+ super(Gradient, self).__init__()
+
+ backend = kwargs.get('backend',C)
+
+ correlation = kwargs.get('correlation',CORRELATION_SPACE)
+
+ if correlation == CORRELATION_SPACE and gm_domain.channels > 1:
+ #numpy implementation only for now
+ backend = NUMPY
+ warnings.warn("Warning: correlation='Space' on multi-channel dataset will use `numpy` backend")
+
+ if backend == NUMPY:
+ self.operator = Gradient_numpy(gm_domain, bnd_cond=bnd_cond, **kwargs)
+ else:
+ self.operator = Gradient_C(gm_domain, bnd_cond=bnd_cond)
+
+
+ def direct(self, x, out=None):
+ """Computes the first-order forward differences
+
+ :param x: Image data
+ :type x: `ImageData`
+ :param out: pre-allocated output memory to store result
+ :type out: `BlockDataContainer`, optional
+ :return: result data if not passed as parameter
+ :rtype: `BlockDataContainer`
+ """
+ return self.operator.direct(x, out=out)
+
+
+ def adjoint(self, x, out=None):
+ """Computes the first-order backward differences
+
+ :param x: Gradient images for each dimension in ImageGeometry domain
+ :type x: `BlockDataContainer`
+ :param out: pre-allocated output memory to store result
+ :type out: `ImageData`, optional
+ :return: result data if not passed as parameter
+ :rtype: `ImageData`
+ """
+ return self.operator.adjoint(x, out=out)
+
+ def domain_geometry(self):
+ '''Returns domain_geometry of Gradient'''
+
+ return self.operator.gm_domain
-
- CORRELATION_SPACE = "Space"
- CORRELATION_SPACECHANNEL = "SpaceChannels"
+ def range_geometry(self):
+
+ '''Returns range_geometry of Gradient'''
+
+ return self.operator.gm_range
+class Gradient_numpy(LinearOperator):
+
def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs):
- super(Gradient, self).__init__()
+ super(Gradient_numpy, self).__init__()
self.gm_domain = gm_domain # Domain of Grad Operator
- self.correlation = kwargs.get('correlation',Gradient.CORRELATION_SPACE)
+ self.correlation = kwargs.get('correlation',CORRELATION_SPACE)
- if self.correlation==Gradient.CORRELATION_SPACE:
- if self.gm_domain.channels>1:
+ if self.correlation==CORRELATION_SPACE:
+ if self.gm_domain.channels > 1:
self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length-1)] )
+
if self.gm_domain.length == 4:
# 3D + Channel
# expected Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
@@ -70,6 +145,7 @@ class Gradient(LinearOperator):
# 2D + Channel
# expected Grad_order = ['channels', 'direction_y', 'direction_x']
expected_order = [ImageGeometry.CHANNEL, ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+
order = self.gm_domain.get_order_by_label(self.gm_domain.dimension_labels, expected_order)
self.ind = order[1:]
#self.ind = numpy.arange(1,self.gm_domain.length)
@@ -83,10 +159,12 @@ class Gradient(LinearOperator):
else:
# 2D
expected_order = [ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+
self.ind = self.gm_domain.get_order_by_label(self.gm_domain.dimension_labels, expected_order)
# self.ind = numpy.arange(self.gm_domain.length)
- elif self.correlation==Gradient.CORRELATION_SPACECHANNEL:
- if self.gm_domain.channels>1:
+
+ elif self.correlation==CORRELATION_SPACECHANNEL:
+ if self.gm_domain.channels > 1:
self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length)])
self.ind = range(self.gm_domain.length)
else:
@@ -189,6 +267,146 @@ class Gradient(LinearOperator):
res.append(spMat.sum_abs_col())
return BlockDataContainer(*res)
+import ctypes, platform
+
+# check for the extension
+if platform.system() == 'Linux':
+ dll = 'libcilacc.so'
+elif platform.system() == 'Windows':
+ dll = 'cilacc.dll'
+elif platform.system() == 'Darwin':
+ dll = 'libcilacc.dylib'
+else:
+ raise ValueError('Not supported platform, ', platform.system())
+
+#print ("dll location", dll)
+cilacc = ctypes.cdll.LoadLibrary(dll)
+
+#FD = ctypes.CDLL(dll)
+
+c_float_p = ctypes.POINTER(ctypes.c_float)
+
+cilacc.openMPtest.restypes = ctypes.c_int32
+
+cilacc.fdiff4D.argtypes = [ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_int32,
+ ctypes.c_int32]
+
+cilacc.fdiff3D.argtypes = [ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_int32,
+ ctypes.c_int32]
+
+cilacc.fdiff2D.argtypes = [ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.POINTER(ctypes.c_float),
+ ctypes.c_long,
+ ctypes.c_long,
+ ctypes.c_int32,
+ ctypes.c_int32]
+
+
+class Gradient_C(LinearOperator):
+
+ '''Finite Difference Operator:
+
+ Computes first-order forward/backward differences
+ on 2D, 3D, 4D ImageData
+ under Neumann/Periodic boundary conditions'''
+
+ def __init__(self, gm_domain, gm_range=None, bnd_cond = NEUMANN):
+
+ super(Gradient_C, self).__init__()
+
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+
+ #default is 'Neumann'
+ self.bnd_cond = 0
+
+ if bnd_cond == PERIODIC:
+ self.bnd_cond = 1
+
+ # Domain Geometry = Range Geometry if not stated
+ if self.gm_range is None:
+ self.gm_range = BlockGeometry(*[gm_domain for _ in range(len(gm_domain.shape))])
+
+
+ if len(gm_domain.shape) == 4:
+ self.fd = cilacc.fdiff4D
+ elif len(gm_domain.shape) == 3:
+ self.fd = cilacc.fdiff3D
+ elif len(gm_domain.shape) == 2:
+ self.fd = cilacc.fdiff2D
+ else:
+ raise ValueError('Number of dimensions not supported, expected 2, 3 or 4, got {}'.format(len(gm_domain.shape)))
+
+
+ @staticmethod
+ def datacontainer_as_c_pointer(x):
+ ndx = x.as_array()
+ return ndx, ndx.ctypes.data_as(c_float_p)
+
+ def direct(self, x, out=None):
+ ndx , x_p = Gradient_C.datacontainer_as_c_pointer(x)
+
+ return_val = False
+ if out is None:
+ out = self.gm_range.allocate(None)
+ return_val = True
+
+ arg1 = [Gradient_C.datacontainer_as_c_pointer(out.get_item(i))[1] for i in range(self.gm_range.shape[0])]
+ arg2 = [el for el in x.shape]
+ args = arg1 + arg2 + [self.bnd_cond, 1]
+ self.fd(x_p, *args)
+
+ if return_val is True:
+ return out
+
+
+ def adjoint(self, x, out=None):
+
+ return_val = False
+ if out is None:
+ out = self.gm_domain.allocate(None)
+ return_val = True
+
+ ndout, out_p = Gradient_C.datacontainer_as_c_pointer(out)
+
+ arg1 = [Gradient_C.datacontainer_as_c_pointer(x.get_item(i))[1] for i in range(self.gm_range.shape[0])]
+ arg2 = [el for el in out.shape]
+ args = arg1 + arg2 + [self.bnd_cond, 0]
+
+ self.fd(out_p, *args)
+
+ if return_val is True:
+ return out
+
+ def domain_geometry(self):
+
+ '''Returns domain_geometry of Gradient'''
+
+ return self.gm_domain
+
+ def range_geometry(self):
+
+ '''Returns range_geometry of Gradient'''
+
+ return self.gm_range
+
if __name__ == '__main__':
@@ -302,8 +520,5 @@ if __name__ == '__main__':
G.direct(u, out = res)
G.adjoint(w, out = res1)
- print( (res*w).sum(), (u*res1).sum() )
-
+ print( (res*w).sum(), (u*res1).sum() )
-
-
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/recipe/bld.bat
index 97a4e62..97a4e62 100644
--- a/Wrappers/Python/conda-recipe/bld.bat
+++ b/Wrappers/Python/recipe/bld.bat
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/recipe/build.sh
index 43e85d5..43e85d5 100644
--- a/Wrappers/Python/conda-recipe/build.sh
+++ b/Wrappers/Python/recipe/build.sh
diff --git a/Wrappers/Python/conda-recipe/conda_build_config.yaml b/Wrappers/Python/recipe/conda_build_config.yaml
index e5e168b..e5e168b 100644
--- a/Wrappers/Python/conda-recipe/conda_build_config.yaml
+++ b/Wrappers/Python/recipe/conda_build_config.yaml
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/recipe/meta.yaml
index 9d03220..9d03220 100644
--- a/Wrappers/Python/conda-recipe/meta.yaml
+++ b/Wrappers/Python/recipe/meta.yaml
diff --git a/Wrappers/Python/setup-cil.py.in b/Wrappers/Python/setup-cil.py.in
new file mode 100644
index 0000000..d1cf7fc
--- /dev/null
+++ b/Wrappers/Python/setup-cil.py.in
@@ -0,0 +1,70 @@
+# -*- coding: utf-8 -*-
+# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).
+
+# Copyright 2017 UKRI-STFC
+# Copyright 2017 University of Manchester
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from distutils.core import setup
+import os
+import sys
+
+
+cil_version=os.environ['CIL_VERSION']
+if cil_version == '':
+ print("Please set the environmental variable CIL_VERSION")
+ sys.exit(1)
+
+setup(
+ name="ccpi-framework",
+ version=cil_version,
+ packages=['ccpi' , 'ccpi.io',
+ 'ccpi.framework', 'ccpi.optimisation',
+ 'ccpi.optimisation.operators',
+ 'ccpi.optimisation.algorithms',
+ 'ccpi.optimisation.functions',
+ 'ccpi.processors',
+ 'ccpi.utilities', 'ccpi.utilities.jupyter',
+ 'ccpi.contrib','ccpi.contrib.optimisation',
+ 'ccpi.contrib.optimisation.algorithms'],
+ data_files = [('share/ccpi', ['data/boat.tiff',
+ 'data/peppers.tiff',
+ 'data/camera.png',
+ 'data/resolution_chart.tiff',
+ 'data/shapes.png',
+ 'data/24737_fd_normalised.nxs'])],
+
+ # Project uses reStructuredText, so ensure that the docutils get
+ # installed or upgraded on the target machine
+ #install_requires=['docutils>=0.3'],
+
+# package_data={
+# # If any package contains *.txt or *.rst files, include them:
+# '': ['*.txt', '*.rst'],
+# # And include any *.msg files found in the 'hello' package, too:
+# 'hello': ['*.msg'],
+# },
+ # zip_safe = False,
+
+ # metadata for upload to PyPI
+ author="CCPi developers",
+ maintainer="Edoardo Pasca",
+ maintainer_email="edoardo.pasca@stfc.ac.uk",
+ description='CCPi Core Imaging Library - Python Framework Module',
+ license="Apache v2.0",
+ keywords="Python Framework",
+ url="http://www.ccpi.ac.uk/CIL", # project home page, if any
+
+ # could also include long_description, download_url, classifiers, etc.
+)
diff --git a/Wrappers/Python/test/test_DataContainer.py b/Wrappers/Python/test/test_DataContainer.py
index 9b9a8dd..d2d5b05 100755
--- a/Wrappers/Python/test/test_DataContainer.py
+++ b/Wrappers/Python/test/test_DataContainer.py
@@ -732,6 +732,19 @@ class TestDataContainer(unittest.TestCase):
u.multiply(2, out=u)
c = b * 2
numpy.testing.assert_array_equal(u.as_array(), c)
+
+ def test_axpby(self):
+ print ("test axpby")
+ ig = ImageGeometry(10,10)
+ d1 = ig.allocate(1)
+ d2 = ig.allocate(2)
+ out = ig.allocate(None)
+ # equals to 2 * [1] + 1 * [2] = [4]
+ DataContainer.axpby(2,d1,1,d2,out)
+ res = numpy.ones_like(d1.as_array()) * 4.
+ numpy.testing.assert_array_equal(res, out.as_array())
+
+
diff --git a/Wrappers/Python/test/test_Gradient.py b/Wrappers/Python/test/test_Gradient.py
index 5dc8137..5aeede0 100755
--- a/Wrappers/Python/test/test_Gradient.py
+++ b/Wrappers/Python/test/test_Gradient.py
@@ -23,6 +23,7 @@ from ccpi.framework import BlockDataContainer
import functools
from ccpi.optimisation.operators import Gradient, Identity, BlockOperator
+from ccpi.optimisation.operators import LinearOperator
class TestGradient(unittest.TestCase):
def test_Gradient(self):
@@ -36,17 +37,17 @@ class TestGradient(unittest.TestCase):
ig3 = ImageGeometry(voxel_num_x = M, voxel_num_y = N, channels = channels)
ig4 = ImageGeometry(voxel_num_x = M, voxel_num_y = N, channels = channels, voxel_num_z= K)
- G1 = Gradient(ig1, correlation = 'Space')
+ G1 = Gradient(ig1, correlation = 'Space', backend='numpy')
print(G1.range_geometry().shape, '2D no channels')
- G4 = Gradient(ig3, correlation = 'SpaceChannels')
- print(G4.range_geometry().shape, '2D with channels corr')
- G5 = Gradient(ig3, correlation = 'Space')
+ G4 = Gradient(ig3, correlation = 'SpaceChannels', backend='numpy')
+ print(G4.range_geometry().shape, '2D with channels corr')
+ G5 = Gradient(ig3, correlation = 'Space', backend='numpy')
print(G5.range_geometry().shape, '2D with channels no corr')
- G6 = Gradient(ig4, correlation = 'Space')
+ G6 = Gradient(ig4, correlation = 'Space', backend='numpy')
print(G6.range_geometry().shape, '3D with channels no corr')
- G7 = Gradient(ig4, correlation = 'SpaceChannels')
+ G7 = Gradient(ig4, correlation = 'SpaceChannels', backend='numpy')
print(G7.range_geometry().shape, '3D with channels with corr')
@@ -77,8 +78,8 @@ class TestGradient(unittest.TestCase):
#check direct/adjoint for space/channels correlation
ig_channel = ImageGeometry(voxel_num_x = 2, voxel_num_y = 3, channels = 2)
- G_no_channel = Gradient(ig_channel, correlation = 'Space')
- G_channel = Gradient(ig_channel, correlation = 'SpaceChannels')
+ G_no_channel = Gradient(ig_channel, correlation = 'Space', backend='numpy')
+ G_channel = Gradient(ig_channel, correlation = 'SpaceChannels', backend='numpy')
u3 = ig_channel.allocate('random_int')
res_no_channel = G_no_channel.direct(u3)
@@ -95,7 +96,7 @@ class TestGradient(unittest.TestCase):
ig2D = ImageGeometry(voxel_num_x = 2, voxel_num_y = 3)
u4 = ig2D.allocate('random_int')
- G2D = Gradient(ig2D)
+ G2D = Gradient(ig2D, backend='numpy')
res = G2D.direct(u4)
print(res[0].as_array())
print(res[1].as_array())
@@ -105,12 +106,133 @@ class TestGradient(unittest.TestCase):
arr = ig.allocate('random_int' )
# check direct of Gradient and sparse matrix
- G = Gradient(ig)
+ G = Gradient(ig, backend='numpy')
norm1 = G.norm(iterations=300)
print ("should be sqrt(8) {} {}".format(numpy.sqrt(8), norm1))
numpy.testing.assert_almost_equal(norm1, numpy.sqrt(8), decimal=1)
ig4 = ImageGeometry(M,N, channels=3)
- G4 = Gradient(ig4, correlation=Gradient.CORRELATION_SPACECHANNEL)
+ G4 = Gradient(ig4, correlation="SpaceChannels", backend='numpy')
norm4 = G4.norm(iterations=300)
- print ("should be sqrt(12) {} {}".format(numpy.sqrt(12), norm4))
+ print("should be sqrt(12) {} {}".format(numpy.sqrt(12), norm4))
self.assertTrue((norm4 - numpy.sqrt(12))/norm4 < 0.2)
+
+ def test_GradientOperator_4D(self):
+
+ nc, nz, ny, nx = 3, 4, 5, 6
+ size = nc * nz * ny * nx
+ dim = [nc, nz, ny, nx]
+
+ ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc)
+
+ arr = numpy.arange(size).reshape(dim).astype(numpy.float32)**2
+
+ data = ig.allocate()
+ data.fill(arr)
+
+ #neumann
+ grad_py = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy')
+ gold_direct = grad_py.direct(data)
+ gold_adjoint = grad_py.adjoint(gold_direct)
+
+ grad_c = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c')
+ out_direct = grad_c.direct(data)
+ out_adjoint = grad_c.adjoint(out_direct)
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', direct")
+ numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array())
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint")
+ numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array())
+
+ #periodic
+ grad_py = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='numpy')
+ gold_direct = grad_py.direct(data)
+ gold_adjoint = grad_py.adjoint(gold_direct)
+
+ grad_c = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='c')
+ out_direct = grad_c.direct(data)
+ out_adjoint = grad_c.adjoint(out_direct)
+
+ #print("Gradient, 4D, bnd_cond='Periodic', direct")
+ numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array())
+
+ #print("Gradient, 4D, bnd_cond='Periodic', adjoint")
+ numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array())
+
+ def test_Gradient_4D_allocate(self):
+
+ nc, nz, ny, nx = 3, 4, 5, 6
+ size = nc * nz * ny * nx
+ dim = [nc, nz, ny, nx]
+
+ ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc)
+
+
+ arr = numpy.arange(size).reshape(dim).astype(numpy.float32)**2
+
+ data = ig.allocate()
+ data.fill(arr)
+
+ #numpy
+ grad1 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy')
+ gold_direct = grad1.direct(data)
+ gold_adjoint = grad1.adjoint(gold_direct)
+
+ grad2 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy')
+ out_direct = grad2.range_geometry().allocate()
+ out_adjoint = grad2.domain_geometry().allocate()
+ grad2.direct(data, out=out_direct)
+ grad2.adjoint(out_direct, out=out_adjoint)
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', direct")
+ numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array())
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint")
+ numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array())
+
+ #c
+ grad1 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c')
+ gold_direct = grad1.direct(data)
+ gold_adjoint = grad1.adjoint(gold_direct)
+
+ grad2 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c')
+ out_direct = grad2.range_geometry().allocate()
+ out_adjoint = grad2.domain_geometry().allocate()
+ grad2.direct(data, out=out_direct)
+ grad2.adjoint(out_direct, out=out_adjoint)
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', direct")
+ numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array())
+ numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array())
+
+ #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint")
+ numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array())
+
+ def test_Gradient_linearity(self):
+
+ nc, nz, ny, nx = 3, 4, 5, 6
+ ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc)
+
+ grad = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c')
+ self.assertTrue(LinearOperator.dot_test(grad))
+
+ grad = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='c')
+ self.assertTrue(LinearOperator.dot_test(grad))
+
+ grad = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy')
+ self.assertTrue(LinearOperator.dot_test(grad))
+
+ grad = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='numpy')
+ self.assertTrue(LinearOperator.dot_test(grad))
+ \ No newline at end of file
diff --git a/Wrappers/Python/test/test_Operator.py b/Wrappers/Python/test/test_Operator.py
index 3372b9b..96c48da 100644
--- a/Wrappers/Python/test/test_Operator.py
+++ b/Wrappers/Python/test/test_Operator.py
@@ -494,12 +494,13 @@ class TestBlockOperator(unittest.TestCase):
print("Z1", Z1[0][1].as_array())
print("RES1", RES1[0][1].as_array())
def test_timedifference(self):
+
print ("test_timedifference")
M, N ,W = 100, 512, 512
ig = ImageGeometry(M, N, W)
arr = ig.allocate('random_int')
- G = Gradient(ig)
+ G = Gradient(ig, backend='numpy')
Id = Identity(ig)
B = BlockOperator(G, Id)