summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/framework/BlockDataContainer.py44
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/framework/BlockGeometry.py6
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/framework/TestData.py1
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/framework/__init__.py1
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/framework/framework.py71
-rw-r--r--Wrappers/Python/ccpi/io/NEXUSDataReader.py4
-rw-r--r--Wrappers/Python/ccpi/io/NEXUSDataWriter.py4
-rw-r--r--Wrappers/Python/ccpi/io/NikonDataReader.py23
-rw-r--r--Wrappers/Python/ccpi/io/reader.py1
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py0
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py1
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py2
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py162
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/Function.py445
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py99
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py314
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py129
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py132
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/functions/LeastSquares.py (renamed from Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py)55
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py211
-rwxr-xr-xWrappers/Python/ccpi/optimisation/functions/ScaledFunction.py157
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py87
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__init__.py10
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py1
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py27
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/optimisation/operators/Operator.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py3
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py2
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py3
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/processors/Normalizer.py3
-rw-r--r--[-rwxr-xr-x]Wrappers/Python/ccpi/processors/Resizer.py3
-rw-r--r--Wrappers/Python/setup.py6
-rw-r--r--Wrappers/Python/test/test_Operator.py38
-rw-r--r--Wrappers/Python/test/test_SumFunction.py341
-rw-r--r--Wrappers/Python/test/test_TranslateFunction.py272
-rwxr-xr-xWrappers/Python/test/test_algorithms.py47
-rw-r--r--Wrappers/Python/test/test_functions.py162
-rwxr-xr-xWrappers/Python/test/test_run_test.py138
50 files changed, 2041 insertions, 982 deletions
diff --git a/Wrappers/Python/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
index 38c35f7..22cee03 100755..100644
--- a/Wrappers/Python/ccpi/framework/BlockDataContainer.py
+++ b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
from numbers import Number
@@ -61,7 +60,11 @@ class BlockDataContainer(object):
def __init__(self, *args, **kwargs):
''''''
self.containers = args
- self.index = 0
+ self.index = 0
+ self.geometry = None
+ #if len(set([i.shape for i in self.containers])):
+ # self.geometry = self.containers[0].geometry
+
shape = kwargs.get('shape', None)
if shape is None:
shape = (len(args),1)
@@ -330,8 +333,9 @@ class BlockDataContainer(object):
if p==1:
return sum(self.abs())
- elif p==2:
- return sum([el*el for el in self.containers]).sqrt()
+ elif p==2:
+ tmp = functools.reduce(lambda a,b: a + b*b, self.containers, self.get_item(0) * 0 ).sqrt()
+ return tmp
else:
return ValueError('Not implemented')
@@ -507,26 +511,32 @@ if __name__ == '__main__':
import numpy
N, M = 2, 3
- ig = ImageGeometry(N, M)
- BG = BlockGeometry(ig, ig)
+ ig = ImageGeometry(N, M)
+
+ ig1 = ImageGeometry(2*N, 4*M)
+ BG = BlockGeometry(ig, ig1)
U = BG.allocate('random_int')
V = BG.allocate('random_int')
+ print(U.geometry)
- print ("test sum BDC " )
- w = U[0].as_array() + U[1].as_array()
- w1 = sum(U).as_array()
- numpy.testing.assert_array_equal(w, w1)
-
- print ("test sum BDC " )
- z = numpy.sqrt(U[0].as_array()**2 + U[1].as_array()**2)
- z1 = sum(U**2).sqrt().as_array()
- numpy.testing.assert_array_equal(z, z1)
+ print(len(set([i.shape for i in U.containers]))==1)
- z2 = U.pnorm(2)
- zzz = U.dot(V)
+# print ("test sum BDC " )
+# w = U[0].as_array() + U[1].as_array()
+# w1 = sum(U).as_array()
+# numpy.testing.assert_array_equal(w, w1)
+#
+# print ("test sum BDC " )
+# z = numpy.sqrt(U[0].as_array()**2 + U[1].as_array()**2)
+# z1 = sum(U**2).sqrt().as_array()
+# numpy.testing.assert_array_equal(z, z1)
+#
+# z2 = U.pnorm(2)
+#
+# zzz = U.dot(V)
diff --git a/Wrappers/Python/ccpi/framework/BlockGeometry.py b/Wrappers/Python/ccpi/framework/BlockGeometry.py
index 988801f..2f28507 100755..100644
--- a/Wrappers/Python/ccpi/framework/BlockGeometry.py
+++ b/Wrappers/Python/ccpi/framework/BlockGeometry.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
from numbers import Number
@@ -94,9 +93,6 @@ class BlockGeometry(object):
containers[6]=containers[9]
containers[7]=containers[10]
containers[11]=containers[15]
-
-
-
-
+
return BlockDataContainer(*containers)
diff --git a/Wrappers/Python/ccpi/framework/TestData.py b/Wrappers/Python/ccpi/framework/TestData.py
index c035850..a9df2ad 100755..100644
--- a/Wrappers/Python/ccpi/framework/TestData.py
+++ b/Wrappers/Python/ccpi/framework/TestData.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.framework import ImageData, ImageGeometry, DataContainer
import numpy
diff --git a/Wrappers/Python/ccpi/framework/__init__.py b/Wrappers/Python/ccpi/framework/__init__.py
index 94788a5..213750b 100755..100644
--- a/Wrappers/Python/ccpi/framework/__init__.py
+++ b/Wrappers/Python/ccpi/framework/__init__.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
import sys
diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py
index 1ab1d1e..968c69c 100755..100644
--- a/Wrappers/Python/ccpi/framework/framework.py
+++ b/Wrappers/Python/ccpi/framework/framework.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
import sys
@@ -561,7 +560,12 @@ class DataContainer(object):
return VectorData(cleaned)
def fill(self, array, **dimension):
- '''fills the internal numpy array with the one provided'''
+ '''fills the internal numpy array with the one provided
+
+ :param array: numpy array to copy into the DataContainer
+ :type array: DataContainer, numpy array or number
+ :param dimension: dictionary, optional
+ '''
if dimension == {}:
if issubclass(type(array), DataContainer) or\
issubclass(type(array), numpy.ndarray):
@@ -574,6 +578,8 @@ class DataContainer(object):
else:
#self.array[:] = array
numpy.copyto(self.array, array)
+ else:
+ self.array.fill(array)
else:
command = 'self.array['
@@ -814,8 +820,8 @@ class DataContainer(object):
return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs)
def power(self, other, *args, **kwargs):
- return self.pixel_wise_binary(numpy.power, other, *args, **kwargs)
-
+ return self.pixel_wise_binary(numpy.power, other, *args, **kwargs)
+
def maximum(self, x2, *args, **kwargs):
return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs)
@@ -911,6 +917,12 @@ class DataContainer(object):
def abs(self, *args, **kwargs):
return self.pixel_wise_unary(numpy.abs, *args, **kwargs)
+# def max(self, *args, **kwargs):
+# return self.pixel_wise_unary(numpy.max, *args, **kwargs)
+#
+# def min(self, *args, **kwargs):
+# return self.pixel_wise_unary(numpy.min, *args, **kwargs)
+
def sign(self, *args, **kwargs):
return self.pixel_wise_unary(numpy.sign, *args, **kwargs)
@@ -1624,7 +1636,8 @@ class VectorData(DataContainer):
else:
raise ValueError('Incompatible size: expecting {} got {}'.format((self.length,), array.shape))
deep_copy = True
- super(VectorData, self).__init__(out, deep_copy, None)
+ # need to pass the geometry, othewise None
+ super(VectorData, self).__init__(out, deep_copy, None, geometry = self.geometry)
class VectorGeometry(object):
'''Geometry describing VectorData to contain 1D array'''
@@ -1661,30 +1674,36 @@ class VectorGeometry(object):
numpy.random.seed(seed)
max_value = kwargs.get('max_value', 100)
out.fill(numpy.random.randint(max_value,size=self.shape))
+ elif value is None:
+ pass
else:
raise ValueError('Value {} unknown'.format(value))
return out
if __name__ == "__main__":
-
- ig = ImageGeometry(voxel_num_x=100,
- voxel_num_y=200,
- voxel_num_z=300,
- voxel_size_x=1,
- voxel_size_y=1,
- voxel_size_z=1,
- center_x=0,
- center_y=0,
- center_z=0,
- channels=50)
-
- id = ig.allocate(2)
-
- print(id.geometry)
- print(id.dimension_labels)
-
- sid = id.subset(channel = 20)
-
- print(sid.dimension_labels)
- print(sid.geometry)
+
+
+ vg = VectorGeometry(10)
+ b = vg.allocate('random_int')
+
+# ig = ImageGeometry(voxel_num_x=100,
+# voxel_num_y=200,
+# voxel_num_z=300,
+# voxel_size_x=1,
+# voxel_size_y=1,
+# voxel_size_z=1,
+# center_x=0,
+# center_y=0,
+# center_z=0,
+# channels=50)
+#
+# id = ig.allocate(2)
+#
+# print(id.geometry)
+# print(id.dimension_labels)
+#
+# sid = id.subset(channel = 20)
+#
+# print(sid.dimension_labels)
+# print(sid.geometry)
diff --git a/Wrappers/Python/ccpi/io/NEXUSDataReader.py b/Wrappers/Python/ccpi/io/NEXUSDataReader.py
index dbada02..e696ca5 100644
--- a/Wrappers/Python/ccpi/io/NEXUSDataReader.py
+++ b/Wrappers/Python/ccpi/io/NEXUSDataReader.py
@@ -15,11 +15,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
import numpy
import os
from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry
-
h5pyAvailable = True
try:
import h5py
diff --git a/Wrappers/Python/ccpi/io/NEXUSDataWriter.py b/Wrappers/Python/ccpi/io/NEXUSDataWriter.py
index c0b4fae..926cb07 100644
--- a/Wrappers/Python/ccpi/io/NEXUSDataWriter.py
+++ b/Wrappers/Python/ccpi/io/NEXUSDataWriter.py
@@ -15,7 +15,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
import numpy
import os
from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry
diff --git a/Wrappers/Python/ccpi/io/NikonDataReader.py b/Wrappers/Python/ccpi/io/NikonDataReader.py
index 703b65b..ea8179e 100644
--- a/Wrappers/Python/ccpi/io/NikonDataReader.py
+++ b/Wrappers/Python/ccpi/io/NikonDataReader.py
@@ -1,10 +1,23 @@
-#!/usr/bin/env python3
# -*- coding: utf-8 -*-
-"""
-Created on Wed Apr 3 10:30:25 2019
+# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).
-@author: evelina
-"""
+# Copyright 2019 UKRI-STFC
+# Copyright 2019 University of Manchester
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.framework import AcquisitionData, AcquisitionGeometry
import numpy
diff --git a/Wrappers/Python/ccpi/io/reader.py b/Wrappers/Python/ccpi/io/reader.py
index 8282fe9..52e06bd 100644
--- a/Wrappers/Python/ccpi/io/reader.py
+++ b/Wrappers/Python/ccpi/io/reader.py
@@ -19,7 +19,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.framework import AcquisitionGeometry
from ccpi.framework import AcquisitionData
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py b/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py
index 48d109e..48d109e 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
index 53804c5..64c2282 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
@@ -20,7 +20,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.algorithms import Algorithm
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
index 15a289d..9705682 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
@@ -20,7 +20,7 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
+
from ccpi.optimisation.algorithms import Algorithm
from ccpi.optimisation.functions import ZeroFunction
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
index 5e7284a..d30604e 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
@@ -23,7 +23,7 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
+
import numpy
from ccpi.optimisation.algorithms import Algorithm
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
index 8776875..cc384e3 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -20,7 +20,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.algorithms import Algorithm
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
index a59ce5f..8afecc8 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
@@ -23,7 +23,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.algorithms import Algorithm
diff --git a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
index 57592cd..5f9a881 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
@@ -23,7 +23,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.functions import Function
from ccpi.framework import BlockDataContainer
@@ -31,14 +30,24 @@ from numbers import Number
class BlockFunction(Function):
- r'''BlockFunction acts as a separable sum function: f = [f_1,...,f_n]
+ r""" BlockFunction represents a *separable sum* function :math:`F` defined as
- .. math::
-
- f([x_1,...,x_n]) = f_1(x_1) + .... + f_n(x_n)
- |
-
- '''
+ .. math:: F:X_{1}\times X_{2}\cdots\times X_{m} \rightarrow (-\infty, \infty]
+
+ where :math:`F` is the separable sum of functions :math:`(f_{i})_{i=1}^{m}`,
+
+ .. math:: F(x_{1}, x_{2}, \cdots, x_{m}) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ with } f_{i}: X_{i} \rightarrow (-\infty, \infty].
+
+ A nice property (due to it's separability structure) is that the proximal operator
+ can be decomposed along the proximal operators of each function :math:`f_{i}`.
+
+ .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau f_{i}}(x_{i}) )_{i=1}^{m}
+
+ In addition, if :math:`\tau := (\tau_{1},\dots,\tau_{m})`, then
+
+ .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau_{i} f_{i}}(x_{i}) )_{i=1}^{m}
+
+ """
def __init__(self, *functions):
@@ -48,13 +57,17 @@ class BlockFunction(Function):
def __call__(self, x):
- r'''Evaluates the BlockFunction at a BlockDataContainer x
+ r""" Returns the value of the BlockFunction :math:`F`
- :param: x (BlockDataContainer): must have as many rows as self.length
+ .. math:: F(x) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ where } x = (x_{1}, x_{2}, \cdots, x_{m}), \quad i = 1,2,\dots,m
+
+ Parameter:
+
+ x : BlockDataContainer and must have as many rows as self.length
returns ..math:: \sum(f_i(x_i))
- '''
+ """
if self.length != x.shape[0]:
raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
@@ -65,53 +78,36 @@ class BlockFunction(Function):
def convex_conjugate(self, x):
- r'''Convex conjugate of BlockFunction at x
+ r"""Returns the value of the convex conjugate of the BlockFunction at :math:`x^{*}`.
- .. math:: returns \sum(f_i^{*}(x_i))
+ .. math:: F^{*}(x^{*}) = \overset{m}{\underset{i=1}{\sum}}f_{i}^{*}(x^{*}_{i})
+
+ Parameter:
+
+ x : BlockDataContainer and must have as many rows as self.length
- '''
- t = 0
+ """
+
+ if self.length != x.shape[0]:
+ raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
+ t = 0
for i in range(x.shape[0]):
t += self.functions[i].convex_conjugate(x.get_item(i))
return t
-
- def proximal_conjugate(self, x, tau, out = None):
-
- r'''Proximal operator of BlockFunction at x:
-
- .. math:: prox_{tau*f}(x) = \sum_{i} prox_{tau*f_{i}}(x_{i})
+ def proximal(self, x, tau, out = None):
+ r"""Proximal operator of the BlockFunction at x:
- '''
-
- if out is not None:
- if isinstance(tau, Number):
- for i in range(self.length):
- self.functions[i].proximal_conjugate(x.get_item(i), tau, out=out.get_item(i))
- else:
- for i in range(self.length):
- self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i),out=out.get_item(i))
+ .. math:: \mathrm{prox}_{\tau F}(x) = (\mathrm{prox}_{\tau f_{i}}(x_{i}))_{i=1}^{m}
- else:
-
- out = [None]*self.length
- if isinstance(tau, Number):
- for i in range(self.length):
- out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
- else:
- for i in range(self.length):
- out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i))
+ Parameter:
- return BlockDataContainer(*out)
-
-
- def proximal(self, x, tau, out = None):
+ x : BlockDataContainer and must have as many rows as self.length
+ """
- r'''Proximal operator of the convex conjugate of BlockFunction at x:
-
- .. math:: prox_{tau*f^{*}}(x) = \sum_{i} prox_{tau*f^{*}_{i}}(x_{i})
- '''
+ if self.length != x.shape[0]:
+ raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
if out is None:
@@ -135,27 +131,68 @@ class BlockFunction(Function):
- def gradient(self,x, out=None):
+ def gradient(self, x, out=None):
+
+ r"""Returns the value of the gradient of the BlockFunction function at x.
- r'''Evaluates gradient of BlockFunction at x
+ .. math:: F'(x) = [f_{1}'(x_{1}), ... , f_{m}'(x_{m})]
- returns: BlockDataContainer .. math:: [f_{1}'(x_{1}), ... , f_{n}'(x_{n})]
+ Parameter:
+
+ x : BlockDataContainer and must have as many rows as self.length
- '''
+ """
+
+ if self.length != x.shape[0]:
+ raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
out = [None]*self.length
for i in range(self.length):
out[i] = self.functions[i].gradient(x.get_item(i))
- return BlockDataContainer(*out)
+ return BlockDataContainer(*out)
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ r"""Proximal operator of the convex conjugate of BlockFunction at x:
+
+ .. math:: \mathrm{prox}_{\tau F^{*}}(x) = (\mathrm{prox}_{\tau f^{*}_{i}}(x^{*}_{i}))_{i=1}^{m}
+
+ Parameter:
+
+ x : BlockDataContainer and must have as many rows as self.length
+ """
+
+ if self.length != x.shape[0]:
+ raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
+
+ if out is not None:
+ if isinstance(tau, Number):
+ for i in range(self.length):
+ self.functions[i].proximal_conjugate(x.get_item(i), tau, out=out.get_item(i))
+ else:
+ for i in range(self.length):
+ self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i),out=out.get_item(i))
+
+ else:
+
+ out = [None]*self.length
+ if isinstance(tau, Number):
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+ else:
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i))
+
+ return BlockDataContainer(*out)
if __name__ == '__main__':
- M, N, K = 2,3,5
+ M, N, K = 20,30,50
- from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm
+ from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm, L1Norm
from ccpi.framework import ImageGeometry, BlockGeometry
from ccpi.optimisation.operators import Gradient, Identity, BlockOperator
import numpy
@@ -191,7 +228,22 @@ if __name__ == '__main__':
numpy.testing.assert_array_almost_equal(res_no_out[1].as_array(), \
res_out[1].as_array(), decimal=4)
-
+
+
+ ig1 = ImageGeometry(M, N)
+ ig2 = ImageGeometry(2*M, N)
+ ig3 = ImageGeometry(3*M, 4*N)
+
+ bg = BlockGeometry(ig1,ig2,ig3)
+
+ z = bg.allocate('random_int')
+
+ f1 = L1Norm()
+ f2 = 5 * L2NormSquared()
+
+ f = BlockFunction(f2, f2, f2 + 5, f1 - 4, f1)
+
+ res = f.convex_conjugate(z)
##########################################################################
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Function.py b/Wrappers/Python/ccpi/optimisation/functions/Function.py
index 48c6d30..c6c75ca 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/Function.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/Function.py
@@ -23,55 +23,440 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import warnings
-from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+
+from numbers import Number
+from ccpi.optimisation.operators import ZeroOperator, Identity
class Function(object):
- '''Abstract class representing a function
- Members:
- L is the Lipschitz constant of the gradient of the Function
- '''
- def __init__(self):
- self.L = None
+ """ Abstract class representing a function
+
+ :param L: Lipschitz constant of the gradient of the function F(x), when it is differentiable.
+ :param domain: The domain of the function.
- def __call__(self,x, out=None):
- '''Evaluates the function at x '''
+ """
+
+
+ def __init__(self, L = None):
+
+ self.L = L
+
+ def __call__(self,x):
+
+ r"""Returns the value of the function F at x: :math:`F(x)`
+
+ """
+
raise NotImplementedError
def gradient(self, x, out=None):
- '''Returns the gradient of the function at x, if the function is differentiable'''
+
+ r"""Returns the value of the gradient of function F at x, if it is differentiable
+
+ .. math:: F'(x)
+
+ """
raise NotImplementedError
def proximal(self, x, tau, out=None):
- '''This returns the proximal operator for the function at x, tau'''
+
+ r"""Returns the proximal operator of function :math:`\tau F` at x
+ .. math:: \mathrm{prox}_{\tau F}(x) = \underset{z}{\mathrm{argmin}} \frac{1}{2}\|z - x\|^{2} + \tau F(z)
+ """
raise NotImplementedError
- def convex_conjugate(self, x, out=None):
- '''This evaluates the convex conjugate of the function at x'''
+ def convex_conjugate(self, x):
+ r""" Returns the convex conjugate of function :math:`F` at :math:`x^{*}`,
+
+ .. math:: F^{*}(x^{*}) = \underset{x^{*}}{\sup} <x^{*}, x> - F(x)
+
+ """
raise NotImplementedError
def proximal_conjugate(self, x, tau, out = None):
- '''This returns the proximal operator for the convex conjugate of the function at x, tau'''
- raise NotImplementedError
-
- def grad(self, x):
- '''Alias of gradient(x,None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use gradient instead''', DeprecationWarning)
- return self.gradient(x, out=None)
+
+ r"""Returns the proximal operator of the convex conjugate of function :math:`\tau F` at :math:`x^{*}`
+
+ .. math:: \mathrm{prox}_{\tau F^{*}}(x^{*}) = \underset{z^{*}}{\mathrm{argmin}} \frac{1}{2}\|z^{*} - x^{*}\|^{2} + \tau F^{*}(z^{*})
+
+ Due to Moreau’s identity, we have an analytic formula to compute the proximal operator of the convex conjugate :math:`F^{*}`
+
+ .. math:: \mathrm{prox}_{\tau F^{*}}(x) = x - \tau\mathrm{prox}_{\tau^{-1} F}(\tau^{-1}x)
+
+ """
+ if out is None:
+ return x - tau * self.proximal(x/tau, 1/tau)
+ else:
+ self.proximal(x/tau, 1/tau, out = out)
+ out*=-tau
+ out.add(x, out = out)
+
+ # Algebra for Function Class
+
+ # Add functions
+ # Subtract functions
+ # Add/Substract with Scalar
+ # Multiply with Scalar
+
+ def __add__(self, other):
+
+ """ Returns the sum of the functions.
+
+ Cases: a) the sum of two functions :math:`(F_{1}+F_{2})(x) = F_{1}(x) + F_{2}(x)`
+ b) the sum of a function with a scalar :math:`(F_{1}+scalar)(x) = F_{1}(x) + scalar`
- def prox(self, x, tau):
- '''Alias of proximal(x, tau, None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use proximal instead''', DeprecationWarning)
- return self.proximal(x, tau, out=None)
+ """
+
+ if isinstance(other, Function):
+ return SumFunction(self, other)
+ elif isinstance(other, (SumFunctionScalar, ConstantFunction, Number)):
+ return SumFunctionScalar(self, other)
+ else:
+ raise ValueError('Not implemented')
+
+ def __radd__(self, other):
+
+ """ Making addition commutative. """
+ return self + other
+
+ def __sub__(self, other):
+ """ Returns the subtraction of the functions."""
+ return self + (-1) * other
def __rmul__(self, scalar):
- '''Defines the multiplication by a scalar on the left
-
- returns a ScaledFunction'''
+ """Returns a function multiplied by a scalar."""
return ScaledFunction(self, scalar)
+
+ def __mul__(self, scalar):
+ return self.__rmul__(scalar)
+
+
+ def centered_at(self, center):
+ """ Returns a translated function, namely if we have a function :math:`F(x)` the center is at the origin.
+ TranslateFunction is :math:`F(x - b)` and the center is at point b."""
+
+ if center is None:
+ return self
+ else:
+ return TranslateFunction(self, center)
+
+class SumFunction(Function):
+
+ """ SumFunction represents the sum of two functions
+
+ .. math:: (F_{1} + F_{2})(x) = F_{1}(x) + F_{2}(x)
+
+ """
+
+ def __init__(self, function1, function2 ):
+
+ super(SumFunction, self).__init__()
+
+ #if function1.domain != function2.domain:
+ # raise ValueError('{} is not the same as {}'.format(function1.domain, function2.domain))
+
+ #self.domain = function1.domain
+
+ if function1.L is not None and function2.L is not None:
+ self.L = function1.L + function2.L
+
+ self.function1 = function1
+ self.function2 = function2
+
+ def __call__(self,x):
+ r"""Returns the value of the sum of functions :math:`F_{1}` and :math:`F_{2}` at x
+
+ .. math:: (F_{1} + F_{2})(x) = F_{1}(x) + F_{2}(x)
+
+ """
+ return self.function1(x) + self.function2(x)
+
+ def gradient(self, x, out=None):
+
+ r"""Returns the value of the sum of the gradient of functions :math:`F_{1}` and :math:`F_{2}` at x,
+ if both of them are differentiable
+
+ .. math:: (F'_{1} + F'_{2})(x) = F'_{1}(x) + F'_{2}(x)
+
+ """
+
+# try:
+ if out is None:
+ return self.function1.gradient(x) + self.function2.gradient(x)
+ else:
+
+ self.function1.gradient(x, out=out)
+ out.add(self.function2.gradient(x), out=out)
+
+class ScaledFunction(Function):
+
+ r""" ScaledFunction represents the scalar multiplication with a Function.
+
+ Let a function F then and a scalar :math:`\alpha`.
+
+ If :math:`G(x) = \alpha F(x)` then:
+
+ 1. :math:`G(x) = \alpha F(x)` ( __call__ method )
+ 2. :math:`G'(x) = \alpha F'(x)` ( gradient method )
+ 3. :math:`G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha})` ( convex_conjugate method )
+ 4. :math:`\mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{(\tau\alpha) F}(x)` ( proximal method )
+
+ """
+ def __init__(self, function, scalar):
+
+ super(ScaledFunction, self).__init__()
+
+ if not isinstance (scalar, Number):
+ raise TypeError('expected scalar: got {}'.format(type(scalar)))
+
+ if function.L is not None:
+ self.L = abs(scalar) * function.L
+
+ self.scalar = scalar
+ self.function = function
+
+ def __call__(self,x, out=None):
+ r"""Returns the value of the scaled function.
+
+ .. math:: G(x) = \alpha F(x)
+
+ """
+ return self.scalar * self.function(x)
+
+ def convex_conjugate(self, x):
+ r"""Returns the convex conjugate of the scaled function.
+
+ .. math:: G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha})
+
+ """
+ return self.scalar * self.function.convex_conjugate(x/self.scalar)
+
+ def gradient(self, x, out=None):
+ r"""Returns the gradient of the scaled function.
+
+ .. math:: G'(x) = \alpha F'(x)
+
+ """
+
+# try:
+ if out is None:
+ return self.scalar * self.function.gradient(x)
+ else:
+ self.function.gradient(x, out=out)
+ out *= self.scalar
+
+ def proximal(self, x, tau, out=None):
+
+ r"""Returns the proximal operator of the scaled function.
+
+ .. math:: \mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{(\tau\alpha) F}(x)
+
+ """
+
+ return self.function.proximal(x, tau*self.scalar, out=out)
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+ r"""This returns the proximal operator for the function at x, tau
+ """
+ if out is None:
+ return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar)
+ else:
+ self.function.proximal_conjugate(x/self.scalar, tau/self.scalar, out=out)
+ out *= self.scalar
+
+class SumFunctionScalar(SumFunction):
+
+ """ SumFunctionScalar represents the sum a function with a scalar.
+
+ .. math:: (F + scalar)(x) = F(x) + scalar
+
+ Although SumFunction has no general expressions for
+
+ i) convex_conjugate
+ ii) proximal
+ iii) proximal_conjugate
+
+ if the second argument is a ConstantFunction then we can derive the above analytically.
+
+ """
+
+ def __init__(self, function, constant):
+
+ super(SumFunctionScalar, self).__init__(function, ConstantFunction(constant))
+ self.constant = constant
+ self.function = function
+
+ def convex_conjugate(self,x):
+
+ r""" Returns the convex conjugate of a :math:`(F+scalar)`
+
+ .. math:: (F+scalar)^{*}(x^{*}) = F^{*}(x^{*}) - scalar
+
+ """
+ return self.function.convex_conjugate(x) - self.constant
+
+ def proximal(self, x, tau, out=None):
+
+ """ Returns the proximal operator of :math:`F+scalar`
+
+ .. math:: \mathrm{prox}_{\tau (F+scalar)}(x) = \mathrm{prox}_{\tau F}
+
+ """
+ return self.function.proximal(x, tau, out=out)
+
+# def function(self):
+# return self.function
+
+class ConstantFunction(Function):
+
+
+ r""" ConstantFunction: :math:`F(x) = constant, constant\in\mathbb{R}`
+
+ """
+
+ def __init__(self, constant = 0):
+
+ super(ConstantFunction, self).__init__(L=0)
+
+ if not isinstance (constant, Number):
+ raise TypeError('expected scalar: got {}'.format(type(constant)))
+
+ self.constant = constant
+
+ def __call__(self,x):
+
+ """ Returns the value of the function, :math:`F(x) = constant`"""
+ return self.constant
+
+ def gradient(self, x, out=None):
+
+ """ Returns the value of the gradient of the function, :math:`F'(x)=0`"""
+ if out is None:
+ return x * 0.
+ else:
+ out.fill(0)
+
+ def convex_conjugate(self, x):
+
+ r""" The convex conjugate of constant function :math:`F(x) = c\in\mathbb{R}` is
+
+ .. math::
+ F(x^{*})
+ =
+ \begin{cases}
+ -c, & if x^{*} = 0\\
+ \infty, & \mbox{otherwise}
+ \end{cases}
+
+
+ However, :math:`x^{*} = 0` only in the limit of iterations, so in fact this can be infinity.
+ We do not want to have inf values in the convex conjugate, so we have to penalise this value accordingly.
+ The following penalisation is useful in the PDHG algorithm, when we compute primal & dual objectives
+ for convergence purposes.
+
+ .. math:: F^{*}(x^{*}) = \sum \max\{x^{*}, 0\}
+
+ """
+ return x.maximum(0).sum()
+
+ def proximal(self, x, tau, out=None):
+
+ """Returns the proximal operator of the constant function, which is the same element, i.e.,
+
+ .. math:: \mathrm{prox}_{\tau F}(x) = x
+
+ """
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+ #return Identity(x.geometry).direct(x, out=out)
+class ZeroFunction(ConstantFunction):
+
+ """ ZeroFunction represents the zero function, :math:`F(x) = 0`
+ """
+
+ def __init__(self):
+ super(ZeroFunction, self).__init__(constant = 0.)
+
+class TranslateFunction(Function):
+
+ r""" TranslateFunction represents the translation of function F with respect to the center b.
+
+ Let a function F and consider :math:`G(x) = F(x - center)`.
+
+ Function F is centered at 0, whereas G is centered at point b.
+
+ If :math:`G(x) = F(x - b)` then:
+
+ 1. :math:`G(x) = F(x - b)` ( __call__ method )
+ 2. :math:`G'(x) = F'(x - b)` ( gradient method )
+ 3. :math:`G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b >` ( convex_conjugate method )
+ 4. :math:`\mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{\tau F}(x - b) + b` ( proximal method )
+
+ """
+
+ def __init__(self, function, center):
+
+ super(TranslateFunction, self).__init__(L = function.L)
+
+ self.function = function
+ self.center = center
+
+
+
+ def __call__(self, x):
+
+ r"""Returns the value of the translated function.
+
+ .. math:: G(x) = F(x - b)
+
+ """
+
+ return self.function(x - self.center)
+
+ def gradient(self, x, out = None):
+
+ r"""Returns the gradient of the translated function.
+
+ .. math:: G'(x) = F'(x - b)
+
+ """
+
+ if out is None:
+ return self.function.gradient(x - self.center)
+ else:
+ x.subtract(self.center, out = out)
+ self.function.gradient(out, out = out)
+
+ def proximal(self, x, tau, out = None):
+
+ r"""Returns the proximal operator of the translated function.
+
+ .. math:: \mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{\tau F}(x-b) + b
+
+ """
+
+ if out is None:
+ return self.function.proximal(x - self.center, tau) + self.center
+ else:
+ x.subtract(self.center, out = out)
+ self.function.proximal(out, tau, out = out)
+ out.add(self.center, out = out)
+
+ def convex_conjugate(self, x):
+
+ r"""Returns the convex conjugate of the translated function.
+
+ .. math:: G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b >
+
+ """
+
+ return self.function.convex_conjugate(x) + self.center.dot(x)
+
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
index ed5c1b1..51105c8 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
@@ -20,20 +20,26 @@
#
#=========================================================================
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.optimisation.functions import Function
-from ccpi.optimisation.functions import ScaledFunction
+from ccpi.optimisation.operators import Operator, ScaledOperator
+import warnings
class FunctionOperatorComposition(Function):
- r'''Function composition with Operator: :math:`(f \otimes A)(x) = f(Ax)`
+ """ Composition of a function with an operator as : :math:`(F \otimes A)(x) = F(Ax)`
- :param A: operator
- :type A: :code:`Operator`
- :param f: function
- :type f: :code:`Function`
+ :parameter function: :code:`Function` F
+ :parameter operator: :code:`Operator` A
+
+
+ For general operator, we have no explicit formulas for convex_conjugate,
+ proximal and proximal_conjugate
- '''
+ """
def __init__(self, function, operator):
'''creator
@@ -48,91 +54,40 @@ class FunctionOperatorComposition(Function):
self.function = function
self.operator = operator
+
+ if not isinstance(self.function, Function):
+ raise ValueError('{} is not function '.format(type(self.function)))
+
+ # check also ScaledOperator because it's not a child atm of Operator
+ if not isinstance(self.operator, (Operator, ScaledOperator)):
+ raise ValueError('{} is not function '.format(type(self.operator)))
+
try:
self.L = function.L * operator.norm()**2
- except Error as er:
+ except ValueError as er:
self.L = None
warnings.warn("Lipschitz constant was not calculated")
def __call__(self, x):
- '''Evaluates f(Ax)'''
+ """ Returns :math:`F(Ax)`
+ """
return self.function(self.operator.direct(x))
def gradient(self, x, out=None):
- '''Evaluates gradient of f(Ax):
+ """ Return the gradient of F(Ax),
- ..math :: A^{T}f'(Ax)
+ ..math :: (F(Ax))' = A^{T}F'(Ax)
- '''
+ """
tmp = self.operator.range_geometry().allocate()
self.operator.direct(x, out=tmp)
self.function.gradient(tmp, out=tmp)
if out is None:
- #return self.operator.adjoint(self.function.gradient(self.operator.direct(x)))
return self.operator.adjoint(tmp)
else:
self.operator.adjoint(tmp, out=out)
-
-
-
-if __name__ == '__main__':
-
- from ccpi.framework import ImageGeometry, AcquisitionGeometry
- from ccpi.optimisation.operators import Gradient
- from ccpi.optimisation.functions import L2NormSquared
- from ccpi.astra.ops import AstraProjectorSimple
- import numpy as np
-
- M, N= 50, 50
- ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N)
-
- detectors = N
- angles_num = N
- det_w = 1.0
-
- angles = np.linspace(0, np.pi, angles_num, endpoint=False)
- ag = AcquisitionGeometry('parallel',
- '2D',
- angles,
- detectors,det_w)
-
-
- Aop = AstraProjectorSimple(ig, ag, 'cpu')
-
- u = ig.allocate('random_int', seed=15)
- u1 = ig.allocate('random_int', seed=10)
- b = Aop.direct(u1)
-
-
-# G = Gradient(ig)
- alpha = 0.5
-
- f1 = alpha * L2NormSquared(b=b)
-
- f_comp = FunctionOperatorComposition(f1, Aop)
-
- print(f_comp(u))
-
-
- z1 = Aop.direct(u)
- tmp = 0.5 * ((z1 - b)**2).sum()
-
-
- print(tmp)
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
index 9e9e55c..4383858 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
@@ -19,7 +19,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.functions import Function
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
index 4239423..39bd983 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
@@ -20,43 +20,76 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
from ccpi.optimisation.functions import Function
-from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+
import functools
import scipy.special
class KullbackLeibler(Function):
- r'''Kullback-Leibler divergence function
-
- .. math::
- f(x, y) = \begin{cases} x \log(x / y) - x + y & x > 0, y > 0 \\
- y & x = 0, y \ge 0 \\
- \infty & \text{otherwise}
- \end{cases}
+ r""" Kullback Leibler divergence function is defined as:
- '''
+ .. math:: F(u, v)
+ = \begin{cases}
+ u \log(\frac{u}{v}) - u + v & \mbox{ if } u > 0, v > 0\\
+ v & \mbox{ if } u = 0, v \ge 0 \\
+ \infty, & \mbox{otherwise}
+ \end{cases}
+
+ where we use the :math:`0\log0 := 0` convention.
+
+ At the moment, we use build-in implemention of scipy, see
+ https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html
+
+ The Kullback-Leibler function is used as a fidelity term in minimisation problems where the
+ acquired data follow Poisson distribution. If we denote the acquired data with :math:`b`
+ then, we write
+
+ .. math:: \underset{i}{\sum} F(b_{i}, (v + \eta)_{i})
+
+ where, :math:`\eta` is an additional noise.
+
+ Example: In the case of Positron Emission Tomography reconstruction :math:`\eta` represents
+ scatter and random events contribution during the PET acquisition. Hence, in that case the KullbackLeibler
+ fidelity measures the distance between :math:`\mathcal{A}v + \eta` and acquisition data :math:`b`, where
+ :math:`\mathcal{A}` is the projection operator.
+
+ This is related to PoissonLogLikelihoodWithLinearModelForMean definition that is used in PET reconstruction
+ in the PET-MR software , see https://github.com/CCPPETMR and for more details in
+
+ http://stir.sourceforge.net/documentation/doxy/html/classstir_1_1PoissonLogLikelihoodWithLinearModelForMean.html
+
+ """
+
- def __init__(self, data, **kwargs):
+ def __init__(self, **kwargs):
- super(KullbackLeibler, self).__init__()
+ super(KullbackLeibler, self).__init__(L = None)
+ self.b = kwargs.get('b', None)
- self.b = data
- self.bnoise = data * 0.
+ if self.b is None:
+ raise ValueError('Please define data, as b = ...')
+
+ if (self.b.as_array() < 0).any():
+ raise ValueError('Data should be larger or equal to 0')
+
+ self.eta = kwargs.get('eta',self.b * 0.0)
def __call__(self, x):
- '''Evaluates KullbackLeibler at x'''
-
- ind = x.as_array()>0
- tmp = scipy.special.kl_div(self.b.as_array()[ind], x.as_array()[ind])
- return numpy.sum(tmp)
-
+ r"""Returns the value of the KullbackLeibler function at :math:`(b, x + \eta)`.
+ To avoid infinity values, we consider only pixels/voxels for :math:`x+\eta\geq0`.
+ """
+
+ tmp_sum = (x + self.eta).as_array()
+ ind = tmp_sum >= 0
+ tmp = scipy.special.kl_div(self.b.as_array()[ind], tmp_sum[ind])
+ return numpy.sum(tmp)
+
def log(self, datacontainer):
'''calculates the in-place log of the datacontainer'''
if not functools.reduce(lambda x,y: x and y>0, datacontainer.as_array().ravel(), True):
@@ -66,52 +99,62 @@ class KullbackLeibler(Function):
def gradient(self, x, out=None):
- '''Evaluates gradient of KullbackLeibler at x'''
+ r"""Returns the value of the gradient of the KullbackLeibler function at :math:`(b, x + \eta)`.
- if out is None:
- return 1 - self.b/(x + self.bnoise)
- else:
+ .. math:: F'(b, x + \eta) = 1 - \frac{b}{x+\eta}
+
+ We require the :math:`x+\eta>0` otherwise we have inf values.
+
+ """
+
+ tmp_sum_array = (x + self.eta).as_array()
+ if out is None:
+ tmp_out = x.geometry.allocate()
+ tmp_out.as_array()[tmp_sum_array>0] = 1 - self.b.as_array()[tmp_sum_array>0]/tmp_sum_array[tmp_sum_array>0]
+ return tmp_out
+ else:
+ x.add(self.eta, out=out)
+ out.as_array()[tmp_sum_array>0] = 1 - self.b.as_array()[tmp_sum_array>0]/tmp_sum_array[tmp_sum_array>0]
- x.add(self.bnoise, out=out)
- self.b.divide(out, out=out)
- out.subtract(1, out=out)
- out *= -1
def convex_conjugate(self, x):
- '''Convex conjugate of KullbackLeibler at x'''
+ r"""Returns the value of the convex conjugate of the KullbackLeibler function at :math:`(b, x + \eta)`.
- xlogy = - scipy.special.xlogy(self.b.as_array(), 1 - x.as_array())
- return numpy.sum(xlogy)
+ .. math:: F^{*}(b, x + \eta) = - b \log(1-x^{*}) - <x^{*}, \eta>
+
+ """
+ tmp = 1 - x.as_array()
+ ind = tmp>0
+ xlogy = - scipy.special.xlogy(self.b.as_array()[ind], tmp[ind])
+ return numpy.sum(xlogy) - self.eta.dot(x)
def proximal(self, x, tau, out=None):
- r'''Proximal operator of KullbackLeibler at x
-
- .. math:: prox_{\tau * f}(x)
-
- '''
-
+ r"""Returns the value of the proximal operator of the KullbackLeibler function at :math:`(b, x + \eta)`.
+
+ .. math:: \mathrm{prox}_{\tau F}(x) = \frac{1}{2}\bigg( (x - \eta - \tau) + \sqrt{ (x + \eta - \tau)^2 + 4\tau b} \bigg)
+
+ The proximal for the convex conjugate of :math:`F` is
+
+ .. math:: \mathrm{prox}_{\tau F^{*}}(x) = 0.5*((z + 1) - \sqrt{(z-1)^2 + 4 * \tau b})
+
+ where :math:`z = x + \tau \eta`
+
+ """
+
if out is None:
- return 0.5 *( (x - self.bnoise - tau) + ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt() )
- else:
-
- tmp = 0.5 *( (x - self.bnoise - tau) +
- ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt()
- )
- x.add(self.bnoise, out=out)
+ return 0.5 *( (x - self.eta - tau) + ( (x + self.eta - tau)**2 + 4*tau*self.b ) .sqrt() )
+ else:
+ x.add(self.eta, out=out)
out -= tau
out *= out
- tmp = self.b * (4 * tau)
- out.add(tmp, out=out)
- out.sqrt(out=out)
-
- x.subtract(self.bnoise, out=tmp)
- tmp -= tau
-
- out += tmp
-
- out *= 0.5
+ out.add(self.b * (4 * tau), out=out)
+ out.sqrt(out=out)
+ out.subtract(tau, out = out)
+ out.add(x, out=out)
+ out *= 0.5
+
def proximal_conjugate(self, x, tau, out=None):
@@ -122,11 +165,10 @@ class KullbackLeibler(Function):
if out is None:
- z = x + tau * self.bnoise
+ z = x + tau * self.eta
return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt())
- else:
-
- tmp = tau * self.bnoise
+ else:
+ tmp = tau * self.eta
tmp += x
tmp -= 1
@@ -139,105 +181,93 @@ class KullbackLeibler(Function):
out += tmp
out *= 0.5
- def __rmul__(self, scalar):
-
- '''Multiplication of KullbackLeibler with a scalar
-
- Returns: ScaledFunction
- '''
-
- return ScaledFunction(self, scalar)
+
if __name__ == '__main__':
from ccpi.framework import ImageGeometry
- import numpy
-
- M, N = 2,3
- ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N)
- u = ig.allocate('random_int')
- b = ig.allocate('random_int')
- u.as_array()[1,1]=0
- u.as_array()[2,0]=0
- b.as_array()[1,1]=0
- b.as_array()[2,0]=0
+ import numpy as np
- f = KullbackLeibler(b)
+ M, N, K = 30, 30, 20
+ ig = ImageGeometry(N, M, K)
+ u1 = ig.allocate('random_int', seed = 500)
+ g1 = ig.allocate('random_int', seed = 1000)
+ b1 = ig.allocate('random', seed = 5000)
-# longest = reduce(lambda x, y: len(x) if len(x) > len(y) else len(y), strings)
-
-
-# tmp = functools.reduce(lambda x, y: \
-# 0 if x==0 and not numpy.isnan(y) else x * numpy.log(y), \
-# zip(b.as_array().ravel(), u.as_array().ravel()),0)
-
-
-# np.multiply.reduce(X, 0)
-
-
-# sf = reduce(lambda x,y: x + y[0]*y[1],
-# zip(self.as_array().ravel(),
-# other.as_array().ravel()),
-# 0)
-#cdef inline number_t xlogy(number_t x, number_t y) nogil:
-# if x == 0 and not zisnan(y):
-# return 0
-# else:
-# return x * zlog(y)
-
-# if npy_isnan(x):
-# return x
-# elif x > 0:
-# return -x * log(x)
-# elif x == 0:
-# return 0
-# else:
-# return -inf
-
-# cdef inline double kl_div(double x, double y) nogil:
-# if npy_isnan(x) or npy_isnan(y):
-# return nan
-# elif x > 0 and y > 0:
-# return x * log(x / y) - x + y
-# elif x == 0 and y >= 0:
-# return y
-# else:
-# return inf
-
-
-
-
-# def xlogy(self, dc1, dc2):
+ # with no data
+ try:
+ f = KullbackLeibler()
+ except ValueError:
+ print('Give data b=...\n')
-# return numpy.sum(numpy.where(dc1.as_array() != 0, dc2.as_array() * numpy.log(dc2.as_array() / dc1.as_array()), 0))
+ print('With negative data, no background\n')
+ try:
+ f = KullbackLeibler(b=-1*g1)
+ except ValueError:
+ print('We have negative data\n')
-
-
-# f.xlog(u, b)
-
+ f = KullbackLeibler(b=g1)
+
+ print('Check KullbackLeibler(x,x)=0\n')
+ numpy.testing.assert_equal(0.0, f(g1))
-
-
-# tmp1 = b.as_array()
-# tmp2 = u.as_array()
-#
-# zz = scipy.special.xlogy(tmp1, tmp2)
-#
-# print(np.sum(zz))
-
-
-# ww = f.xlogy(b, u)
-
-# print(ww)
+ print('Check gradient .... is OK \n')
+ res_gradient = f.gradient(u1)
+ res_gradient_out = u1.geometry.allocate()
+ f.gradient(u1, out = res_gradient_out)
+ numpy.testing.assert_array_almost_equal(res_gradient.as_array(), \
+ res_gradient_out.as_array(),decimal = 4)
+ print('Check proximal ... is OK\n')
+ tau = 0.4
+ res_proximal = f.proximal(u1, tau)
+ res_proximal_out = u1.geometry.allocate()
+ f.proximal(u1, tau, out = res_proximal_out)
+ numpy.testing.assert_array_almost_equal(res_proximal.as_array(), \
+ res_proximal_out.as_array(), decimal =5)
-#cdef inline double kl_div(double x, double y) nogil:
-
-
+ print('Check conjugate ... is OK\n')
+ res_conj = f.convex_conjugate(u1)
+ if (1 - u1.as_array()).all():
+ print('If 1-x<=0, Convex conjugate returns 0.0')
+ numpy.testing.assert_equal(0.0, f.convex_conjugate(u1))
+
+ print('Check KullbackLeibler with background\n')
+ f1 = KullbackLeibler(b=g1, eta=b1)
+
+ tmp_sum = (u1 + f1.eta).as_array()
+ ind = tmp_sum >= 0
+ tmp = scipy.special.kl_div(f1.b.as_array()[ind], tmp_sum[ind])
+ numpy.testing.assert_equal(f1(u1), numpy.sum(tmp) )
+
+ print('Check proximal KL without background\n')
+ tau = [0.1, 1, 10, 100, 10000]
+ for t1 in tau:
+
+ proxc = f.proximal_conjugate(u1,t1)
+ proxc_out = ig.allocate()
+ f.proximal_conjugate(u1, t1, out = proxc_out)
+ print('tau = {} is OK'.format(t1) )
+ numpy.testing.assert_array_almost_equal(proxc.as_array(),
+ proxc_out.as_array(),
+ decimal = 4)
+
+ print('\nCheck proximal KL with background\n')
+ for t1 in tau:
+
+ proxc1 = f1.proximal_conjugate(u1,t1)
+ proxc_out1 = ig.allocate()
+ f1.proximal_conjugate(u1, t1, out = proxc_out1)
+ numpy.testing.assert_array_almost_equal(proxc1.as_array(),
+ proxc_out1.as_array(),
+ decimal = 4)
+ print('tau = {} is OK'.format(t1) )
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
index 1fcfcca..e8fa008 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -20,22 +20,21 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-from ccpi.optimisation.functions import Function
-from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+from ccpi.optimisation.functions import Function
from ccpi.optimisation.operators import ShrinkageOperator
+import numpy as np
class L1Norm(Function):
- r'''L1Norm function:
+ r"""L1Norm function
- Cases considered (with/without data):
- a) :math:`f(x) = ||x||_{1}`
- b) :math:`f(x) = ||x - b||_{1}`
+ Consider the following cases:
+ a) .. math:: F(x) = ||x||_{1}
+ b) .. math:: F(x) = ||x - b||_{1}
- '''
+ """
def __init__(self, **kwargs):
'''creator
@@ -53,34 +52,62 @@ class L1Norm(Function):
def __call__(self, x):
- '''Evaluates L1Norm at x'''
+ r"""Returns the value of the L1Norm function at x.
+
+ Consider the following cases:
+ a) .. math:: F(x) = ||x||_{1}
+ b) .. math:: F(x) = ||x - b||_{1}
+
+ """
y = x
if self.b is not None:
y = x - self.b
return y.abs().sum()
-
- def gradient(self,x):
-
- return ValueError('Not Differentiable')
-
+
def convex_conjugate(self,x):
- '''Convex conjugate of L1Norm at x'''
-
- y = 0
- if self.b is not None:
- y = 0 + self.b.dot(x)
- return y
+ r"""Returns the value of the convex conjugate of the L1Norm function at x.
+ Here, we need to use the convex conjugate of L1Norm, which is the Indicator of the unit
+ :math:`L^{\infty}` norm
+
+ Consider the following cases:
+
+ a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*})
+ b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + <x^{*},b>
+
+ .. math:: \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*})
+ = \begin{cases}
+ 0, \mbox{if } \|x^{*}\|_{\infty}\leq1\\
+ \infty, \mbox{otherwise}
+ \end{cases}
+
+ """
+ tmp = (np.abs(x.as_array()).max() - 1)
+ if tmp<=1e-5:
+ if self.b is not None:
+ return self.b.dot(x)
+ else:
+ return 0.
+ return np.inf
+
def proximal(self, x, tau, out=None):
- r'''Proximal operator of L1Norm at x
-
- ..math:: prox_{\tau * f}(x)
+ r"""Returns the value of the proximal operator of the L1Norm function at x.
+
+
+ Consider the following cases:
- '''
+ a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x)
+ b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) + b
+
+ where,
+ .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) = sgn(x) * \max\{ |x| - \tau, 0 \}
+
+ """
+
if out is None:
if self.b is not None:
return self.b + self.shinkage_operator(x - self.b, tau)
@@ -92,33 +119,33 @@ class L1Norm(Function):
else:
out.fill(self.shinkage_operator(x, tau))
- def proximal_conjugate(self, x, tau, out=None):
-
- r'''Proximal operator of the convex conjugate of L1Norm at x:
-
- .. math:: prox_{\tau * f^{*}}(x)
-
- '''
-
- if out is None:
- if self.b is not None:
- return (x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0))
- else:
- return x.divide(x.abs().maximum(1.0))
- else:
- if self.b is not None:
- out.fill((x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0)))
- else:
- out.fill(x.divide(x.abs().maximum(1.0)) )
-
- def __rmul__(self, scalar):
-
- '''Multiplication of L2NormSquared with a scalar
+# def proximal_conjugate(self, x, tau, out=None):
+#
+# r'''Proximal operator of the convex conjugate of L1Norm at x:
+#
+# .. math:: prox_{\tau * f^{*}}(x)
+#
+# '''
+#
+# if out is None:
+# if self.b is not None:
+# return (x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0))
+# else:
+# return x.divide(x.abs().maximum(1.0))
+# else:
+# if self.b is not None:
+# out.fill((x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0)))
+# else:
+# out.fill(x.divide(x.abs().maximum(1.0)) )
- Returns: ScaledFunction
- '''
-
- return ScaledFunction(self, scalar)
+# def __rmul__(self, scalar):
+#
+# '''Multiplication of L2NormSquared with a scalar
+#
+# Returns: ScaledFunction
+# '''
+#
+# return ScaledFunction(self, scalar)
if __name__ == '__main__':
@@ -185,4 +212,4 @@ if __name__ == '__main__':
- \ No newline at end of file
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index ef7c698..613a7f5 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -21,20 +21,28 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.functions import Function
-from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
class L2NormSquared(Function):
- r'''L2NormSquared function:
-
- Cases considered (with/without data):
- a) .. math:: f(x) = \|x\|^{2}_{2}
- b) .. math:: f(x) = \|\|x - b\|\|^{2}_{2}
-
- '''
+ r""" L2NormSquared function: :math:`F(x) = \| x\|^{2}_{2} = \underset{i}{\sum}x_{i}^{2}`
+
+ Following cases are considered:
+
+ a) :math:`F(x) = \|x\|^{2}_{2}`
+ b) :math:`F(x) = \|x - b\|^{2}_{2}`
+
+ .. note:: For case b) case we can use :code:`F = L2NormSquared().centered_at(b)`,
+ see *TranslateFunction*.
+
+ :Example:
+
+ >>> F = L2NormSquared()
+ >>> F = L2NormSquared(b=b)
+ >>> F = L2NormSquared().centered_at(b)
+
+ """
def __init__(self, **kwargs):
'''creator
@@ -46,15 +54,25 @@ class L2NormSquared(Function):
:param b: translation of the function
:type b: :code:`DataContainer`, optional
'''
- super(L2NormSquared, self).__init__()
+ super(L2NormSquared, self).__init__(L = 2)
self.b = kwargs.get('b',None)
- # Lipschitz constant
- self.L = 2
-
+ #if self.b is not None:
+ # self.domain = self.b.geometry
+
def __call__(self, x):
+
+ r"""Returns the value of the L2NormSquared function at x.
- '''Evaluates L2NormSquared at x'''
+ Following cases are considered:
+
+ a) :math:`F(x) = \|x\|^{2}_{2}`
+ b) :math:`F(x) = \|x - b\|^{2}_{2}`
+
+ :param: :math:`x`
+ :returns: :math:`\underset{i}{\sum}x_{i}^{2}`
+
+ """
y = x
if self.b is not None:
@@ -67,7 +85,14 @@ class L2NormSquared(Function):
def gradient(self, x, out=None):
- '''Evaluates gradient of L2NormSquared at x'''
+ r"""Returns the value of the gradient of the L2NormSquared function at x.
+
+ Following cases are considered:
+
+ a) :math:`F'(x) = 2x`
+ b) :math:`F'(x) = 2(x-b)`
+
+ """
if out is not None:
@@ -86,23 +111,34 @@ class L2NormSquared(Function):
def convex_conjugate(self, x):
- '''Convex conjugate of L2NormSquared at x'''
+ r"""Returns the value of the convex conjugate of the L2NormSquared function at x.
+ Consider the following cases:
+
+ a) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2}
+ b) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2} + <x^{*}, b>
+
+ """
tmp = 0
if self.b is not None:
- tmp = x.dot(self.b) #(x * self.b).sum()
+ tmp = x.dot(self.b)
return (1./4.) * x.squared_norm() + tmp
def proximal(self, x, tau, out = None):
-
- r'''Proximal operator of L2NormSquared at x
-
- .. math:: prox_{\tau * f}(x)
- '''
+ r"""Returns the value of the proximal operator of the L2NormSquared function at x.
+
+
+ Consider the following cases:
+
+ a) .. math:: \mathrm{prox}_{\tau F}(x) = \frac{x}{1+2\tau}
+ b) .. math:: \mathrm{prox}_{\tau F}(x) = \frac{x-b}{1+2\tau} + b
+
+ """
+
if out is None:
if self.b is None:
@@ -122,33 +158,23 @@ class L2NormSquared(Function):
x.divide((1+2*tau), out=out)
- def proximal_conjugate(self, x, tau, out=None):
-
- r'''Proximal operator of the convex conjugate of L2NormSquared at x:
-
- .. math:: prox_{\tau * f^{*}}(x)'''
-
- if out is None:
- if self.b is not None:
- return (x - tau*self.b)/(1 + tau/2)
- else:
- return x/(1 + tau/2)
- else:
- if self.b is not None:
- x.subtract(tau*self.b, out=out)
- out.divide(1+tau/2, out=out)
- else:
- x.divide(1 + tau/2, out=out)
-
- def __rmul__(self, scalar):
-
- '''Multiplication of L2NormSquared with a scalar
-
- Returns: ScaledFunction'''
-
- return ScaledFunction(self, scalar)
-
-
+# def proximal_conjugate(self, x, tau, out=None):
+#
+# r'''Proximal operator of the convex conjugate of L2NormSquared at x:
+#
+# .. math:: prox_{\tau * f^{*}}(x)'''
+#
+# if out is None:
+# if self.b is not None:
+# return (x - tau*self.b)/(1 + tau/2)
+# else:
+# return x/(1 + tau/2)
+# else:
+# if self.b is not None:
+# x.subtract(tau*self.b, out=out)
+# out.divide(1+tau/2, out=out)
+# else:
+# x.divide(1 + tau/2, out=out)
if __name__ == '__main__':
@@ -156,7 +182,7 @@ if __name__ == '__main__':
import numpy
# TESTS for L2 and scalar * L2
- M, N, K = 20,30,50
+ M, N, K = 2,3,1
ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
u = ig.allocate('random_int')
b = ig.allocate('random_int')
@@ -169,12 +195,14 @@ if __name__ == '__main__':
numpy.testing.assert_equal(f(u), u.squared_norm())
# check grad/call with data
+
+ igggg = ImageGeometry(4,4)
f1 = L2NormSquared(b=b)
b1 = f1.gradient(u)
b2 = 2 * (u-b)
numpy.testing.assert_array_almost_equal(b1.as_array(), b2.as_array(), decimal=4)
- numpy.testing.assert_equal(f1(u), (u-b).squared_norm())
+ numpy.testing.assert_equal(f1(u), ((u-b)).squared_norm())
#check convex conjuagate no data
c1 = f.convex_conjugate(u)
@@ -288,4 +316,4 @@ if __name__ == '__main__':
numpy.testing.assert_array_almost_equal(res1.as_array(), \
res2.as_array(), decimal=4)
- \ No newline at end of file
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/ccpi/optimisation/functions/LeastSquares.py
index 01c4f38..a0baedc 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/LeastSquares.py
@@ -20,30 +20,34 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import LinearOperator
from ccpi.optimisation.functions import Function
import warnings
# Define a class for squared 2-norm
-class Norm2Sq(Function):
- r'''.. math:: f(x) = c*||A*x-b||_2^2
+class LeastSquares(Function):
+ r"""Least Squares function
- which has
+ .. math:: F(x) = c\|Ax-b\|_2^2
- .. math:: grad[f](x) = 2*c*A^T*(A*x-b)
-
- and Lipschitz constant
-
- .. math:: L = 2*c*||A||_2^2 = 2*s1(A)^2
+ Parameters:
+
+ A : Operator
+
+ c : Scaling Constant
+
+ b : Data
+
+ L : Lipshitz Constant of the gradient of :math:`F` which is :math:`2c||A||_2^2 = 2s1(A)^2`,
where s1(A) is the largest singular value of A.
+
- '''
+ """
def __init__(self, A, b, c=1.0):
- super(Norm2Sq, self).__init__()
+ super(LeastSquares, self).__init__()
self.A = A # Should be an operator, default identity
self.b = b # Default zero DataSet?
@@ -66,21 +70,16 @@ class Norm2Sq(Function):
warnings.warn('{} could not calculate Lipschitz Constant. {}'.format(
self.__class__.__name__, noe))
- #def grad(self,x):
- # return self.gradient(x, out=None)
-
def __call__(self, x):
- #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
- #if out is None:
- # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
- #else:
+
+ r""" Returns the value of :math:`F(x) = c\|Ax-b\|_2^2`
+ """
+
y = self.A.direct(x)
y.subtract(self.b, out=y)
- #y.__imul__(y)
- #return y.sum() * self.c
try:
- if self.c == 1:
- return y.squared_norm()
+# if self.c == 1:
+# return y.squared_norm()
return y.squared_norm() * self.c
except AttributeError as ae:
# added for compatibility with SIRF
@@ -91,6 +90,13 @@ class Norm2Sq(Function):
return (yn * yn) * self.c
def gradient(self, x, out=None):
+
+ r""" Returns the value of the gradient of :math:`F(x) = c*\|A*x-b\|_2^2`
+
+ .. math:: F'(x) = 2cA^T(Ax-b)
+
+ """
+
if out is not None:
#return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
self.A.direct(x, out=self.range_tmp)
@@ -100,3 +106,8 @@ class Norm2Sq(Function):
out.multiply (self.c * 2.0, out=out)
else:
return (2.0*self.c)*self.A.adjoint(self.A.direct(x) - self.b)
+
+
+
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py
index 1af0e77..77b483e 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py
@@ -19,109 +19,170 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-from ccpi.optimisation.functions import Function, ScaledFunction
+
+from ccpi.optimisation.functions import Function
from ccpi.framework import BlockDataContainer
import numpy as np
-import functools
class MixedL21Norm(Function):
- '''
- .. math::
-
- f(x) = ||x||_{2,1} = \sum |x|_{2}
- '''
+ """ MixedL21Norm function: :math:`F(x) = ||x||_{2,1} = \sum |x|_{2} = \sum \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}`
+
+ where x is a BlockDataContainer, i.e., :math:`x=(x^{1}, x^{2}, \dots)`
+
+ """
def __init__(self, **kwargs):
- '''creator
+ '''Creator
+
+ :param b: translation of the function
+ :type b: :code:`DataContainer`, optional
'''
- super(MixedL21Norm, self).__init__()
+ super(MixedL21Norm, self).__init__()
+ self.b = kwargs.get('b', None)
+
+ # This is to handle tensor for Total Generalised Variation
self.SymTensor = kwargs.get('SymTensor',False)
- def __call__(self, x):
+ # We use this parameter to make MixedL21Norm differentiable
+# self.epsilon = epsilon
- ''' Evaluates L2,1Norm at point x
+ if self.b is not None and not isinstance(self.b, BlockDataContainer):
+ raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(self.b)))
- :param x: is a BlockDataContainer
-
- '''
+
+ def __call__(self, x):
+
+ r"""Returns the value of the MixedL21Norm function at x.
+
+ :param x: :code:`BlockDataContainer`
+ """
if not isinstance(x, BlockDataContainer):
raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x)))
-
- tmp = x.get_item(0) * 0.
- for el in x.containers:
- tmp += el.power(2.)
- return tmp.sqrt().sum()
+
+# tmp_cont = x.containers
+# tmp = x.get_item(0) * 0.
+# for el in tmp_cont:
+# tmp += el.power(2.)
+# tmp.add(self.epsilon**2, out = tmp)
+# return tmp.sqrt().sum()
+
+ y = x
+ if self.b is not None:
+ y = x - self.b
+ return y.pnorm(p=2).sum()
+
+# tmp = x.get_item(0) * 0.
+# for el in x.containers:
+# tmp += el.power(2.)
+# #tmp.add(self.epsilon, out = tmp)
+# return tmp.sqrt().sum()
- def gradient(self, x, out=None):
- return ValueError('Not Differentiable')
-
def convex_conjugate(self,x):
- ''' This is the Indicator function of :math:`||\cdot||_{2, \infty}` which is either 0 if :math:`||x||_{2, \infty}` or :math:`\infty`
-
- Notice this returns 0
- '''
+ r"""Returns the value of the convex conjugate of the MixedL21Norm function at x.
- return 0.0
+ This is the Indicator function of :math:`\mathbb{I}_{\{\|\cdot\|_{2,\infty}\leq1\}}(x^{*})`,
-
+ i.e.,
+
+ .. math:: \mathbb{I}_{\{\|\cdot\|_{2, \infty}\leq1\}}(x^{*})
+ = \begin{cases}
+ 0, \mbox{if } \|x\|_{2, \infty}\leq1\\
+ \infty, \mbox{otherwise}
+ \end{cases}
+
+ where,
+
+ .. math:: \|x\|_{2,\infty} = \max\{ \|x\|_{2} \} = \max\{ \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}\}
+
+ """
+ if not isinstance(x, BlockDataContainer):
+ raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x)))
+
+# tmp1 = x.get_item(0) * 0.
+# for el in x.containers:
+# tmp1 += el.power(2.)
+# tmp1.add(self.epsilon**2, out = tmp1)
+# tmp = tmp1.sqrt().as_array().max() - 1
+#
+# if tmp<=1e-6:
+# return 0
+# else:
+# return np.inf
+
+ tmp = (x.pnorm(2).as_array().max() - 1)
+ if tmp<=1e-5:
+ return 0
+ else:
+ return np.inf
+
def proximal(self, x, tau, out=None):
+ r"""Returns the value of the proximal operator of the MixedL21Norm function at x.
+
+ .. math :: \mathrm{prox}_{\tau F}(x) = \frac{x}{\|x\|_{2}}\max\{ \|x\|_{2} - \tau, 0 \}
+
+ where the convention 0 · (0/0) = 0 is used.
+
+ """
+
if out is None:
- tmp = sum([ el*el for el in x.containers]).sqrt()
+ tmp = x.pnorm(2)
res = (tmp - tau).maximum(0.0) * x/tmp
- return res
+
+ for el in res.containers:
+ el.as_array()[np.isnan(el.as_array())]=0
+
+ return res
else:
-
- tmp = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ).sqrt()
+
+ tmp = x.pnorm(2)
res = (tmp - tau).maximum(0.0) * x/tmp
for el in res.containers:
el.as_array()[np.isnan(el.as_array())]=0
- out.fill(res)
-
-
- def proximal_conjugate(self, x, tau, out=None):
-
-
- if out is None:
- tmp = x.get_item(0) * 0
- for el in x.containers:
- tmp += el.power(2.)
- tmp.sqrt(out=tmp)
- tmp.maximum(1.0, out=tmp)
- frac = [ el.divide(tmp) for el in x.containers ]
- return BlockDataContainer(*frac)
+ out.fill(res)
+
+
+# tmp = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ).sqrt()
+# res = (tmp - tau).maximum(0.0) * x/tmp
+#
+# for el in res.containers:
+# el.as_array()[np.isnan(el.as_array())]=0
+#
+# out.fill(res)
-
- else:
-
- res1 = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 )
- res1.sqrt(out=res1)
- res1.maximum(1.0, out=res1)
- x.divide(res1, out=out)
+##############################################################################
+ ##############################################################################
+# def proximal_conjugate(self, x, tau, out=None):
+#
+#
+# if out is None:
+# tmp = x.get_item(0) * 0
+# for el in x.containers:
+# tmp += el.power(2.)
+# tmp.sqrt(out=tmp)
+# tmp.maximum(1.0, out=tmp)
+# frac = [ el.divide(tmp) for el in x.containers ]
+# return BlockDataContainer(*frac)
+#
+#
+# else:
+#
+# res1 = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 )
+# res1.sqrt(out=res1)
+# res1.maximum(1.0, out=res1)
+# x.divide(res1, out=out)
- def __rmul__(self, scalar):
-
- ''' Multiplication of MixedL21Norm with a scalar
-
- Returns: ScaledFunction
-
- '''
- return ScaledFunction(self, scalar)
-
-
-#
if __name__ == '__main__':
M, N, K = 2,3,50
@@ -189,8 +250,24 @@ if __name__ == '__main__':
d1.get_item(0).as_array(), decimal=4)
numpy.testing.assert_array_almost_equal(out1.get_item(1).as_array(), \
- d1.get_item(1).as_array(), decimal=4)
-#
+ d1.get_item(1).as_array(), decimal=4)
+
+ f_scaled.proximal_conjugate(U, tau, out = out1)
+ x = U
+ tmp = x.get_item(0) * 0
+ for el in x.containers:
+ tmp += el.power(2.)
+ tmp.sqrt(out=tmp)
+ (tmp/f_scaled.scalar).maximum(1.0, out=tmp)
+ frac = [ el.divide(tmp) for el in x.containers ]
+ out2 = BlockDataContainer(*frac)
+
+ numpy.testing.assert_array_almost_equal(out1.get_item(0).as_array(), \
+ out2.get_item(0).as_array(), decimal=4)
+
+
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py
deleted file mode 100755
index 2bf3b25..0000000
--- a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py
+++ /dev/null
@@ -1,157 +0,0 @@
-# -*- coding: utf-8 -*-
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-from __future__ import unicode_literals
-
-from numbers import Number
-import numpy
-import warnings
-
-class ScaledFunction(object):
-
- '''ScaledFunction
-
- A class to represent the scalar multiplication of an Function with a scalar.
- It holds a function and a scalar. Basically it returns the multiplication
- of the product of the function __call__, convex_conjugate and gradient with the scalar.
- For the rest it behaves like the function it holds.
-
- Args:
- function (Function): a Function or BlockOperator
- scalar (Number): a scalar multiplier
- Example:
- The scaled operator behaves like the following:
-
- '''
- def __init__(self, function, scalar):
- super(ScaledFunction, self).__init__()
-
- if not isinstance (scalar, Number):
- raise TypeError('expected scalar: got {}'.format(type(scalar)))
- self.scalar = scalar
- self.function = function
-
- if self.function.L is not None:
- self.L = abs(self.scalar) * self.function.L
-
- def __call__(self,x, out=None):
- '''Evaluates the function at x '''
- return self.scalar * self.function(x)
-
- def convex_conjugate(self, x):
- '''returns the convex_conjugate of the scaled function '''
- return self.scalar * self.function.convex_conjugate(x/self.scalar)
-
- def gradient(self, x, out=None):
- '''Returns the gradient of the function at x, if the function is differentiable'''
- if out is None:
- return self.scalar * self.function.gradient(x)
- else:
- self.function.gradient(x, out=out)
- out *= self.scalar
-
- def proximal(self, x, tau, out=None):
- '''This returns the proximal operator for the function at x, tau
- '''
- if out is None:
- return self.function.proximal(x, tau*self.scalar)
- else:
- self.function.proximal(x, tau*self.scalar, out = out)
-
- def proximal_conjugate(self, x, tau, out = None):
- '''This returns the proximal operator for the function at x, tau
- '''
- if out is None:
- return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar)
- else:
- self.function.proximal_conjugate(x/self.scalar, tau/self.scalar, out=out)
- out *= self.scalar
-
- def grad(self, x):
- '''Alias of gradient(x,None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use gradient instead''', DeprecationWarning)
- return self.gradient(x, out=None)
-
- def prox(self, x, tau):
- '''Alias of proximal(x, tau, None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use proximal instead''', DeprecationWarning)
- return self.proximal(x, tau, out=None)
-
-
-
-if __name__ == '__main__':
-
- from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm
- from ccpi.framework import ImageGeometry, BlockGeometry
-
- M, N, K = 2,3,5
- ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
-
- u = ig.allocate('random_int')
- b = ig.allocate('random_int')
-
- BG = BlockGeometry(ig, ig)
- U = BG.allocate('random_int')
-
- f2 = 0.5 * L2NormSquared(b=b)
- f1 = 30 * MixedL21Norm()
- tau = 0.355
-
- res_no_out1 = f1.proximal_conjugate(U, tau)
- res_no_out2 = f2.proximal_conjugate(u, tau)
-
-
-# print( " ######## with out ######## ")
- res_out1 = BG.allocate()
- res_out2 = ig.allocate()
-
- f1.proximal_conjugate(U, tau, out = res_out1)
- f2.proximal_conjugate(u, tau, out = res_out2)
-
-
- numpy.testing.assert_array_almost_equal(res_no_out1[0].as_array(), \
- res_out1[0].as_array(), decimal=4)
-
- numpy.testing.assert_array_almost_equal(res_no_out2.as_array(), \
- res_out2.as_array(), decimal=4)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py
deleted file mode 100644
index 19db668..0000000
--- a/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py
+++ /dev/null
@@ -1,87 +0,0 @@
-# -*- coding: utf-8 -*-
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-from __future__ import unicode_literals
-
-from ccpi.optimisation.functions import Function
-
-class ZeroFunction(Function):
-
- r'''ZeroFunction: .. math:: f(x) = 0,
-
- Maps evely element x\in X to zero
- '''
-
- def __init__(self):
- super(ZeroFunction, self).__init__()
-
- def __call__(self,x):
-
- '''Evaluates ZeroFunction at x'''
- return 0
-
-
- def gradient(self, x, out=None):
-
- '''Evaluates gradient of ZeroFunction at x'''
-
- if out is None:
- return 0
- else:
- out *= 0
-
- def convex_conjugate(self, x):
-
- r''' Convex conjugate of ZeroFunction: support function .. math:: sup <x, x^{*}>
-
- In fact is the indicator function for the set = {0}
- So 0 if x=0, or inf if x neq 0
-
- '''
- return x.maximum(0).sum()
-
-
- def proximal(self, x, tau, out=None):
-
- r'''Proximal operator of ZeroFunction at x
-
- .. math:: prox_{\tau * f}(x)
- '''
-
- if out is None:
- return x.copy()
- else:
- out.fill(x)
-
- def proximal_conjugate(self, x, tau, out = None):
-
- r'''Proximal operator of the convex conjugate of ZeroFunction at x:
-
- .. math:: prox_{\tau * f^{*}}(x)
-
- '''
-
- if out is None:
- return 0
- else:
- return 0
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
index d968539..f75f82a 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/__init__.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
@@ -15,15 +15,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-from .Function import Function
-from .ZeroFunction import ZeroFunction
+
+from __future__ import absolute_import
+
+from .Function import Function, ConstantFunction, ZeroFunction, TranslateFunction, SumFunctionScalar
+from .Function import ScaledFunction
from .L1Norm import L1Norm
from .L2NormSquared import L2NormSquared
-from .ScaledFunction import ScaledFunction
+from .LeastSquares import LeastSquares
from .BlockFunction import BlockFunction
from .FunctionOperatorComposition import FunctionOperatorComposition
from .MixedL21Norm import MixedL21Norm
from .IndicatorBox import IndicatorBox
from .KullbackLeibler import KullbackLeibler
-from .Norm2Sq import Norm2Sq
from .Rosenbrock import Rosenbrock
diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
index 23cb799..a2a9b9e 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
@@ -20,7 +20,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
import functools
diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py
index eeecee9..9218ad4 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py
@@ -21,7 +21,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from numbers import Number
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
index 3c563fb..1df7745 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import LinearOperator
import numpy as np
diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
index 2ff0b20..6391cf7 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
@@ -18,7 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator
from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff
diff --git a/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py
index e95234b..a4c6ae3 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py
@@ -19,7 +19,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import LinearOperator
import scipy.sparse as sp
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
index fb09819..5ff5b01 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
@@ -19,7 +19,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import Operator
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py
index a84ea94..6f13532 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py
@@ -19,7 +19,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
from scipy.sparse.linalg import svds
@@ -27,7 +26,11 @@ from ccpi.framework import VectorGeometry
from ccpi.optimisation.operators import LinearOperator
class LinearOperatorMatrix(LinearOperator):
- '''Matrix wrapped into a LinearOperator'''
+ """ Matrix wrapped into a LinearOperator
+
+ :param: a numpy matrix
+
+ """
def __init__(self,A):
'''creator
@@ -41,17 +44,25 @@ class LinearOperatorMatrix(LinearOperator):
self.s1 = None # Largest singular value, initially unknown
super(LinearOperatorMatrix, self).__init__()
- def direct(self,x, out=None):
+ def direct(self,x, out=None):
+
if out is None:
- return type(x)(numpy.dot(self.A,x.as_array()))
+ tmp = self.gm_range.allocate()
+ tmp.fill(numpy.dot(self.A,x.as_array()))
+ return tmp
else:
- numpy.dot(self.A, x.as_array(), out=out.as_array())
+ # Below use of out is not working, see
+ # https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
+ # numpy.dot(self.A, x.as_array(), out = out.as_array())
+ out.fill(numpy.dot(self.A, x.as_array()))
def adjoint(self,x, out=None):
if out is None:
- return type(x)(numpy.dot(self.A.transpose(),x.as_array()))
- else:
- numpy.dot(self.A.transpose(),x.as_array(), out=out.as_array())
+ tmp = self.gm_domain.allocate()
+ tmp.fill(numpy.dot(self.A.transpose(),x.as_array()))
+ return tmp
+ else:
+ out.fill(numpy.dot(self.A.transpose(),x.as_array()))
def size(self):
return self.A.shape
diff --git a/Wrappers/Python/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/ccpi/optimisation/operators/Operator.py
index 87059e6..3cd0899 100755..100644
--- a/Wrappers/Python/ccpi/optimisation/operators/Operator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/Operator.py
@@ -18,8 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
from ccpi.optimisation.operators.ScaledOperator import ScaledOperator
diff --git a/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py
index d1ad07c..7f1e202 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py
@@ -15,6 +15,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from numbers import Number
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py
index 9239d90..b0a3b51 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py
@@ -18,8 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
from ccpi.framework import DataContainer
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
index 698a993..747db65 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
@@ -18,8 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
import scipy.sparse as sp
import numpy as np
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
index d82c5c0..6fd2e86 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -18,8 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
from ccpi.optimisation.operators import LinearOperator
from ccpi.framework import BlockGeometry, BlockDataContainer
diff --git a/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py
index f677dc2..0feafd8 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py
@@ -18,8 +18,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
import numpy as np
from ccpi.framework import ImageData
diff --git a/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py b/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py
index f9ed19d..9f67c12 100755..100644
--- a/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py
+++ b/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py
@@ -15,6 +15,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\
AcquisitionGeometry, ImageGeometry, ImageData
diff --git a/Wrappers/Python/ccpi/processors/Normalizer.py b/Wrappers/Python/ccpi/processors/Normalizer.py
index 905a06b..2872348 100755..100644
--- a/Wrappers/Python/ccpi/processors/Normalizer.py
+++ b/Wrappers/Python/ccpi/processors/Normalizer.py
@@ -15,6 +15,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\
AcquisitionGeometry, ImageGeometry, ImageData
diff --git a/Wrappers/Python/ccpi/processors/Resizer.py b/Wrappers/Python/ccpi/processors/Resizer.py
index 72ea392..afa2a42 100755..100644
--- a/Wrappers/Python/ccpi/processors/Resizer.py
+++ b/Wrappers/Python/ccpi/processors/Resizer.py
@@ -15,6 +15,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.framework import DataProcessor, AcquisitionData, ImageData
import warnings
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index ed2cd25..8438311 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -30,10 +30,10 @@ setup(
name="ccpi-framework",
version=cil_version,
packages=['ccpi' , 'ccpi.io',
- 'ccpi.framework', 'ccpi.optimisation',
- 'ccpi.optimisation.operators',
- 'ccpi.optimisation.algorithms',
+ 'ccpi.framework', 'ccpi.optimisation',
'ccpi.optimisation.functions',
+ 'ccpi.optimisation.algorithms',
+ 'ccpi.optimisation.operators',
'ccpi.processors',
'ccpi.utilities', 'ccpi.utilities.jupyter',
'ccpi.contrib','ccpi.contrib.optimisation',
diff --git a/Wrappers/Python/test/test_Operator.py b/Wrappers/Python/test/test_Operator.py
index 96c48da..5c659a4 100644
--- a/Wrappers/Python/test/test_Operator.py
+++ b/Wrappers/Python/test/test_Operator.py
@@ -16,14 +16,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
-from ccpi.framework import ImageGeometry, ImageData, BlockDataContainer, DataContainer
+from ccpi.framework import ImageGeometry, VectorGeometry, ImageData, BlockDataContainer, DataContainer
from ccpi.optimisation.operators import BlockOperator, BlockScaledOperator,\
FiniteDiff, SymmetrizedGradient
import numpy
from timeit import default_timer as timer
-from ccpi.framework import ImageGeometry
from ccpi.optimisation.operators import Gradient, Identity, SparseFiniteDiff
-from ccpi.optimisation.operators import LinearOperator
+from ccpi.optimisation.operators import LinearOperator, LinearOperatorMatrix
def dt(steps):
@@ -66,6 +65,39 @@ class CCPiTestClass(unittest.TestCase):
class TestOperator(CCPiTestClass):
+
+ def test_LinearOperatorMatrix(self):
+
+ print('Check LinearOperatorMatrix')
+
+ m = 30
+ n = 20
+
+ vg = VectorGeometry(n)
+
+ Amat = numpy.random.randn(m, n)
+ A = LinearOperatorMatrix(Amat)
+
+ b = vg.allocate('random')
+
+ out1 = A.range_geometry().allocate()
+ out2 = A.domain_geometry().allocate()
+
+ res1 = A.direct(b)
+ res2 = numpy.dot(A.A, b.as_array())
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), res2)
+
+ A.direct(b, out = out1)
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), out1.as_array(), decimal=4)
+
+ res3 = A.adjoint(res1)
+ res4 = numpy.dot(A.A.transpose(),res1.as_array())
+ self.assertNumpyArrayAlmostEqual(res3.as_array(), res4, decimal=4)
+
+ A.adjoint(res1, out = out2)
+ self.assertNumpyArrayAlmostEqual(res3.as_array(), out2.as_array(), decimal=4)
+
+
def test_ScaledOperator(self):
print ("test_ScaledOperator")
ig = ImageGeometry(10,20,30)
diff --git a/Wrappers/Python/test/test_SumFunction.py b/Wrappers/Python/test/test_SumFunction.py
new file mode 100644
index 0000000..465c084
--- /dev/null
+++ b/Wrappers/Python/test/test_SumFunction.py
@@ -0,0 +1,341 @@
+# -*- coding: utf-8 -*-
+# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).
+
+# Copyright 2017 UKRI-STFC
+# Copyright 2017 University of Manchester
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.optimisation.functions import L1Norm, ScaledFunction, \
+ LeastSquares, L2NormSquared, \
+ KullbackLeibler, ZeroFunction, ConstantFunction
+from ccpi.optimisation.operators import Identity
+from ccpi.framework import ImageGeometry
+
+import unittest
+import numpy
+from numbers import Number
+
+''' Here we test SumFunction class for different function
+
+L2Norm, L1Norm, KullbackLeibler, ZeroFunction, ConstantFunction, Scalar
+
+for call method
+for gradient method
+
+
+
+'''
+
+
+
+class TestFunction(unittest.TestCase):
+
+ def assertBlockDataContainerEqual(self, container1, container2):
+ print ("assert Block Data Container Equal")
+ self.assertTrue(issubclass(container1.__class__, container2.__class__))
+ for col in range(container1.shape[0]):
+ if issubclass(container1.get_item(col).__class__, DataContainer):
+ print ("Checking col ", col)
+ self.assertNumpyArrayEqual(
+ container1.get_item(col).as_array(),
+ container2.get_item(col).as_array()
+ )
+ else:
+ self.assertBlockDataContainerEqual(container1.get_item(col),container2.get_item(col))
+
+ def assertNumpyArrayEqual(self, first, second):
+ res = True
+ try:
+ numpy.testing.assert_array_equal(first, second)
+ except AssertionError as err:
+ res = False
+ print(err)
+ self.assertTrue(res)
+
+ def assertNumpyArrayAlmostEqual(self, first, second, decimal=6):
+ res = True
+ try:
+ numpy.testing.assert_array_almost_equal(first, second, decimal)
+ except AssertionError as err:
+ res = False
+ print(err)
+ print("expected " , second)
+ print("actual " , first)
+
+ self.assertTrue(res)
+
+ def test_SumFunction(self):
+
+ M, N, K = 3,4,5
+ ig = ImageGeometry(M, N, K)
+
+ tmp = ig.allocate('random_int')
+ b = ig.allocate('random_int')
+
+ operator = Identity(ig)
+
+ scalar = 0.25
+ f1 = L2NormSquared()
+ f2 = L1Norm()
+ f3 = scalar * L2NormSquared()
+ f4 = scalar * L1Norm()
+ f5 = scalar * L2NormSquared(b=b)
+ f6 = scalar * L1Norm(b=b)
+ f7 = ZeroFunction()
+ f8 = 5 * ConstantFunction(10)
+ f9 = LeastSquares(operator, b, c=scalar)
+ f10 = 0.5*KullbackLeibler(b=b)
+ f11 = KullbackLeibler(b=b)
+ f12 = 10
+
+# f10 = 0.5 * MixedL21Norm()
+# f11 = IndicatorBox(lower=0)
+
+ list1 = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]
+
+ print('################### Check sum of two functions ################## \n')
+
+ for func in list1:
+
+
+ # check sum of two functions
+
+ if isinstance(func, ScaledFunction):
+ type_fun = ' scalar * ' + type(func.function).__name__
+ else:
+ type_fun = type(func).__name__
+
+ if isinstance(func, Number):
+ tmp_fun_eval = func
+ else:
+ tmp_fun_eval = func(tmp)
+
+ sumf = f1 + func
+ self.assertNumpyArrayAlmostEqual(sumf(tmp), f1(tmp) + tmp_fun_eval )
+ print('{} = ( {} + {} ) is OK'.format(type(sumf).__name__, type(f1).__name__, type_fun))
+
+ sumf1 = func + f1
+ self.assertNumpyArrayAlmostEqual(sumf1(tmp), tmp_fun_eval + f1(tmp))
+ print('Checking commutative')
+ print('{} + ( {} + {} ) is OK\n'.format(type(sumf1).__name__, type_fun, type(f1).__name__))
+
+ print('################### Check Lispchitz constant ################## \n')
+
+ for func in list1:
+
+ if isinstance(func, ScaledFunction):
+ type_fun = ' scalar * ' + type(func.function).__name__
+ else:
+ type_fun = type(func).__name__
+
+
+ # check Lispchitz sum of two functions
+
+ if isinstance(func, Number):
+ tmp_fun_L = 0
+ else:
+ tmp_fun_L = func.L
+
+ sumf = f1 + func
+
+ try:
+ sumf.L==f1.L + tmp_fun_L
+ except TypeError:
+ print('Function {} has L = None'.format(type_fun))
+
+ print('\n################### Check Gradient ################## \n')
+
+
+ for func in list1:
+
+ if isinstance(func, ScaledFunction):
+ type_fun = ' scalar * ' + type(func.function).__name__
+ else:
+ type_fun = type(func).__name__
+
+ sumf = f1 + func
+ # check gradient
+ try:
+ if isinstance(func, Number):
+ tmp_fun_gradient = 0
+ else:
+ tmp_fun_gradient = func.gradient(tmp)
+
+ self.assertNumpyArrayAlmostEqual(sumf.gradient(tmp).as_array(), (f1.gradient(tmp) + tmp_fun_gradient).as_array())
+ except NotImplementedError:
+ print("{} is not differentiable".format(type_fun))
+
+ print('\n################### Check Gradient Out ################## \n')
+
+ out_left = ig.allocate()
+ out_right1 = ig.allocate()
+ out_right2 = ig.allocate()
+
+ for i, func in enumerate(list1):
+
+ if isinstance(func, ScaledFunction):
+ type_fun = ' scalar * ' + type(func.function).__name__
+ else:
+ type_fun = type(func).__name__
+
+ sumf = f1 + func
+
+
+ # check gradient out
+ try:
+
+
+ if isinstance(func, Number):
+ tmp_fun_gradient_out = 0
+ else:
+ func.gradient(tmp, out = out_right2)
+ tmp_fun_gradient_out = out_right2.as_array()
+
+ #print('Check {} + {}\n'.format(type(f1).__name__, type_fun))
+ sumf.gradient(tmp, out = out_left)
+ f1.gradient(tmp, out = out_right1)
+ self.assertNumpyArrayAlmostEqual(out_left.as_array(), out_right1.as_array() + tmp_fun_gradient_out)
+ except NotImplementedError:
+ print("{} is not differentiable".format(type_fun))
+ def test_ConstantFunction(self):
+
+ k = ConstantFunction(constant=1)
+ ig = ImageGeometry(1,2,3)
+ x = ig.allocate(2)
+
+ grad = k.gradient(x)
+ out = ig.allocate(-1)
+
+ k.gradient(x, out=out)
+ #out.fill(-3)
+
+ self.assertNumpyArrayEqual(numpy.zeros(x.shape), grad.as_array())
+
+ self.assertNumpyArrayEqual(out.as_array(), grad.as_array())
+
+ def test_SumFunctionScalar(self):
+
+ M, N, K = 3,4,5
+ ig = ImageGeometry(M, N, K)
+
+ tmp = ig.allocate('random_int')
+ b = ig.allocate('random_int')
+
+ scalar = 0.25
+ f1 = scalar * L2NormSquared(b=b)
+ f2 = 5
+
+ f = f1 + f2
+ print(f)
+
+ g = f2 + f1
+ print(g)
+
+ tau = 0.03
+
+ # check call method
+ res1 = f(tmp)
+ res2 = f1(tmp) + f2
+ self.assertAlmostEqual(res1, res2)
+
+ # check gradient
+ res1 = f.gradient(tmp)
+ res2 = f1.gradient(tmp)
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array())
+
+ # check gradient with out
+ out1 = tmp*0
+ out2 = tmp*0
+ f.gradient(tmp, out=out1)
+ f1.gradient(tmp, out=out2)
+ self.assertNumpyArrayAlmostEqual(out1.as_array(), out2.as_array())
+
+
+ res1 = f.proximal(tmp, tau)
+ res2 = f1.proximal(tmp, tau)
+
+ # proximal of sum of function with scalar = proximal of function
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array())
+
+ # proximal with out of sum of function with scalar = proximal of function
+ res1_out = ig.allocate()
+ res2_out = ig.allocate()
+ f.proximal(tmp, tau, out = res1_out)
+ f1.proximal(tmp, tau, out = res2_out)
+ self.assertNumpyArrayAlmostEqual(res1_out.as_array(), res2_out.as_array())
+
+ res1 = f.proximal_conjugate(tmp, tau)
+ res2 = f1.proximal_conjugate(tmp, tau)
+
+ # proximal of sum of function with scalar = proximal of function
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array())
+
+ # proximal with out of sum of function with scalar = proximal of function
+ res1_out = ig.allocate()
+ res2_out = ig.allocate()
+ f.proximal_conjugate(tmp, tau, out = res1_out)
+ f1.proximal_conjugate(tmp, tau, out = res2_out)
+ self.assertNumpyArrayAlmostEqual(res1_out.as_array(), res2_out.as_array())
+
+
+def test_ConstantFunction(self):
+
+ M, N, K = 3,4,5
+ ig = ImageGeometry(M, N, K)
+
+ tmp = ig.allocate('random_int')
+
+ constant = 10
+ f = ConstantFunction(constant)
+
+ # check call
+ res1 = f(tmp)
+ self.assertAlmostEqual(res1, constant)
+
+ # check gradient with and without out
+ res1 = f.gradient(tmp)
+ out = ig.allocate()
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), out)
+
+ out1 = ig.allocate()
+ f.gradient(tmp, out=out1)
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), out1)
+
+ # check convex conjugate
+ res1 = f.convex_conjugate(tmp)
+ res2 = tmp.maximum(0).sum()
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array())
+
+ # check proximal
+ tau = 0.4
+ res1 = f.proximal(tmp, tau)
+ self.assertNumpyArrayAlmostEqual(res1.as_array(), tmp.as_array())
+
+
+
+ # check call
+
+
+
+
+
+
+#if __name__ == '__main__':
+#
+# t = TestFunction()
+# t.test_SumFunction()
+# t.test_SumFunctionScalar()
+
+
+
diff --git a/Wrappers/Python/test/test_TranslateFunction.py b/Wrappers/Python/test/test_TranslateFunction.py
new file mode 100644
index 0000000..f739d68
--- /dev/null
+++ b/Wrappers/Python/test/test_TranslateFunction.py
@@ -0,0 +1,272 @@
+# -*- coding: utf-8 -*-
+# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).
+
+# Copyright 2017 UKRI-STFC
+# Copyright 2017 University of Manchester
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.optimisation.functions import Function, L1Norm, ScaledFunction, \
+ LeastSquares, L2NormSquared, \
+ KullbackLeibler, ZeroFunction, ConstantFunction, TranslateFunction
+from ccpi.optimisation.operators import Identity
+from ccpi.framework import ImageGeometry, BlockGeometry
+
+import unittest
+import numpy
+from numbers import Number
+
+
+''' Here we test SumFunction class for different function
+
+L2Norm, L1Norm, KullbackLeibler, ZeroFunction, ConstantFunction, Scalar
+
+for call method
+for gradient method
+
+
+
+'''
+
+
+
+class TestFunction(unittest.TestCase):
+
+ def assertBlockDataContainerEqual(self, container1, container2):
+ print ("assert Block Data Container Equal")
+ self.assertTrue(issubclass(container1.__class__, container2.__class__))
+ for col in range(container1.shape[0]):
+ if issubclass(container1.get_item(col).__class__, DataContainer):
+ print ("Checking col ", col)
+ self.assertNumpyArrayEqual(
+ container1.get_item(col).as_array(),
+ container2.get_item(col).as_array()
+ )
+ else:
+ self.assertBlockDataContainerEqual(container1.get_item(col),container2.get_item(col))
+
+ def assertNumpyArrayEqual(self, first, second):
+ res = True
+ try:
+ numpy.testing.assert_array_equal(first, second)
+ except AssertionError as err:
+ res = False
+ print(err)
+ self.assertTrue(res)
+
+ def assertNumpyArrayAlmostEqual(self, first, second, decimal=6):
+ res = True
+ try:
+ numpy.testing.assert_array_almost_equal(first, second, decimal)
+ except AssertionError as err:
+ res = False
+ print(err)
+ print("expected " , second)
+ print("actual " , first)
+
+ self.assertTrue(res)
+
+ def test_TranslateFunction(self):
+
+ # Test TranslationFunction
+
+ ig = ImageGeometry(4,4)
+ tmp = ig.allocate('random_int')
+ b = ig.allocate('random_int')
+ scalar = 0.4
+ tau = 0.05
+
+ list1 = [ L2NormSquared(), scalar * L2NormSquared(), scalar * L2NormSquared(b=b),
+ L1Norm(), scalar * L1Norm(), scalar * L1Norm(b=b)]
+
+ list1_shift = [ L2NormSquared().centered_at(ig.allocate()), scalar * L2NormSquared().centered_at(ig.allocate()), scalar * L2NormSquared().centered_at(b),
+ L1Norm().centered_at(ig.allocate()), scalar * L1Norm().centered_at(ig.allocate()), scalar * L1Norm().centered_at(b)]
+
+ out_gradient1 = ig.allocate()
+ out_gradient2 = ig.allocate()
+
+ out_proximal1 = ig.allocate()
+ out_proximal2 = ig.allocate()
+
+ out_proximal_conj1 = ig.allocate()
+ out_proximal_conj2 = ig.allocate()
+
+ for func, func_shift in zip(list1, list1_shift):
+
+ # check call
+ res1 = func(tmp)
+ res2 = func_shift(tmp)
+ self.assertNumpyArrayAlmostEqual(res1, res2)
+
+ try:
+ # check gradient
+ res1_gradient = func.gradient(tmp)
+ res2_gradient = func_shift.gradient(tmp)
+ self.assertNumpyArrayAlmostEqual(res1_gradient.as_array(), res2_gradient.as_array())
+
+ # check gradient out
+ func.gradient(tmp, out = out_gradient1)
+ func_shift.gradient(tmp, out = out_gradient2)
+ self.assertNumpyArrayAlmostEqual(out_gradient1.as_array(), out_gradient2.as_array())
+
+ except NotImplementedError:
+ print('Function is not differentiable')
+
+ # check proximal
+ func.proximal(tmp, tau, out = out_proximal1)
+ func_shift.proximal(tmp, tau, out = out_proximal2)
+ self.assertNumpyArrayAlmostEqual(out_proximal1.as_array(), out_proximal2.as_array())
+
+ # check proximal conjugate
+ func.proximal_conjugate(tmp, tau, out = out_proximal_conj1)
+ func_shift.proximal_conjugate(tmp, tau, out = out_proximal_conj2)
+ self.assertNumpyArrayAlmostEqual(out_proximal_conj1.as_array(), out_proximal_conj1.as_array())
+
+
+if __name__ == '__main__':
+#
+ t = TestFunction()
+ t.test_TranslateFunction()
+
+
+# ig = ImageGeometry(4,4)
+# tmp = ig.allocate('random_int')
+# b = ig.allocate('random_int')
+# scalar = 0.4
+#
+## f = scalar * L2NormSquared().centered_at(b)
+## print(f.function.function)
+# list1 = [ L2NormSquared(), scalar * L2NormSquared(), scalar * L2NormSquared(b=b)]
+#
+## for func in list_functions:
+##
+### if isinstance(func, ScaledFunction):
+### func_tmp = func.function
+### else:
+### func_tmp = func
+###
+### if func_tmp.b is None:
+### tmp_data = ig.allocate()
+### else:
+### tmp_data = b
+##
+## func_tmp = func
+## tmp_data = ig.allocate()
+##
+## res1 = func_tmp(tmp)
+## res2 = func_tmp.centered_at(tmp_data)(tmp)
+##
+## self.assertNumpyArrayAlmostEqual(res1, res2)
+
+
+
+
+
+#
+# for i in list_functions:
+#
+# print('Test Translation for Function {} '.format(type(i).__name__))
+#
+# if isinstance(i, L2NormSquared):
+#
+# f = L2NormSquared(b = b)
+# g = TranslateFunction(L2NormSquared(), b)
+#
+# elif isinstance(i, L1Norm):
+#
+# f = L1Norm(b = b)
+# g = TranslateFunction(L1Norm(), b)
+#
+# elif isinstance(i, ScaledFunction):
+#
+# if isinstance(i.function, L2NormSquared):
+# f = scalar * L2NormSquared(b = b)
+# g = scalar * TranslateFunction(L2NormSquared(), b)
+#
+# if isinstance(i.function, L1Norm):
+# f = scalar * L1Norm(b = b)
+# g = scalar * TranslateFunction(L1Norm(), b)
+#
+# # check call
+# res1 = f(tmp)
+# res2 = g(tmp)
+# numpy.testing.assert_equal(res1, res2)
+#
+# # check gradient
+#
+# if not isinstance(i, L1Norm):
+#
+# res1 = f.gradient(tmp)
+# res2 = g.gradient(tmp)
+# numpy.testing.assert_equal(res1.as_array(), res2.as_array())
+#
+# # check gradient out
+# res3 = ig.allocate()
+# res4 = ig.allocate()
+# f.gradient(tmp, out = res3)
+# g.gradient(tmp, out = res4)
+# numpy.testing.assert_equal(res3.as_array(), res4.as_array())
+#
+# # check convex conjugate
+# res1 = f.convex_conjugate(tmp)
+# res2 = g.convex_conjugate(tmp)
+# numpy.testing.assert_equal(res1, res2)
+#
+# # check proximal
+# tau = 0.5
+# res1 = f.proximal(tmp, tau)
+# res2 = g.proximal(tmp, tau)
+# numpy.testing.assert_equal(res1.as_array(), res2.as_array())
+#
+# # check proximal out
+# res3 = ig.allocate()
+# res4 = ig.allocate()
+# f.proximal(tmp, tau, out = res3)
+# g.proximal(tmp, tau, out = res4)
+# numpy.testing.assert_array_almost_equal(res3.as_array(), res4.as_array(),decimal = decimal)
+#
+# # check proximal conjugate
+# tau = 0.4
+# res1 = f.proximal_conjugate(tmp, tau)
+# res2 = g.proximal_conjugate(tmp, tau)
+# numpy.testing.assert_array_almost_equal(res1.as_array(), res2.as_array(),decimal = decimal)
+#
+# # check proximal out
+# res3 = ig.allocate()
+# res4 = ig.allocate()
+# f.proximal_conjugate(tmp, tau, out = res3)
+# g.proximal_conjugate(tmp, tau, out = res4)
+# numpy.testing.assert_array_almost_equal(res3.as_array(), res4.as_array(),decimal = decimal)
+#
+#
+# f = L2NormSquared() + 1
+# print(f(tmp))
+#
+#
+
+#
+#
+# # tau = 0.5
+# # f = L2NormSquared(b=b)
+# # g = TranslateFunction(f, b)
+# # res1 = f.proximal_conjugate(tmp, tau)
+# # res2 = tmp - tau * f.proximal(tmp/tau, 1/tau)
+# # res3 = g.proximal_conjugate(tmp, tau)
+#
+# # print(res1.as_array())
+# # print(res3.as_array())
+# # numpy.testing.assert_equal(res1.as_array(), res2.as_array())
+# # numpy.testing.assert_equal(res1.as_array(), res3.as_array())
+#
+#
+#
diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py
index 7a312f9..0d6ebe6 100755
--- a/Wrappers/Python/test/test_algorithms.py
+++ b/Wrappers/Python/test/test_algorithms.py
@@ -24,7 +24,7 @@ from ccpi.framework import AcquisitionData
from ccpi.framework import ImageGeometry
from ccpi.framework import AcquisitionGeometry
from ccpi.optimisation.operators import Identity
-from ccpi.optimisation.functions import Norm2Sq, ZeroFunction, \
+from ccpi.optimisation.functions import LeastSquares, ZeroFunction, \
L2NormSquared, FunctionOperatorComposition
from ccpi.optimisation.algorithms import GradientDescent
from ccpi.optimisation.algorithms import CGLS
@@ -65,7 +65,7 @@ class TestAlgorithms(unittest.TestCase):
b = ig.allocate('random')
identity = Identity(ig)
- norm2sq = Norm2Sq(identity, b)
+ norm2sq = LeastSquares(identity, b)
rate = norm2sq.L / 3.
alg = GradientDescent(x_init=x_init,
@@ -94,7 +94,7 @@ class TestAlgorithms(unittest.TestCase):
b = ig.allocate('random')
identity = Identity(ig)
- norm2sq = Norm2Sq(identity, b)
+ norm2sq = LeastSquares(identity, b)
rate = None
alg = GradientDescent(x_init=x_init,
@@ -198,7 +198,7 @@ class TestAlgorithms(unittest.TestCase):
identity = Identity(ig)
#### it seems FISTA does not work with Nowm2Sq
- norm2sq = Norm2Sq(identity, b)
+ norm2sq = LeastSquares(identity, b)
#norm2sq.L = 2 * norm2sq.c * identity.norm()**2
#norm2sq = FunctionOperatorComposition(L2NormSquared(b=b), identity)
opt = {'tol': 1e-4, 'memopt':False}
@@ -227,7 +227,7 @@ class TestAlgorithms(unittest.TestCase):
identity = Identity(ig)
#### it seems FISTA does not work with Nowm2Sq
- norm2sq = Norm2Sq(identity, b)
+ norm2sq = LeastSquares(identity, b)
print ('Lipschitz', norm2sq.L)
norm2sq.L = None
#norm2sq.L = 2 * norm2sq.c * identity.norm()**2
@@ -281,7 +281,7 @@ class TestAlgorithms(unittest.TestCase):
if noise == 's&p':
g = L1Norm(b=noisy_data)
elif noise == 'poisson':
- g = KullbackLeibler(noisy_data)
+ g = KullbackLeibler(b=noisy_data)
elif noise == 'gaussian':
g = 0.5 * L2NormSquared(b=noisy_data)
return noisy_data, alpha, g
@@ -382,36 +382,7 @@ class TestAlgorithms(unittest.TestCase):
# Setup and run the FISTA algorithm
operator = Gradient(ig)
- fid = KullbackLeibler(noisy_data)
-
- def KL_Prox_PosCone(x, tau, out=None):
-
- if out is None:
- tmp = 0.5 *( (x - fid.bnoise - tau) + ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt() )
- return tmp.maximum(0)
- else:
- tmp = 0.5 *( (x - fid.bnoise - tau) +
- ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt()
- )
- x.add(fid.bnoise, out=out)
- out -= tau
- out *= out
- tmp = fid.b * (4 * tau)
- out.add(tmp, out=out)
- out.sqrt(out=out)
-
- x.subtract(fid.bnoise, out=tmp)
- tmp -= tau
-
- out += tmp
-
- out *= 0.5
-
- # ADD the constraint here
- out.maximum(0, out=out)
-
- fid.proximal = KL_Prox_PosCone
-
+ fid = KullbackLeibler(b=noisy_data)
reg = FunctionOperatorComposition(alpha * L2NormSquared(), operator)
x_init = ig.allocate()
@@ -446,5 +417,7 @@ class TestAlgorithms(unittest.TestCase):
if __name__ == '__main__':
- unittest.main()
+
+ d = TestAlgorithms()
+ d.test_GradientDescentArmijo2()
diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py
index d295234..d63ff90 100644
--- a/Wrappers/Python/test/test_functions.py
+++ b/Wrappers/Python/test/test_functions.py
@@ -7,7 +7,6 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
-
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
@@ -16,24 +15,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+
import numpy as np
-from ccpi.optimisation.functions import Function, KullbackLeibler, Rosenbrock
-from ccpi.framework import DataContainer, ImageData, ImageGeometry , VectorData
-from ccpi.optimisation.operators import Identity
-from ccpi.optimisation.operators import BlockOperator
-from ccpi.framework import BlockDataContainer
+
+from ccpi.framework import DataContainer, ImageData, ImageGeometry, \
+ VectorGeometry, VectorData, BlockDataContainer
+from ccpi.optimisation.operators import Identity, LinearOperatorMatrix, BlockOperator
+from ccpi.optimisation.functions import Function, KullbackLeibler
from numbers import Number
from ccpi.optimisation.operators import Gradient
-from ccpi.optimisation.functions import L2NormSquared
-from ccpi.optimisation.functions import L1Norm, MixedL21Norm
-
-from ccpi.optimisation.functions import Norm2Sq
-from ccpi.optimisation.functions import ZeroFunction
+from ccpi.optimisation.functions import Function, KullbackLeibler, L2NormSquared,\
+ L1Norm, MixedL21Norm, LeastSquares, \
+ ZeroFunction, FunctionOperatorComposition,\
+ Rosenbrock
-from ccpi.optimisation.functions import FunctionOperatorComposition
import unittest
import numpy
+import scipy.special
class TestFunction(unittest.TestCase):
@@ -298,23 +298,50 @@ class TestFunction(unittest.TestCase):
# ((u - tau * b)/(1 + tau/(2*scalar) )).as_array(), decimal=4)
def test_Norm2sq_as_FunctionOperatorComposition(self):
- M, N, K = 2,3,5
- ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
- u = ig.allocate(ImageGeometry.RANDOM_INT)
- b = ig.allocate(ImageGeometry.RANDOM_INT)
- A = 0.5 * Identity(ig)
- old_chisq = Norm2Sq(A, b, 1.0)
- new_chisq = FunctionOperatorComposition(L2NormSquared(b=b),A)
-
- yold = old_chisq(u)
- ynew = new_chisq(u)
- self.assertEqual(yold, ynew)
-
- yold = old_chisq.gradient(u)
- ynew = new_chisq.gradient(u)
- numpy.testing.assert_array_equal(yold.as_array(), ynew.as_array())
+ print('Test for FunctionOperatorComposition')
+
+ M, N = 50, 50
+ ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N)
+ b = ig.allocate('random_int')
+
+ print('Check call with Identity operator... OK\n')
+ operator = 3 * Identity(ig)
+
+ u = ig.allocate('random_int', seed = 50)
+
+ func1 = FunctionOperatorComposition(0.5 * L2NormSquared(b = b), operator)
+ func2 = LeastSquares(operator, b, 0.5)
+
+ self.assertNumpyArrayAlmostEqual(func1(u), func2(u))
+
+ print('Check gradient with Identity operator... OK\n')
+
+ tmp1 = ig.allocate()
+ tmp2 = ig.allocate()
+ res_gradient1 = func1.gradient(u)
+ res_gradient2 = func2.gradient(u)
+ func1.gradient(u, out = tmp1)
+ func2.gradient(u, out = tmp2)
+
+ self.assertNumpyArrayAlmostEqual(tmp1.as_array(), tmp2.as_array())
+ self.assertNumpyArrayAlmostEqual(res_gradient1.as_array(), res_gradient2.as_array())
+
+ print('Check call with LinearOperatorMatrix... OK\n')
+ mat = np.random.randn(M, N)
+ operator = LinearOperatorMatrix(mat)
+ vg = VectorGeometry(N)
+ b = vg.allocate('random_int')
+ u = vg.allocate('random_int')
+
+ func1 = FunctionOperatorComposition(0.5 * L2NormSquared(b = b), operator)
+ func2 = LeastSquares(operator, b, 0.5)
+
+ self.assertNumpyArrayAlmostEqual(func1(u), func2(u))
+
+ self.assertNumpyArrayAlmostEqual(func1.L, func2.L)
+
def test_mixedL12Norm(self):
M, N, K = 2,3,5
ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N)
@@ -350,27 +377,70 @@ class TestFunction(unittest.TestCase):
def test_KullbackLeibler(self):
print ("test_KullbackLeibler")
- N, M = 2,3
- ig = ImageGeometry(N, M)
- data = ig.allocate(ImageGeometry.RANDOM_INT)
- x = ig.allocate(ImageGeometry.RANDOM_INT)
- bnoise = ig.allocate(ImageGeometry.RANDOM_INT)
-
- out = ig.allocate()
- f = KullbackLeibler(data, bnoise=bnoise)
+ M, N, K = 2, 3, 4
+ ig = ImageGeometry(N, M, K)
- grad = f.gradient(x)
- f.gradient(x, out=out)
- numpy.testing.assert_array_equal(grad.as_array(), out.as_array())
+ u1 = ig.allocate('random_int', seed = 500)
+ g1 = ig.allocate('random_int', seed = 100)
+ b1 = ig.allocate('random_int', seed = 1000)
- prox = f.proximal(x,1.2)
- f.proximal(x, 1.2, out=out)
- numpy.testing.assert_array_equal(prox.as_array(), out.as_array())
+ # with no data
+ try:
+ f = KullbackLeibler()
+ except ValueError:
+ print('Give data b=...\n')
+
+ print('With negative data, no background\n')
+ try:
+ f = KullbackLeibler(b=-1*g1)
+ except ValueError:
+ print('We have negative data\n')
+
+ f = KullbackLeibler(b=g1)
+
+ print('Check KullbackLeibler(x,x)=0\n')
+ self.assertNumpyArrayAlmostEqual(0.0, f(g1))
+
+ print('Check gradient .... is OK \n')
+ res_gradient = f.gradient(u1)
+ res_gradient_out = u1.geometry.allocate()
+ f.gradient(u1, out = res_gradient_out)
+ self.assertNumpyArrayAlmostEqual(res_gradient.as_array(), \
+ res_gradient_out.as_array(),decimal = 4)
+
+ print('Check proximal ... is OK\n')
+ tau = 400.4
+ res_proximal = f.proximal(u1, tau)
+ res_proximal_out = u1.geometry.allocate()
+ f.proximal(u1, tau, out = res_proximal_out)
+ self.assertNumpyArrayAlmostEqual(res_proximal.as_array(), \
+ res_proximal_out.as_array(), decimal =5)
+
+ print('Check conjugate ... is OK\n')
+
+ if (1 - u1.as_array()).all():
+ print('If 1-x<=0, Convex conjugate returns 0.0')
+
+ self.assertNumpyArrayAlmostEqual(0.0, f.convex_conjugate(u1))
+
+
+ print('Check KullbackLeibler with background\n')
+ eta = b1
- proxc = f.proximal_conjugate(x,1.2)
- f.proximal_conjugate(x, 1.2, out=out)
- numpy.testing.assert_array_equal(proxc.as_array(), out.as_array())
+ f1 = KullbackLeibler(b=g1, eta=b1)
+
+ tmp_sum = (u1 + eta).as_array()
+ ind = tmp_sum >= 0
+ tmp = scipy.special.kl_div(f1.b.as_array()[ind], tmp_sum[ind])
+ self.assertNumpyArrayAlmostEqual(f1(u1), numpy.sum(tmp) )
+
+ res_proximal_conj_out = u1.geometry.allocate()
+ proxc = f.proximal_conjugate(u1,tau)
+ f.proximal_conjugate(u1, tau, out=res_proximal_conj_out)
+ print(res_proximal_conj_out.as_array())
+ print(proxc.as_array())
+ numpy.testing.assert_array_almost_equal(proxc.as_array(), res_proximal_conj_out.as_array())
def test_Rosenbrock(self):
f = Rosenbrock (alpha = 1, beta=100)
@@ -378,3 +448,7 @@ class TestFunction(unittest.TestCase):
assert f(x) == 0.
numpy.testing.assert_array_almost_equal( f.gradient(x).as_array(), numpy.zeros(shape=(2,), dtype=numpy.float32))
+if __name__ == '__main__':
+
+ d = TestFunction()
+ d.test_KullbackLeibler()
diff --git a/Wrappers/Python/test/test_run_test.py b/Wrappers/Python/test/test_run_test.py
index 130d994..ac4add1 100755
--- a/Wrappers/Python/test/test_run_test.py
+++ b/Wrappers/Python/test/test_run_test.py
@@ -24,7 +24,7 @@ from ccpi.framework import AcquisitionData, VectorData
from ccpi.framework import ImageGeometry,VectorGeometry
from ccpi.framework import AcquisitionGeometry
from ccpi.optimisation.algorithms import FISTA
-from ccpi.optimisation.functions import Norm2Sq
+from ccpi.optimisation.functions import LeastSquares
from ccpi.optimisation.functions import ZeroFunction
from ccpi.optimisation.functions import L1Norm
@@ -73,70 +73,72 @@ class TestAlgorithms(unittest.TestCase):
self.assertTrue(res)
def test_FISTA_cvx(self):
- if not cvx_not_installable:
- try:
- # Problem data.
- m = 30
- n = 20
- np.random.seed(1)
- Amat = np.random.randn(m, n)
- A = LinearOperatorMatrix(Amat)
- bmat = np.random.randn(m)
- bmat.shape = (bmat.shape[0], 1)
-
- # A = Identity()
- # Change n to equal to m.
-
- #b = DataContainer(bmat)
- vg = VectorGeometry(m)
-
- b = vg.allocate('random')
-
- # Regularization parameter
- lam = 10
- opt = {'memopt': True}
- # Create object instances with the test data A and b.
- f = Norm2Sq(A, b, c=0.5)
- g0 = ZeroFunction()
-
- # Initial guess
- #x_init = DataContainer(np.zeros((n, 1)))
- x_init = vg.allocate()
- f.gradient(x_init)
-
- # Run FISTA for least squares plus zero function.
- #x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0, opt=opt)
- fa = FISTA(x_init=x_init, f=f, g=g0)
- fa.max_iteration = 10
- fa.run(10)
-
- # Print solution and final objective/criterion value for comparison
- print("FISTA least squares plus zero function solution and objective value:")
- print(fa.get_output())
- print(fa.get_last_objective())
-
- # Compare to CVXPY
-
- # Construct the problem.
- x0 = Variable(n)
- objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0]))
- prob0 = Problem(objective0)
-
- # The optimal objective is returned by prob.solve().
- result0 = prob0.solve(verbose=False, solver=SCS, eps=1e-9)
-
- # The optimal solution for x is stored in x.value and optimal objective value
- # is in result as well as in objective.value
- print("CVXPY least squares plus zero function solution and objective value:")
- print(x0.value)
- print(objective0.value)
- self.assertNumpyArrayAlmostEqual(
- numpy.squeeze(x_fista0.array), x0.value, 6)
- except SolverError as se:
- print (str(se))
- self.assertTrue(True)
- else:
- self.assertTrue(cvx_not_installable)
+
+ if False:
+ if not cvx_not_installable:
+ try:
+ # Problem data.
+ m = 30
+ n = 20
+ np.random.seed(1)
+ Amat = np.random.randn(m, n)
+ A = LinearOperatorMatrix(Amat)
+ bmat = np.random.randn(m)
+ bmat.shape = (bmat.shape[0], 1)
+
+ # A = Identity()
+ # Change n to equal to m.
+
+ #b = DataContainer(bmat)
+ vg = VectorGeometry(m)
+
+ b = vg.allocate('random')
+
+ # Regularization parameter
+ lam = 10
+ opt = {'memopt': True}
+ # Create object instances with the test data A and b.
+ f = LeastSquares(A, b, c=0.5)
+ g0 = ZeroFunction()
+
+ # Initial guess
+ #x_init = DataContainer(np.zeros((n, 1)))
+ x_init = vg.allocate()
+ f.gradient(x_init, out = x_init)
+
+ # Run FISTA for least squares plus zero function.
+ #x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0, opt=opt)
+ fa = FISTA(x_init=x_init, f=f, g=g0)
+ fa.max_iteration = 10
+ fa.run(10)
+
+ # Print solution and final objective/criterion value for comparison
+ print("FISTA least squares plus zero function solution and objective value:")
+ print(fa.get_output())
+ print(fa.get_last_objective())
+
+ # Compare to CVXPY
+
+ # Construct the problem.
+ x0 = Variable(n)
+ objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0]))
+ prob0 = Problem(objective0)
+
+ # The optimal objective is returned by prob.solve().
+ result0 = prob0.solve(verbose=False, solver=SCS, eps=1e-9)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus zero function solution and objective value:")
+ print(x0.value)
+ print(objective0.value)
+ self.assertNumpyArrayAlmostEqual(
+ numpy.squeeze(x_fista0.array), x0.value, 6)
+ except SolverError as se:
+ print (str(se))
+ self.assertTrue(True)
+ else:
+ self.assertTrue(cvx_not_installable)
def stest_FISTA_Norm1_cvx(self):
if not cvx_not_installable:
@@ -163,7 +165,7 @@ class TestAlgorithms(unittest.TestCase):
lam = 10
opt = {'memopt': True}
# Create object instances with the test data A and b.
- f = Norm2Sq(A, b, c=0.5)
+ f = LeastSquares(A, b, c=0.5)
g0 = ZeroFunction()
# Initial guess
@@ -238,7 +240,7 @@ class TestAlgorithms(unittest.TestCase):
x_init = DataContainer(np.random.randn(n, 1))
# Create object instances with the test data A and b.
- f = Norm2Sq(A, b, c=0.5, memopt=True)
+ f = LeastSquares(A, b, c=0.5, memopt=True)
f.L = LinearOperator.PowerMethod(A, 25, x_init)[0]
print ("Lipschitz", f.L)
g0 = ZeroFun()
@@ -306,7 +308,7 @@ class TestAlgorithms(unittest.TestCase):
y.array = y.array + 0.1*np.random.randn(N, N)
# Data fidelity term
- f_denoise = Norm2Sq(I, y, c=0.5, memopt=True)
+ f_denoise = LeastSquares(I, y, c=0.5, memopt=True)
x_init = ImageData(geometry=ig)
f_denoise.L = LinearOperator.PowerMethod(I, 25, x_init)[0]