diff options
Diffstat (limited to 'Wrappers')
50 files changed, 2041 insertions, 982 deletions
diff --git a/Wrappers/Python/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/ccpi/framework/BlockDataContainer.py index 38c35f7..22cee03 100755..100644 --- a/Wrappers/Python/ccpi/framework/BlockDataContainer.py +++ b/Wrappers/Python/ccpi/framework/BlockDataContainer.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy from numbers import Number @@ -61,7 +60,11 @@ class BlockDataContainer(object): def __init__(self, *args, **kwargs): '''''' self.containers = args - self.index = 0 + self.index = 0 + self.geometry = None + #if len(set([i.shape for i in self.containers])): + # self.geometry = self.containers[0].geometry + shape = kwargs.get('shape', None) if shape is None: shape = (len(args),1) @@ -330,8 +333,9 @@ class BlockDataContainer(object): if p==1: return sum(self.abs()) - elif p==2: - return sum([el*el for el in self.containers]).sqrt() + elif p==2: + tmp = functools.reduce(lambda a,b: a + b*b, self.containers, self.get_item(0) * 0 ).sqrt() + return tmp else: return ValueError('Not implemented') @@ -507,26 +511,32 @@ if __name__ == '__main__': import numpy N, M = 2, 3 - ig = ImageGeometry(N, M) - BG = BlockGeometry(ig, ig) + ig = ImageGeometry(N, M) + + ig1 = ImageGeometry(2*N, 4*M) + BG = BlockGeometry(ig, ig1) U = BG.allocate('random_int') V = BG.allocate('random_int') + print(U.geometry) - print ("test sum BDC " ) - w = U[0].as_array() + U[1].as_array() - w1 = sum(U).as_array() - numpy.testing.assert_array_equal(w, w1) - - print ("test sum BDC " ) - z = numpy.sqrt(U[0].as_array()**2 + U[1].as_array()**2) - z1 = sum(U**2).sqrt().as_array() - numpy.testing.assert_array_equal(z, z1) + print(len(set([i.shape for i in U.containers]))==1) - z2 = U.pnorm(2) - zzz = U.dot(V) +# print ("test sum BDC " ) +# w = U[0].as_array() + U[1].as_array() +# w1 = sum(U).as_array() +# numpy.testing.assert_array_equal(w, w1) +# +# print ("test sum BDC " ) +# z = numpy.sqrt(U[0].as_array()**2 + U[1].as_array()**2) +# z1 = sum(U**2).sqrt().as_array() +# numpy.testing.assert_array_equal(z, z1) +# +# z2 = U.pnorm(2) +# +# zzz = U.dot(V) diff --git a/Wrappers/Python/ccpi/framework/BlockGeometry.py b/Wrappers/Python/ccpi/framework/BlockGeometry.py index 988801f..2f28507 100755..100644 --- a/Wrappers/Python/ccpi/framework/BlockGeometry.py +++ b/Wrappers/Python/ccpi/framework/BlockGeometry.py @@ -18,7 +18,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
import numpy
from numbers import Number
@@ -94,9 +93,6 @@ class BlockGeometry(object): containers[6]=containers[9]
containers[7]=containers[10]
containers[11]=containers[15]
-
-
-
-
+
return BlockDataContainer(*containers)
diff --git a/Wrappers/Python/ccpi/framework/TestData.py b/Wrappers/Python/ccpi/framework/TestData.py index c035850..a9df2ad 100755..100644 --- a/Wrappers/Python/ccpi/framework/TestData.py +++ b/Wrappers/Python/ccpi/framework/TestData.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.framework import ImageData, ImageGeometry, DataContainer import numpy diff --git a/Wrappers/Python/ccpi/framework/__init__.py b/Wrappers/Python/ccpi/framework/__init__.py index 94788a5..213750b 100755..100644 --- a/Wrappers/Python/ccpi/framework/__init__.py +++ b/Wrappers/Python/ccpi/framework/__init__.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy import sys diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py index 1ab1d1e..968c69c 100755..100644 --- a/Wrappers/Python/ccpi/framework/framework.py +++ b/Wrappers/Python/ccpi/framework/framework.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy import sys @@ -561,7 +560,12 @@ class DataContainer(object): return VectorData(cleaned) def fill(self, array, **dimension): - '''fills the internal numpy array with the one provided''' + '''fills the internal numpy array with the one provided + + :param array: numpy array to copy into the DataContainer + :type array: DataContainer, numpy array or number + :param dimension: dictionary, optional + ''' if dimension == {}: if issubclass(type(array), DataContainer) or\ issubclass(type(array), numpy.ndarray): @@ -574,6 +578,8 @@ class DataContainer(object): else: #self.array[:] = array numpy.copyto(self.array, array) + else: + self.array.fill(array) else: command = 'self.array[' @@ -814,8 +820,8 @@ class DataContainer(object): return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs) def power(self, other, *args, **kwargs): - return self.pixel_wise_binary(numpy.power, other, *args, **kwargs) - + return self.pixel_wise_binary(numpy.power, other, *args, **kwargs) + def maximum(self, x2, *args, **kwargs): return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs) @@ -911,6 +917,12 @@ class DataContainer(object): def abs(self, *args, **kwargs): return self.pixel_wise_unary(numpy.abs, *args, **kwargs) +# def max(self, *args, **kwargs): +# return self.pixel_wise_unary(numpy.max, *args, **kwargs) +# +# def min(self, *args, **kwargs): +# return self.pixel_wise_unary(numpy.min, *args, **kwargs) + def sign(self, *args, **kwargs): return self.pixel_wise_unary(numpy.sign, *args, **kwargs) @@ -1624,7 +1636,8 @@ class VectorData(DataContainer): else: raise ValueError('Incompatible size: expecting {} got {}'.format((self.length,), array.shape)) deep_copy = True - super(VectorData, self).__init__(out, deep_copy, None) + # need to pass the geometry, othewise None + super(VectorData, self).__init__(out, deep_copy, None, geometry = self.geometry) class VectorGeometry(object): '''Geometry describing VectorData to contain 1D array''' @@ -1661,30 +1674,36 @@ class VectorGeometry(object): numpy.random.seed(seed) max_value = kwargs.get('max_value', 100) out.fill(numpy.random.randint(max_value,size=self.shape)) + elif value is None: + pass else: raise ValueError('Value {} unknown'.format(value)) return out if __name__ == "__main__": - - ig = ImageGeometry(voxel_num_x=100, - voxel_num_y=200, - voxel_num_z=300, - voxel_size_x=1, - voxel_size_y=1, - voxel_size_z=1, - center_x=0, - center_y=0, - center_z=0, - channels=50) - - id = ig.allocate(2) - - print(id.geometry) - print(id.dimension_labels) - - sid = id.subset(channel = 20) - - print(sid.dimension_labels) - print(sid.geometry) + + + vg = VectorGeometry(10) + b = vg.allocate('random_int') + +# ig = ImageGeometry(voxel_num_x=100, +# voxel_num_y=200, +# voxel_num_z=300, +# voxel_size_x=1, +# voxel_size_y=1, +# voxel_size_z=1, +# center_x=0, +# center_y=0, +# center_z=0, +# channels=50) +# +# id = ig.allocate(2) +# +# print(id.geometry) +# print(id.dimension_labels) +# +# sid = id.subset(channel = 20) +# +# print(sid.dimension_labels) +# print(sid.geometry) diff --git a/Wrappers/Python/ccpi/io/NEXUSDataReader.py b/Wrappers/Python/ccpi/io/NEXUSDataReader.py index dbada02..e696ca5 100644 --- a/Wrappers/Python/ccpi/io/NEXUSDataReader.py +++ b/Wrappers/Python/ccpi/io/NEXUSDataReader.py @@ -15,11 +15,13 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function import numpy import os from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry - h5pyAvailable = True try: import h5py diff --git a/Wrappers/Python/ccpi/io/NEXUSDataWriter.py b/Wrappers/Python/ccpi/io/NEXUSDataWriter.py index c0b4fae..926cb07 100644 --- a/Wrappers/Python/ccpi/io/NEXUSDataWriter.py +++ b/Wrappers/Python/ccpi/io/NEXUSDataWriter.py @@ -15,7 +15,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function import numpy import os from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry diff --git a/Wrappers/Python/ccpi/io/NikonDataReader.py b/Wrappers/Python/ccpi/io/NikonDataReader.py index 703b65b..ea8179e 100644 --- a/Wrappers/Python/ccpi/io/NikonDataReader.py +++ b/Wrappers/Python/ccpi/io/NikonDataReader.py @@ -1,10 +1,23 @@ -#!/usr/bin/env python3 # -*- coding: utf-8 -*- -""" -Created on Wed Apr 3 10:30:25 2019 +# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL). -@author: evelina -""" +# Copyright 2019 UKRI-STFC +# Copyright 2019 University of Manchester + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function from ccpi.framework import AcquisitionData, AcquisitionGeometry import numpy diff --git a/Wrappers/Python/ccpi/io/reader.py b/Wrappers/Python/ccpi/io/reader.py index 8282fe9..52e06bd 100644 --- a/Wrappers/Python/ccpi/io/reader.py +++ b/Wrappers/Python/ccpi/io/reader.py @@ -19,7 +19,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.framework import AcquisitionGeometry
from ccpi.framework import AcquisitionData
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py b/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py index 48d109e..48d109e 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/Algorithm.py diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py index 53804c5..64c2282 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py @@ -20,7 +20,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.algorithms import Algorithm import numpy diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py index 15a289d..9705682 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py @@ -20,7 +20,7 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals + from ccpi.optimisation.algorithms import Algorithm from ccpi.optimisation.functions import ZeroFunction diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py index 5e7284a..d30604e 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py @@ -23,7 +23,7 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals + import numpy from ccpi.optimisation.algorithms import Algorithm diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py index 8776875..cc384e3 100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py @@ -20,7 +20,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.algorithms import Algorithm diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py index a59ce5f..8afecc8 100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py @@ -23,7 +23,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.algorithms import Algorithm diff --git a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py index 57592cd..5f9a881 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py +++ b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py @@ -23,7 +23,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.functions import Function from ccpi.framework import BlockDataContainer @@ -31,14 +30,24 @@ from numbers import Number class BlockFunction(Function): - r'''BlockFunction acts as a separable sum function: f = [f_1,...,f_n] + r""" BlockFunction represents a *separable sum* function :math:`F` defined as - .. math:: - - f([x_1,...,x_n]) = f_1(x_1) + .... + f_n(x_n) - | - - ''' + .. math:: F:X_{1}\times X_{2}\cdots\times X_{m} \rightarrow (-\infty, \infty] + + where :math:`F` is the separable sum of functions :math:`(f_{i})_{i=1}^{m}`, + + .. math:: F(x_{1}, x_{2}, \cdots, x_{m}) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ with } f_{i}: X_{i} \rightarrow (-\infty, \infty]. + + A nice property (due to it's separability structure) is that the proximal operator + can be decomposed along the proximal operators of each function :math:`f_{i}`. + + .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau f_{i}}(x_{i}) )_{i=1}^{m} + + In addition, if :math:`\tau := (\tau_{1},\dots,\tau_{m})`, then + + .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau_{i} f_{i}}(x_{i}) )_{i=1}^{m} + + """ def __init__(self, *functions): @@ -48,13 +57,17 @@ class BlockFunction(Function): def __call__(self, x): - r'''Evaluates the BlockFunction at a BlockDataContainer x + r""" Returns the value of the BlockFunction :math:`F` - :param: x (BlockDataContainer): must have as many rows as self.length + .. math:: F(x) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ where } x = (x_{1}, x_{2}, \cdots, x_{m}), \quad i = 1,2,\dots,m + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length returns ..math:: \sum(f_i(x_i)) - ''' + """ if self.length != x.shape[0]: raise ValueError('BlockFunction and BlockDataContainer have incompatible size') @@ -65,53 +78,36 @@ class BlockFunction(Function): def convex_conjugate(self, x): - r'''Convex conjugate of BlockFunction at x + r"""Returns the value of the convex conjugate of the BlockFunction at :math:`x^{*}`. - .. math:: returns \sum(f_i^{*}(x_i)) + .. math:: F^{*}(x^{*}) = \overset{m}{\underset{i=1}{\sum}}f_{i}^{*}(x^{*}_{i}) + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length - ''' - t = 0 + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + t = 0 for i in range(x.shape[0]): t += self.functions[i].convex_conjugate(x.get_item(i)) return t - - def proximal_conjugate(self, x, tau, out = None): - - r'''Proximal operator of BlockFunction at x: - - .. math:: prox_{tau*f}(x) = \sum_{i} prox_{tau*f_{i}}(x_{i}) + def proximal(self, x, tau, out = None): + r"""Proximal operator of the BlockFunction at x: - ''' - - if out is not None: - if isinstance(tau, Number): - for i in range(self.length): - self.functions[i].proximal_conjugate(x.get_item(i), tau, out=out.get_item(i)) - else: - for i in range(self.length): - self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i),out=out.get_item(i)) + .. math:: \mathrm{prox}_{\tau F}(x) = (\mathrm{prox}_{\tau f_{i}}(x_{i}))_{i=1}^{m} - else: - - out = [None]*self.length - if isinstance(tau, Number): - for i in range(self.length): - out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau) - else: - for i in range(self.length): - out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i)) + Parameter: - return BlockDataContainer(*out) - - - def proximal(self, x, tau, out = None): + x : BlockDataContainer and must have as many rows as self.length + """ - r'''Proximal operator of the convex conjugate of BlockFunction at x: - - .. math:: prox_{tau*f^{*}}(x) = \sum_{i} prox_{tau*f^{*}_{i}}(x_{i}) - ''' + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') if out is None: @@ -135,27 +131,68 @@ class BlockFunction(Function): - def gradient(self,x, out=None): + def gradient(self, x, out=None): + + r"""Returns the value of the gradient of the BlockFunction function at x. - r'''Evaluates gradient of BlockFunction at x + .. math:: F'(x) = [f_{1}'(x_{1}), ... , f_{m}'(x_{m})] - returns: BlockDataContainer .. math:: [f_{1}'(x_{1}), ... , f_{n}'(x_{n})] + Parameter: + + x : BlockDataContainer and must have as many rows as self.length - ''' + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') out = [None]*self.length for i in range(self.length): out[i] = self.functions[i].gradient(x.get_item(i)) - return BlockDataContainer(*out) + return BlockDataContainer(*out) + + def proximal_conjugate(self, x, tau, out = None): + + r"""Proximal operator of the convex conjugate of BlockFunction at x: + + .. math:: \mathrm{prox}_{\tau F^{*}}(x) = (\mathrm{prox}_{\tau f^{*}_{i}}(x^{*}_{i}))_{i=1}^{m} + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + + if out is not None: + if isinstance(tau, Number): + for i in range(self.length): + self.functions[i].proximal_conjugate(x.get_item(i), tau, out=out.get_item(i)) + else: + for i in range(self.length): + self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i),out=out.get_item(i)) + + else: + + out = [None]*self.length + if isinstance(tau, Number): + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau) + else: + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i)) + + return BlockDataContainer(*out) if __name__ == '__main__': - M, N, K = 2,3,5 + M, N, K = 20,30,50 - from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm + from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm, L1Norm from ccpi.framework import ImageGeometry, BlockGeometry from ccpi.optimisation.operators import Gradient, Identity, BlockOperator import numpy @@ -191,7 +228,22 @@ if __name__ == '__main__': numpy.testing.assert_array_almost_equal(res_no_out[1].as_array(), \ res_out[1].as_array(), decimal=4) - + + + ig1 = ImageGeometry(M, N) + ig2 = ImageGeometry(2*M, N) + ig3 = ImageGeometry(3*M, 4*N) + + bg = BlockGeometry(ig1,ig2,ig3) + + z = bg.allocate('random_int') + + f1 = L1Norm() + f2 = 5 * L2NormSquared() + + f = BlockFunction(f2, f2, f2 + 5, f1 - 4, f1) + + res = f.convex_conjugate(z) ########################################################################## diff --git a/Wrappers/Python/ccpi/optimisation/functions/Function.py b/Wrappers/Python/ccpi/optimisation/functions/Function.py index 48c6d30..c6c75ca 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/Function.py +++ b/Wrappers/Python/ccpi/optimisation/functions/Function.py @@ -23,55 +23,440 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import warnings -from ccpi.optimisation.functions.ScaledFunction import ScaledFunction + +from numbers import Number +from ccpi.optimisation.operators import ZeroOperator, Identity class Function(object): - '''Abstract class representing a function - Members: - L is the Lipschitz constant of the gradient of the Function - ''' - def __init__(self): - self.L = None + """ Abstract class representing a function + + :param L: Lipschitz constant of the gradient of the function F(x), when it is differentiable. + :param domain: The domain of the function. - def __call__(self,x, out=None): - '''Evaluates the function at x ''' + """ + + + def __init__(self, L = None): + + self.L = L + + def __call__(self,x): + + r"""Returns the value of the function F at x: :math:`F(x)` + + """ + raise NotImplementedError def gradient(self, x, out=None): - '''Returns the gradient of the function at x, if the function is differentiable''' + + r"""Returns the value of the gradient of function F at x, if it is differentiable + + .. math:: F'(x) + + """ raise NotImplementedError def proximal(self, x, tau, out=None): - '''This returns the proximal operator for the function at x, tau''' + + r"""Returns the proximal operator of function :math:`\tau F` at x + .. math:: \mathrm{prox}_{\tau F}(x) = \underset{z}{\mathrm{argmin}} \frac{1}{2}\|z - x\|^{2} + \tau F(z) + """ raise NotImplementedError - def convex_conjugate(self, x, out=None): - '''This evaluates the convex conjugate of the function at x''' + def convex_conjugate(self, x): + r""" Returns the convex conjugate of function :math:`F` at :math:`x^{*}`, + + .. math:: F^{*}(x^{*}) = \underset{x^{*}}{\sup} <x^{*}, x> - F(x) + + """ raise NotImplementedError def proximal_conjugate(self, x, tau, out = None): - '''This returns the proximal operator for the convex conjugate of the function at x, tau''' - raise NotImplementedError - - def grad(self, x): - '''Alias of gradient(x,None)''' - warnings.warn('''This method will disappear in following - versions of the CIL. Use gradient instead''', DeprecationWarning) - return self.gradient(x, out=None) + + r"""Returns the proximal operator of the convex conjugate of function :math:`\tau F` at :math:`x^{*}` + + .. math:: \mathrm{prox}_{\tau F^{*}}(x^{*}) = \underset{z^{*}}{\mathrm{argmin}} \frac{1}{2}\|z^{*} - x^{*}\|^{2} + \tau F^{*}(z^{*}) + + Due to Moreau’s identity, we have an analytic formula to compute the proximal operator of the convex conjugate :math:`F^{*}` + + .. math:: \mathrm{prox}_{\tau F^{*}}(x) = x - \tau\mathrm{prox}_{\tau^{-1} F}(\tau^{-1}x) + + """ + if out is None: + return x - tau * self.proximal(x/tau, 1/tau) + else: + self.proximal(x/tau, 1/tau, out = out) + out*=-tau + out.add(x, out = out) + + # Algebra for Function Class + + # Add functions + # Subtract functions + # Add/Substract with Scalar + # Multiply with Scalar + + def __add__(self, other): + + """ Returns the sum of the functions. + + Cases: a) the sum of two functions :math:`(F_{1}+F_{2})(x) = F_{1}(x) + F_{2}(x)` + b) the sum of a function with a scalar :math:`(F_{1}+scalar)(x) = F_{1}(x) + scalar` - def prox(self, x, tau): - '''Alias of proximal(x, tau, None)''' - warnings.warn('''This method will disappear in following - versions of the CIL. Use proximal instead''', DeprecationWarning) - return self.proximal(x, tau, out=None) + """ + + if isinstance(other, Function): + return SumFunction(self, other) + elif isinstance(other, (SumFunctionScalar, ConstantFunction, Number)): + return SumFunctionScalar(self, other) + else: + raise ValueError('Not implemented') + + def __radd__(self, other): + + """ Making addition commutative. """ + return self + other + + def __sub__(self, other): + """ Returns the subtraction of the functions.""" + return self + (-1) * other def __rmul__(self, scalar): - '''Defines the multiplication by a scalar on the left - - returns a ScaledFunction''' + """Returns a function multiplied by a scalar.""" return ScaledFunction(self, scalar) + + def __mul__(self, scalar): + return self.__rmul__(scalar) + + + def centered_at(self, center): + """ Returns a translated function, namely if we have a function :math:`F(x)` the center is at the origin. + TranslateFunction is :math:`F(x - b)` and the center is at point b.""" + + if center is None: + return self + else: + return TranslateFunction(self, center) + +class SumFunction(Function): + + """ SumFunction represents the sum of two functions + + .. math:: (F_{1} + F_{2})(x) = F_{1}(x) + F_{2}(x) + + """ + + def __init__(self, function1, function2 ): + + super(SumFunction, self).__init__() + + #if function1.domain != function2.domain: + # raise ValueError('{} is not the same as {}'.format(function1.domain, function2.domain)) + + #self.domain = function1.domain + + if function1.L is not None and function2.L is not None: + self.L = function1.L + function2.L + + self.function1 = function1 + self.function2 = function2 + + def __call__(self,x): + r"""Returns the value of the sum of functions :math:`F_{1}` and :math:`F_{2}` at x + + .. math:: (F_{1} + F_{2})(x) = F_{1}(x) + F_{2}(x) + + """ + return self.function1(x) + self.function2(x) + + def gradient(self, x, out=None): + + r"""Returns the value of the sum of the gradient of functions :math:`F_{1}` and :math:`F_{2}` at x, + if both of them are differentiable + + .. math:: (F'_{1} + F'_{2})(x) = F'_{1}(x) + F'_{2}(x) + + """ + +# try: + if out is None: + return self.function1.gradient(x) + self.function2.gradient(x) + else: + + self.function1.gradient(x, out=out) + out.add(self.function2.gradient(x), out=out) + +class ScaledFunction(Function): + + r""" ScaledFunction represents the scalar multiplication with a Function. + + Let a function F then and a scalar :math:`\alpha`. + + If :math:`G(x) = \alpha F(x)` then: + + 1. :math:`G(x) = \alpha F(x)` ( __call__ method ) + 2. :math:`G'(x) = \alpha F'(x)` ( gradient method ) + 3. :math:`G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha})` ( convex_conjugate method ) + 4. :math:`\mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{(\tau\alpha) F}(x)` ( proximal method ) + + """ + def __init__(self, function, scalar): + + super(ScaledFunction, self).__init__() + + if not isinstance (scalar, Number): + raise TypeError('expected scalar: got {}'.format(type(scalar))) + + if function.L is not None: + self.L = abs(scalar) * function.L + + self.scalar = scalar + self.function = function + + def __call__(self,x, out=None): + r"""Returns the value of the scaled function. + + .. math:: G(x) = \alpha F(x) + + """ + return self.scalar * self.function(x) + + def convex_conjugate(self, x): + r"""Returns the convex conjugate of the scaled function. + + .. math:: G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha}) + + """ + return self.scalar * self.function.convex_conjugate(x/self.scalar) + + def gradient(self, x, out=None): + r"""Returns the gradient of the scaled function. + + .. math:: G'(x) = \alpha F'(x) + + """ + +# try: + if out is None: + return self.scalar * self.function.gradient(x) + else: + self.function.gradient(x, out=out) + out *= self.scalar + + def proximal(self, x, tau, out=None): + + r"""Returns the proximal operator of the scaled function. + + .. math:: \mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{(\tau\alpha) F}(x) + + """ + + return self.function.proximal(x, tau*self.scalar, out=out) + + + def proximal_conjugate(self, x, tau, out = None): + r"""This returns the proximal operator for the function at x, tau + """ + if out is None: + return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar) + else: + self.function.proximal_conjugate(x/self.scalar, tau/self.scalar, out=out) + out *= self.scalar + +class SumFunctionScalar(SumFunction): + + """ SumFunctionScalar represents the sum a function with a scalar. + + .. math:: (F + scalar)(x) = F(x) + scalar + + Although SumFunction has no general expressions for + + i) convex_conjugate + ii) proximal + iii) proximal_conjugate + + if the second argument is a ConstantFunction then we can derive the above analytically. + + """ + + def __init__(self, function, constant): + + super(SumFunctionScalar, self).__init__(function, ConstantFunction(constant)) + self.constant = constant + self.function = function + + def convex_conjugate(self,x): + + r""" Returns the convex conjugate of a :math:`(F+scalar)` + + .. math:: (F+scalar)^{*}(x^{*}) = F^{*}(x^{*}) - scalar + + """ + return self.function.convex_conjugate(x) - self.constant + + def proximal(self, x, tau, out=None): + + """ Returns the proximal operator of :math:`F+scalar` + + .. math:: \mathrm{prox}_{\tau (F+scalar)}(x) = \mathrm{prox}_{\tau F} + + """ + return self.function.proximal(x, tau, out=out) + +# def function(self): +# return self.function + +class ConstantFunction(Function): + + + r""" ConstantFunction: :math:`F(x) = constant, constant\in\mathbb{R}` + + """ + + def __init__(self, constant = 0): + + super(ConstantFunction, self).__init__(L=0) + + if not isinstance (constant, Number): + raise TypeError('expected scalar: got {}'.format(type(constant))) + + self.constant = constant + + def __call__(self,x): + + """ Returns the value of the function, :math:`F(x) = constant`""" + return self.constant + + def gradient(self, x, out=None): + + """ Returns the value of the gradient of the function, :math:`F'(x)=0`""" + if out is None: + return x * 0. + else: + out.fill(0) + + def convex_conjugate(self, x): + + r""" The convex conjugate of constant function :math:`F(x) = c\in\mathbb{R}` is + + .. math:: + F(x^{*}) + = + \begin{cases} + -c, & if x^{*} = 0\\ + \infty, & \mbox{otherwise} + \end{cases} + + + However, :math:`x^{*} = 0` only in the limit of iterations, so in fact this can be infinity. + We do not want to have inf values in the convex conjugate, so we have to penalise this value accordingly. + The following penalisation is useful in the PDHG algorithm, when we compute primal & dual objectives + for convergence purposes. + + .. math:: F^{*}(x^{*}) = \sum \max\{x^{*}, 0\} + + """ + return x.maximum(0).sum() + + def proximal(self, x, tau, out=None): + + """Returns the proximal operator of the constant function, which is the same element, i.e., + + .. math:: \mathrm{prox}_{\tau F}(x) = x + + """ + if out is None: + return x.copy() + else: + out.fill(x) + #return Identity(x.geometry).direct(x, out=out) +class ZeroFunction(ConstantFunction): + + """ ZeroFunction represents the zero function, :math:`F(x) = 0` + """ + + def __init__(self): + super(ZeroFunction, self).__init__(constant = 0.) + +class TranslateFunction(Function): + + r""" TranslateFunction represents the translation of function F with respect to the center b. + + Let a function F and consider :math:`G(x) = F(x - center)`. + + Function F is centered at 0, whereas G is centered at point b. + + If :math:`G(x) = F(x - b)` then: + + 1. :math:`G(x) = F(x - b)` ( __call__ method ) + 2. :math:`G'(x) = F'(x - b)` ( gradient method ) + 3. :math:`G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b >` ( convex_conjugate method ) + 4. :math:`\mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{\tau F}(x - b) + b` ( proximal method ) + + """ + + def __init__(self, function, center): + + super(TranslateFunction, self).__init__(L = function.L) + + self.function = function + self.center = center + + + + def __call__(self, x): + + r"""Returns the value of the translated function. + + .. math:: G(x) = F(x - b) + + """ + + return self.function(x - self.center) + + def gradient(self, x, out = None): + + r"""Returns the gradient of the translated function. + + .. math:: G'(x) = F'(x - b) + + """ + + if out is None: + return self.function.gradient(x - self.center) + else: + x.subtract(self.center, out = out) + self.function.gradient(out, out = out) + + def proximal(self, x, tau, out = None): + + r"""Returns the proximal operator of the translated function. + + .. math:: \mathrm{prox}_{\tau G}(x) = \mathrm{prox}_{\tau F}(x-b) + b + + """ + + if out is None: + return self.function.proximal(x - self.center, tau) + self.center + else: + x.subtract(self.center, out = out) + self.function.proximal(out, tau, out = out) + out.add(self.center, out = out) + + def convex_conjugate(self, x): + + r"""Returns the convex conjugate of the translated function. + + .. math:: G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b > + + """ + + return self.function.convex_conjugate(x) + self.center.dot(x) + + + diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py index ed5c1b1..51105c8 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py +++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py @@ -20,20 +20,26 @@ # #========================================================================= +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function from ccpi.optimisation.functions import Function -from ccpi.optimisation.functions import ScaledFunction +from ccpi.optimisation.operators import Operator, ScaledOperator +import warnings class FunctionOperatorComposition(Function): - r'''Function composition with Operator: :math:`(f \otimes A)(x) = f(Ax)` + """ Composition of a function with an operator as : :math:`(F \otimes A)(x) = F(Ax)` - :param A: operator - :type A: :code:`Operator` - :param f: function - :type f: :code:`Function` + :parameter function: :code:`Function` F + :parameter operator: :code:`Operator` A + + + For general operator, we have no explicit formulas for convex_conjugate, + proximal and proximal_conjugate - ''' + """ def __init__(self, function, operator): '''creator @@ -48,91 +54,40 @@ class FunctionOperatorComposition(Function): self.function = function self.operator = operator + + if not isinstance(self.function, Function): + raise ValueError('{} is not function '.format(type(self.function))) + + # check also ScaledOperator because it's not a child atm of Operator + if not isinstance(self.operator, (Operator, ScaledOperator)): + raise ValueError('{} is not function '.format(type(self.operator))) + try: self.L = function.L * operator.norm()**2 - except Error as er: + except ValueError as er: self.L = None warnings.warn("Lipschitz constant was not calculated") def __call__(self, x): - '''Evaluates f(Ax)''' + """ Returns :math:`F(Ax)` + """ return self.function(self.operator.direct(x)) def gradient(self, x, out=None): - '''Evaluates gradient of f(Ax): + """ Return the gradient of F(Ax), - ..math :: A^{T}f'(Ax) + ..math :: (F(Ax))' = A^{T}F'(Ax) - ''' + """ tmp = self.operator.range_geometry().allocate() self.operator.direct(x, out=tmp) self.function.gradient(tmp, out=tmp) if out is None: - #return self.operator.adjoint(self.function.gradient(self.operator.direct(x))) return self.operator.adjoint(tmp) else: self.operator.adjoint(tmp, out=out) - - - -if __name__ == '__main__': - - from ccpi.framework import ImageGeometry, AcquisitionGeometry - from ccpi.optimisation.operators import Gradient - from ccpi.optimisation.functions import L2NormSquared - from ccpi.astra.ops import AstraProjectorSimple - import numpy as np - - M, N= 50, 50 - ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N) - - detectors = N - angles_num = N - det_w = 1.0 - - angles = np.linspace(0, np.pi, angles_num, endpoint=False) - ag = AcquisitionGeometry('parallel', - '2D', - angles, - detectors,det_w) - - - Aop = AstraProjectorSimple(ig, ag, 'cpu') - - u = ig.allocate('random_int', seed=15) - u1 = ig.allocate('random_int', seed=10) - b = Aop.direct(u1) - - -# G = Gradient(ig) - alpha = 0.5 - - f1 = alpha * L2NormSquared(b=b) - - f_comp = FunctionOperatorComposition(f1, Aop) - - print(f_comp(u)) - - - z1 = Aop.direct(u) - tmp = 0.5 * ((z1 - b)**2).sum() - - - print(tmp) - - - - - - - - - - - - diff --git a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py index 9e9e55c..4383858 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py +++ b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py @@ -19,7 +19,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.functions import Function import numpy diff --git a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py index 4239423..39bd983 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py +++ b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py @@ -20,43 +20,76 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy from ccpi.optimisation.functions import Function -from ccpi.optimisation.functions.ScaledFunction import ScaledFunction + import functools import scipy.special class KullbackLeibler(Function): - r'''Kullback-Leibler divergence function - - .. math:: - f(x, y) = \begin{cases} x \log(x / y) - x + y & x > 0, y > 0 \\ - y & x = 0, y \ge 0 \\ - \infty & \text{otherwise} - \end{cases} + r""" Kullback Leibler divergence function is defined as: - ''' + .. math:: F(u, v) + = \begin{cases} + u \log(\frac{u}{v}) - u + v & \mbox{ if } u > 0, v > 0\\ + v & \mbox{ if } u = 0, v \ge 0 \\ + \infty, & \mbox{otherwise} + \end{cases} + + where we use the :math:`0\log0 := 0` convention. + + At the moment, we use build-in implemention of scipy, see + https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html + + The Kullback-Leibler function is used as a fidelity term in minimisation problems where the + acquired data follow Poisson distribution. If we denote the acquired data with :math:`b` + then, we write + + .. math:: \underset{i}{\sum} F(b_{i}, (v + \eta)_{i}) + + where, :math:`\eta` is an additional noise. + + Example: In the case of Positron Emission Tomography reconstruction :math:`\eta` represents + scatter and random events contribution during the PET acquisition. Hence, in that case the KullbackLeibler + fidelity measures the distance between :math:`\mathcal{A}v + \eta` and acquisition data :math:`b`, where + :math:`\mathcal{A}` is the projection operator. + + This is related to PoissonLogLikelihoodWithLinearModelForMean definition that is used in PET reconstruction + in the PET-MR software , see https://github.com/CCPPETMR and for more details in + + http://stir.sourceforge.net/documentation/doxy/html/classstir_1_1PoissonLogLikelihoodWithLinearModelForMean.html + + """ + - def __init__(self, data, **kwargs): + def __init__(self, **kwargs): - super(KullbackLeibler, self).__init__() + super(KullbackLeibler, self).__init__(L = None) + self.b = kwargs.get('b', None) - self.b = data - self.bnoise = data * 0. + if self.b is None: + raise ValueError('Please define data, as b = ...') + + if (self.b.as_array() < 0).any(): + raise ValueError('Data should be larger or equal to 0') + + self.eta = kwargs.get('eta',self.b * 0.0) def __call__(self, x): - '''Evaluates KullbackLeibler at x''' - - ind = x.as_array()>0 - tmp = scipy.special.kl_div(self.b.as_array()[ind], x.as_array()[ind]) - return numpy.sum(tmp) - + r"""Returns the value of the KullbackLeibler function at :math:`(b, x + \eta)`. + To avoid infinity values, we consider only pixels/voxels for :math:`x+\eta\geq0`. + """ + + tmp_sum = (x + self.eta).as_array() + ind = tmp_sum >= 0 + tmp = scipy.special.kl_div(self.b.as_array()[ind], tmp_sum[ind]) + return numpy.sum(tmp) + def log(self, datacontainer): '''calculates the in-place log of the datacontainer''' if not functools.reduce(lambda x,y: x and y>0, datacontainer.as_array().ravel(), True): @@ -66,52 +99,62 @@ class KullbackLeibler(Function): def gradient(self, x, out=None): - '''Evaluates gradient of KullbackLeibler at x''' + r"""Returns the value of the gradient of the KullbackLeibler function at :math:`(b, x + \eta)`. - if out is None: - return 1 - self.b/(x + self.bnoise) - else: + .. math:: F'(b, x + \eta) = 1 - \frac{b}{x+\eta} + + We require the :math:`x+\eta>0` otherwise we have inf values. + + """ + + tmp_sum_array = (x + self.eta).as_array() + if out is None: + tmp_out = x.geometry.allocate() + tmp_out.as_array()[tmp_sum_array>0] = 1 - self.b.as_array()[tmp_sum_array>0]/tmp_sum_array[tmp_sum_array>0] + return tmp_out + else: + x.add(self.eta, out=out) + out.as_array()[tmp_sum_array>0] = 1 - self.b.as_array()[tmp_sum_array>0]/tmp_sum_array[tmp_sum_array>0] - x.add(self.bnoise, out=out) - self.b.divide(out, out=out) - out.subtract(1, out=out) - out *= -1 def convex_conjugate(self, x): - '''Convex conjugate of KullbackLeibler at x''' + r"""Returns the value of the convex conjugate of the KullbackLeibler function at :math:`(b, x + \eta)`. - xlogy = - scipy.special.xlogy(self.b.as_array(), 1 - x.as_array()) - return numpy.sum(xlogy) + .. math:: F^{*}(b, x + \eta) = - b \log(1-x^{*}) - <x^{*}, \eta> + + """ + tmp = 1 - x.as_array() + ind = tmp>0 + xlogy = - scipy.special.xlogy(self.b.as_array()[ind], tmp[ind]) + return numpy.sum(xlogy) - self.eta.dot(x) def proximal(self, x, tau, out=None): - r'''Proximal operator of KullbackLeibler at x - - .. math:: prox_{\tau * f}(x) - - ''' - + r"""Returns the value of the proximal operator of the KullbackLeibler function at :math:`(b, x + \eta)`. + + .. math:: \mathrm{prox}_{\tau F}(x) = \frac{1}{2}\bigg( (x - \eta - \tau) + \sqrt{ (x + \eta - \tau)^2 + 4\tau b} \bigg) + + The proximal for the convex conjugate of :math:`F` is + + .. math:: \mathrm{prox}_{\tau F^{*}}(x) = 0.5*((z + 1) - \sqrt{(z-1)^2 + 4 * \tau b}) + + where :math:`z = x + \tau \eta` + + """ + if out is None: - return 0.5 *( (x - self.bnoise - tau) + ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt() ) - else: - - tmp = 0.5 *( (x - self.bnoise - tau) + - ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt() - ) - x.add(self.bnoise, out=out) + return 0.5 *( (x - self.eta - tau) + ( (x + self.eta - tau)**2 + 4*tau*self.b ) .sqrt() ) + else: + x.add(self.eta, out=out) out -= tau out *= out - tmp = self.b * (4 * tau) - out.add(tmp, out=out) - out.sqrt(out=out) - - x.subtract(self.bnoise, out=tmp) - tmp -= tau - - out += tmp - - out *= 0.5 + out.add(self.b * (4 * tau), out=out) + out.sqrt(out=out) + out.subtract(tau, out = out) + out.add(x, out=out) + out *= 0.5 + def proximal_conjugate(self, x, tau, out=None): @@ -122,11 +165,10 @@ class KullbackLeibler(Function): if out is None: - z = x + tau * self.bnoise + z = x + tau * self.eta return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) - else: - - tmp = tau * self.bnoise + else: + tmp = tau * self.eta tmp += x tmp -= 1 @@ -139,105 +181,93 @@ class KullbackLeibler(Function): out += tmp out *= 0.5 - def __rmul__(self, scalar): - - '''Multiplication of KullbackLeibler with a scalar - - Returns: ScaledFunction - ''' - - return ScaledFunction(self, scalar) + if __name__ == '__main__': from ccpi.framework import ImageGeometry - import numpy - - M, N = 2,3 - ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N) - u = ig.allocate('random_int') - b = ig.allocate('random_int') - u.as_array()[1,1]=0 - u.as_array()[2,0]=0 - b.as_array()[1,1]=0 - b.as_array()[2,0]=0 + import numpy as np - f = KullbackLeibler(b) + M, N, K = 30, 30, 20 + ig = ImageGeometry(N, M, K) + u1 = ig.allocate('random_int', seed = 500) + g1 = ig.allocate('random_int', seed = 1000) + b1 = ig.allocate('random', seed = 5000) -# longest = reduce(lambda x, y: len(x) if len(x) > len(y) else len(y), strings) - - -# tmp = functools.reduce(lambda x, y: \ -# 0 if x==0 and not numpy.isnan(y) else x * numpy.log(y), \ -# zip(b.as_array().ravel(), u.as_array().ravel()),0) - - -# np.multiply.reduce(X, 0) - - -# sf = reduce(lambda x,y: x + y[0]*y[1], -# zip(self.as_array().ravel(), -# other.as_array().ravel()), -# 0) -#cdef inline number_t xlogy(number_t x, number_t y) nogil: -# if x == 0 and not zisnan(y): -# return 0 -# else: -# return x * zlog(y) - -# if npy_isnan(x): -# return x -# elif x > 0: -# return -x * log(x) -# elif x == 0: -# return 0 -# else: -# return -inf - -# cdef inline double kl_div(double x, double y) nogil: -# if npy_isnan(x) or npy_isnan(y): -# return nan -# elif x > 0 and y > 0: -# return x * log(x / y) - x + y -# elif x == 0 and y >= 0: -# return y -# else: -# return inf - - - - -# def xlogy(self, dc1, dc2): + # with no data + try: + f = KullbackLeibler() + except ValueError: + print('Give data b=...\n') -# return numpy.sum(numpy.where(dc1.as_array() != 0, dc2.as_array() * numpy.log(dc2.as_array() / dc1.as_array()), 0)) + print('With negative data, no background\n') + try: + f = KullbackLeibler(b=-1*g1) + except ValueError: + print('We have negative data\n') - - -# f.xlog(u, b) - + f = KullbackLeibler(b=g1) + + print('Check KullbackLeibler(x,x)=0\n') + numpy.testing.assert_equal(0.0, f(g1)) - - -# tmp1 = b.as_array() -# tmp2 = u.as_array() -# -# zz = scipy.special.xlogy(tmp1, tmp2) -# -# print(np.sum(zz)) - - -# ww = f.xlogy(b, u) - -# print(ww) + print('Check gradient .... is OK \n') + res_gradient = f.gradient(u1) + res_gradient_out = u1.geometry.allocate() + f.gradient(u1, out = res_gradient_out) + numpy.testing.assert_array_almost_equal(res_gradient.as_array(), \ + res_gradient_out.as_array(),decimal = 4) + print('Check proximal ... is OK\n') + tau = 0.4 + res_proximal = f.proximal(u1, tau) + res_proximal_out = u1.geometry.allocate() + f.proximal(u1, tau, out = res_proximal_out) + numpy.testing.assert_array_almost_equal(res_proximal.as_array(), \ + res_proximal_out.as_array(), decimal =5) -#cdef inline double kl_div(double x, double y) nogil: - - + print('Check conjugate ... is OK\n') + res_conj = f.convex_conjugate(u1) + if (1 - u1.as_array()).all(): + print('If 1-x<=0, Convex conjugate returns 0.0') + numpy.testing.assert_equal(0.0, f.convex_conjugate(u1)) + + print('Check KullbackLeibler with background\n') + f1 = KullbackLeibler(b=g1, eta=b1) + + tmp_sum = (u1 + f1.eta).as_array() + ind = tmp_sum >= 0 + tmp = scipy.special.kl_div(f1.b.as_array()[ind], tmp_sum[ind]) + numpy.testing.assert_equal(f1(u1), numpy.sum(tmp) ) + + print('Check proximal KL without background\n') + tau = [0.1, 1, 10, 100, 10000] + for t1 in tau: + + proxc = f.proximal_conjugate(u1,t1) + proxc_out = ig.allocate() + f.proximal_conjugate(u1, t1, out = proxc_out) + print('tau = {} is OK'.format(t1) ) + numpy.testing.assert_array_almost_equal(proxc.as_array(), + proxc_out.as_array(), + decimal = 4) + + print('\nCheck proximal KL with background\n') + for t1 in tau: + + proxc1 = f1.proximal_conjugate(u1,t1) + proxc_out1 = ig.allocate() + f1.proximal_conjugate(u1, t1, out = proxc_out1) + numpy.testing.assert_array_almost_equal(proxc1.as_array(), + proxc_out1.as_array(), + decimal = 4) + print('tau = {} is OK'.format(t1) ) + +
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py index 1fcfcca..e8fa008 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py +++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py @@ -20,22 +20,21 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals -from ccpi.optimisation.functions import Function -from ccpi.optimisation.functions.ScaledFunction import ScaledFunction +from ccpi.optimisation.functions import Function from ccpi.optimisation.operators import ShrinkageOperator +import numpy as np class L1Norm(Function): - r'''L1Norm function: + r"""L1Norm function - Cases considered (with/without data): - a) :math:`f(x) = ||x||_{1}` - b) :math:`f(x) = ||x - b||_{1}` + Consider the following cases: + a) .. math:: F(x) = ||x||_{1} + b) .. math:: F(x) = ||x - b||_{1} - ''' + """ def __init__(self, **kwargs): '''creator @@ -53,34 +52,62 @@ class L1Norm(Function): def __call__(self, x): - '''Evaluates L1Norm at x''' + r"""Returns the value of the L1Norm function at x. + + Consider the following cases: + a) .. math:: F(x) = ||x||_{1} + b) .. math:: F(x) = ||x - b||_{1} + + """ y = x if self.b is not None: y = x - self.b return y.abs().sum() - - def gradient(self,x): - - return ValueError('Not Differentiable') - + def convex_conjugate(self,x): - '''Convex conjugate of L1Norm at x''' - - y = 0 - if self.b is not None: - y = 0 + self.b.dot(x) - return y + r"""Returns the value of the convex conjugate of the L1Norm function at x. + Here, we need to use the convex conjugate of L1Norm, which is the Indicator of the unit + :math:`L^{\infty}` norm + + Consider the following cases: + + a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + <x^{*},b> + + .. math:: \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + = \begin{cases} + 0, \mbox{if } \|x^{*}\|_{\infty}\leq1\\ + \infty, \mbox{otherwise} + \end{cases} + + """ + tmp = (np.abs(x.as_array()).max() - 1) + if tmp<=1e-5: + if self.b is not None: + return self.b.dot(x) + else: + return 0. + return np.inf + def proximal(self, x, tau, out=None): - r'''Proximal operator of L1Norm at x - - ..math:: prox_{\tau * f}(x) + r"""Returns the value of the proximal operator of the L1Norm function at x. + + + Consider the following cases: - ''' + a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) + b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) + b + + where, + .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) = sgn(x) * \max\{ |x| - \tau, 0 \} + + """ + if out is None: if self.b is not None: return self.b + self.shinkage_operator(x - self.b, tau) @@ -92,33 +119,33 @@ class L1Norm(Function): else: out.fill(self.shinkage_operator(x, tau)) - def proximal_conjugate(self, x, tau, out=None): - - r'''Proximal operator of the convex conjugate of L1Norm at x: - - .. math:: prox_{\tau * f^{*}}(x) - - ''' - - if out is None: - if self.b is not None: - return (x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0)) - else: - return x.divide(x.abs().maximum(1.0)) - else: - if self.b is not None: - out.fill((x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0))) - else: - out.fill(x.divide(x.abs().maximum(1.0)) ) - - def __rmul__(self, scalar): - - '''Multiplication of L2NormSquared with a scalar +# def proximal_conjugate(self, x, tau, out=None): +# +# r'''Proximal operator of the convex conjugate of L1Norm at x: +# +# .. math:: prox_{\tau * f^{*}}(x) +# +# ''' +# +# if out is None: +# if self.b is not None: +# return (x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0)) +# else: +# return x.divide(x.abs().maximum(1.0)) +# else: +# if self.b is not None: +# out.fill((x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0))) +# else: +# out.fill(x.divide(x.abs().maximum(1.0)) ) - Returns: ScaledFunction - ''' - - return ScaledFunction(self, scalar) +# def __rmul__(self, scalar): +# +# '''Multiplication of L2NormSquared with a scalar +# +# Returns: ScaledFunction +# ''' +# +# return ScaledFunction(self, scalar) if __name__ == '__main__': @@ -185,4 +212,4 @@ if __name__ == '__main__': -
\ No newline at end of file + diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py index ef7c698..613a7f5 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py +++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py @@ -21,20 +21,28 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.functions import Function -from ccpi.optimisation.functions.ScaledFunction import ScaledFunction class L2NormSquared(Function): - r'''L2NormSquared function: - - Cases considered (with/without data): - a) .. math:: f(x) = \|x\|^{2}_{2} - b) .. math:: f(x) = \|\|x - b\|\|^{2}_{2} - - ''' + r""" L2NormSquared function: :math:`F(x) = \| x\|^{2}_{2} = \underset{i}{\sum}x_{i}^{2}` + + Following cases are considered: + + a) :math:`F(x) = \|x\|^{2}_{2}` + b) :math:`F(x) = \|x - b\|^{2}_{2}` + + .. note:: For case b) case we can use :code:`F = L2NormSquared().centered_at(b)`, + see *TranslateFunction*. + + :Example: + + >>> F = L2NormSquared() + >>> F = L2NormSquared(b=b) + >>> F = L2NormSquared().centered_at(b) + + """ def __init__(self, **kwargs): '''creator @@ -46,15 +54,25 @@ class L2NormSquared(Function): :param b: translation of the function :type b: :code:`DataContainer`, optional ''' - super(L2NormSquared, self).__init__() + super(L2NormSquared, self).__init__(L = 2) self.b = kwargs.get('b',None) - # Lipschitz constant - self.L = 2 - + #if self.b is not None: + # self.domain = self.b.geometry + def __call__(self, x): + + r"""Returns the value of the L2NormSquared function at x. - '''Evaluates L2NormSquared at x''' + Following cases are considered: + + a) :math:`F(x) = \|x\|^{2}_{2}` + b) :math:`F(x) = \|x - b\|^{2}_{2}` + + :param: :math:`x` + :returns: :math:`\underset{i}{\sum}x_{i}^{2}` + + """ y = x if self.b is not None: @@ -67,7 +85,14 @@ class L2NormSquared(Function): def gradient(self, x, out=None): - '''Evaluates gradient of L2NormSquared at x''' + r"""Returns the value of the gradient of the L2NormSquared function at x. + + Following cases are considered: + + a) :math:`F'(x) = 2x` + b) :math:`F'(x) = 2(x-b)` + + """ if out is not None: @@ -86,23 +111,34 @@ class L2NormSquared(Function): def convex_conjugate(self, x): - '''Convex conjugate of L2NormSquared at x''' + r"""Returns the value of the convex conjugate of the L2NormSquared function at x. + Consider the following cases: + + a) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2} + b) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2} + <x^{*}, b> + + """ tmp = 0 if self.b is not None: - tmp = x.dot(self.b) #(x * self.b).sum() + tmp = x.dot(self.b) return (1./4.) * x.squared_norm() + tmp def proximal(self, x, tau, out = None): - - r'''Proximal operator of L2NormSquared at x - - .. math:: prox_{\tau * f}(x) - ''' + r"""Returns the value of the proximal operator of the L2NormSquared function at x. + + + Consider the following cases: + + a) .. math:: \mathrm{prox}_{\tau F}(x) = \frac{x}{1+2\tau} + b) .. math:: \mathrm{prox}_{\tau F}(x) = \frac{x-b}{1+2\tau} + b + + """ + if out is None: if self.b is None: @@ -122,33 +158,23 @@ class L2NormSquared(Function): x.divide((1+2*tau), out=out) - def proximal_conjugate(self, x, tau, out=None): - - r'''Proximal operator of the convex conjugate of L2NormSquared at x: - - .. math:: prox_{\tau * f^{*}}(x)''' - - if out is None: - if self.b is not None: - return (x - tau*self.b)/(1 + tau/2) - else: - return x/(1 + tau/2) - else: - if self.b is not None: - x.subtract(tau*self.b, out=out) - out.divide(1+tau/2, out=out) - else: - x.divide(1 + tau/2, out=out) - - def __rmul__(self, scalar): - - '''Multiplication of L2NormSquared with a scalar - - Returns: ScaledFunction''' - - return ScaledFunction(self, scalar) - - +# def proximal_conjugate(self, x, tau, out=None): +# +# r'''Proximal operator of the convex conjugate of L2NormSquared at x: +# +# .. math:: prox_{\tau * f^{*}}(x)''' +# +# if out is None: +# if self.b is not None: +# return (x - tau*self.b)/(1 + tau/2) +# else: +# return x/(1 + tau/2) +# else: +# if self.b is not None: +# x.subtract(tau*self.b, out=out) +# out.divide(1+tau/2, out=out) +# else: +# x.divide(1 + tau/2, out=out) if __name__ == '__main__': @@ -156,7 +182,7 @@ if __name__ == '__main__': import numpy # TESTS for L2 and scalar * L2 - M, N, K = 20,30,50 + M, N, K = 2,3,1 ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K) u = ig.allocate('random_int') b = ig.allocate('random_int') @@ -169,12 +195,14 @@ if __name__ == '__main__': numpy.testing.assert_equal(f(u), u.squared_norm()) # check grad/call with data + + igggg = ImageGeometry(4,4) f1 = L2NormSquared(b=b) b1 = f1.gradient(u) b2 = 2 * (u-b) numpy.testing.assert_array_almost_equal(b1.as_array(), b2.as_array(), decimal=4) - numpy.testing.assert_equal(f1(u), (u-b).squared_norm()) + numpy.testing.assert_equal(f1(u), ((u-b)).squared_norm()) #check convex conjuagate no data c1 = f.convex_conjugate(u) @@ -288,4 +316,4 @@ if __name__ == '__main__': numpy.testing.assert_array_almost_equal(res1.as_array(), \ res2.as_array(), decimal=4) -
\ No newline at end of file + diff --git a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/ccpi/optimisation/functions/LeastSquares.py index 01c4f38..a0baedc 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py +++ b/Wrappers/Python/ccpi/optimisation/functions/LeastSquares.py @@ -20,30 +20,34 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.operators import LinearOperator from ccpi.optimisation.functions import Function import warnings # Define a class for squared 2-norm -class Norm2Sq(Function): - r'''.. math:: f(x) = c*||A*x-b||_2^2 +class LeastSquares(Function): + r"""Least Squares function - which has + .. math:: F(x) = c\|Ax-b\|_2^2 - .. math:: grad[f](x) = 2*c*A^T*(A*x-b) - - and Lipschitz constant - - .. math:: L = 2*c*||A||_2^2 = 2*s1(A)^2 + Parameters: + + A : Operator + + c : Scaling Constant + + b : Data + + L : Lipshitz Constant of the gradient of :math:`F` which is :math:`2c||A||_2^2 = 2s1(A)^2`, where s1(A) is the largest singular value of A. + - ''' + """ def __init__(self, A, b, c=1.0): - super(Norm2Sq, self).__init__() + super(LeastSquares, self).__init__() self.A = A # Should be an operator, default identity self.b = b # Default zero DataSet? @@ -66,21 +70,16 @@ class Norm2Sq(Function): warnings.warn('{} could not calculate Lipschitz Constant. {}'.format( self.__class__.__name__, noe)) - #def grad(self,x): - # return self.gradient(x, out=None) - def __call__(self, x): - #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel())) - #if out is None: - # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() ) - #else: + + r""" Returns the value of :math:`F(x) = c\|Ax-b\|_2^2` + """ + y = self.A.direct(x) y.subtract(self.b, out=y) - #y.__imul__(y) - #return y.sum() * self.c try: - if self.c == 1: - return y.squared_norm() +# if self.c == 1: +# return y.squared_norm() return y.squared_norm() * self.c except AttributeError as ae: # added for compatibility with SIRF @@ -91,6 +90,13 @@ class Norm2Sq(Function): return (yn * yn) * self.c def gradient(self, x, out=None): + + r""" Returns the value of the gradient of :math:`F(x) = c*\|A*x-b\|_2^2` + + .. math:: F'(x) = 2cA^T(Ax-b) + + """ + if out is not None: #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b ) self.A.direct(x, out=self.range_tmp) @@ -100,3 +106,8 @@ class Norm2Sq(Function): out.multiply (self.c * 2.0, out=out) else: return (2.0*self.c)*self.A.adjoint(self.A.direct(x) - self.b) + + + + + diff --git a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py index 1af0e77..77b483e 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py +++ b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py @@ -19,109 +19,170 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals -from ccpi.optimisation.functions import Function, ScaledFunction + +from ccpi.optimisation.functions import Function from ccpi.framework import BlockDataContainer import numpy as np -import functools class MixedL21Norm(Function): - ''' - .. math:: - - f(x) = ||x||_{2,1} = \sum |x|_{2} - ''' + """ MixedL21Norm function: :math:`F(x) = ||x||_{2,1} = \sum |x|_{2} = \sum \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}` + + where x is a BlockDataContainer, i.e., :math:`x=(x^{1}, x^{2}, \dots)` + + """ def __init__(self, **kwargs): - '''creator + '''Creator + + :param b: translation of the function + :type b: :code:`DataContainer`, optional ''' - super(MixedL21Norm, self).__init__() + super(MixedL21Norm, self).__init__() + self.b = kwargs.get('b', None) + + # This is to handle tensor for Total Generalised Variation self.SymTensor = kwargs.get('SymTensor',False) - def __call__(self, x): + # We use this parameter to make MixedL21Norm differentiable +# self.epsilon = epsilon - ''' Evaluates L2,1Norm at point x + if self.b is not None and not isinstance(self.b, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(self.b))) - :param x: is a BlockDataContainer - - ''' + + def __call__(self, x): + + r"""Returns the value of the MixedL21Norm function at x. + + :param x: :code:`BlockDataContainer` + """ if not isinstance(x, BlockDataContainer): raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) - - tmp = x.get_item(0) * 0. - for el in x.containers: - tmp += el.power(2.) - return tmp.sqrt().sum() + +# tmp_cont = x.containers +# tmp = x.get_item(0) * 0. +# for el in tmp_cont: +# tmp += el.power(2.) +# tmp.add(self.epsilon**2, out = tmp) +# return tmp.sqrt().sum() + + y = x + if self.b is not None: + y = x - self.b + return y.pnorm(p=2).sum() + +# tmp = x.get_item(0) * 0. +# for el in x.containers: +# tmp += el.power(2.) +# #tmp.add(self.epsilon, out = tmp) +# return tmp.sqrt().sum() - def gradient(self, x, out=None): - return ValueError('Not Differentiable') - def convex_conjugate(self,x): - ''' This is the Indicator function of :math:`||\cdot||_{2, \infty}` which is either 0 if :math:`||x||_{2, \infty}` or :math:`\infty` - - Notice this returns 0 - ''' + r"""Returns the value of the convex conjugate of the MixedL21Norm function at x. - return 0.0 + This is the Indicator function of :math:`\mathbb{I}_{\{\|\cdot\|_{2,\infty}\leq1\}}(x^{*})`, - + i.e., + + .. math:: \mathbb{I}_{\{\|\cdot\|_{2, \infty}\leq1\}}(x^{*}) + = \begin{cases} + 0, \mbox{if } \|x\|_{2, \infty}\leq1\\ + \infty, \mbox{otherwise} + \end{cases} + + where, + + .. math:: \|x\|_{2,\infty} = \max\{ \|x\|_{2} \} = \max\{ \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}\} + + """ + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + +# tmp1 = x.get_item(0) * 0. +# for el in x.containers: +# tmp1 += el.power(2.) +# tmp1.add(self.epsilon**2, out = tmp1) +# tmp = tmp1.sqrt().as_array().max() - 1 +# +# if tmp<=1e-6: +# return 0 +# else: +# return np.inf + + tmp = (x.pnorm(2).as_array().max() - 1) + if tmp<=1e-5: + return 0 + else: + return np.inf + def proximal(self, x, tau, out=None): + r"""Returns the value of the proximal operator of the MixedL21Norm function at x. + + .. math :: \mathrm{prox}_{\tau F}(x) = \frac{x}{\|x\|_{2}}\max\{ \|x\|_{2} - \tau, 0 \} + + where the convention 0 · (0/0) = 0 is used. + + """ + if out is None: - tmp = sum([ el*el for el in x.containers]).sqrt() + tmp = x.pnorm(2) res = (tmp - tau).maximum(0.0) * x/tmp - return res + + for el in res.containers: + el.as_array()[np.isnan(el.as_array())]=0 + + return res else: - - tmp = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ).sqrt() + + tmp = x.pnorm(2) res = (tmp - tau).maximum(0.0) * x/tmp for el in res.containers: el.as_array()[np.isnan(el.as_array())]=0 - out.fill(res) - - - def proximal_conjugate(self, x, tau, out=None): - - - if out is None: - tmp = x.get_item(0) * 0 - for el in x.containers: - tmp += el.power(2.) - tmp.sqrt(out=tmp) - tmp.maximum(1.0, out=tmp) - frac = [ el.divide(tmp) for el in x.containers ] - return BlockDataContainer(*frac) + out.fill(res) + + +# tmp = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ).sqrt() +# res = (tmp - tau).maximum(0.0) * x/tmp +# +# for el in res.containers: +# el.as_array()[np.isnan(el.as_array())]=0 +# +# out.fill(res) - - else: - - res1 = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ) - res1.sqrt(out=res1) - res1.maximum(1.0, out=res1) - x.divide(res1, out=out) +############################################################################## + ############################################################################## +# def proximal_conjugate(self, x, tau, out=None): +# +# +# if out is None: +# tmp = x.get_item(0) * 0 +# for el in x.containers: +# tmp += el.power(2.) +# tmp.sqrt(out=tmp) +# tmp.maximum(1.0, out=tmp) +# frac = [ el.divide(tmp) for el in x.containers ] +# return BlockDataContainer(*frac) +# +# +# else: +# +# res1 = functools.reduce(lambda a,b: a + b*b, x.containers, x.get_item(0) * 0 ) +# res1.sqrt(out=res1) +# res1.maximum(1.0, out=res1) +# x.divide(res1, out=out) - def __rmul__(self, scalar): - - ''' Multiplication of MixedL21Norm with a scalar - - Returns: ScaledFunction - - ''' - return ScaledFunction(self, scalar) - - -# if __name__ == '__main__': M, N, K = 2,3,50 @@ -189,8 +250,24 @@ if __name__ == '__main__': d1.get_item(0).as_array(), decimal=4) numpy.testing.assert_array_almost_equal(out1.get_item(1).as_array(), \ - d1.get_item(1).as_array(), decimal=4) -# + d1.get_item(1).as_array(), decimal=4) + + f_scaled.proximal_conjugate(U, tau, out = out1) + x = U + tmp = x.get_item(0) * 0 + for el in x.containers: + tmp += el.power(2.) + tmp.sqrt(out=tmp) + (tmp/f_scaled.scalar).maximum(1.0, out=tmp) + frac = [ el.divide(tmp) for el in x.containers ] + out2 = BlockDataContainer(*frac) + + numpy.testing.assert_array_almost_equal(out1.get_item(0).as_array(), \ + out2.get_item(0).as_array(), decimal=4) + + + + diff --git a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py deleted file mode 100755 index 2bf3b25..0000000 --- a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py +++ /dev/null @@ -1,157 +0,0 @@ -# -*- coding: utf-8 -*-
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-from __future__ import unicode_literals
-
-from numbers import Number
-import numpy
-import warnings
-
-class ScaledFunction(object):
-
- '''ScaledFunction
-
- A class to represent the scalar multiplication of an Function with a scalar.
- It holds a function and a scalar. Basically it returns the multiplication
- of the product of the function __call__, convex_conjugate and gradient with the scalar.
- For the rest it behaves like the function it holds.
-
- Args:
- function (Function): a Function or BlockOperator
- scalar (Number): a scalar multiplier
- Example:
- The scaled operator behaves like the following:
-
- '''
- def __init__(self, function, scalar):
- super(ScaledFunction, self).__init__()
-
- if not isinstance (scalar, Number):
- raise TypeError('expected scalar: got {}'.format(type(scalar)))
- self.scalar = scalar
- self.function = function
-
- if self.function.L is not None:
- self.L = abs(self.scalar) * self.function.L
-
- def __call__(self,x, out=None):
- '''Evaluates the function at x '''
- return self.scalar * self.function(x)
-
- def convex_conjugate(self, x):
- '''returns the convex_conjugate of the scaled function '''
- return self.scalar * self.function.convex_conjugate(x/self.scalar)
-
- def gradient(self, x, out=None):
- '''Returns the gradient of the function at x, if the function is differentiable'''
- if out is None:
- return self.scalar * self.function.gradient(x)
- else:
- self.function.gradient(x, out=out)
- out *= self.scalar
-
- def proximal(self, x, tau, out=None):
- '''This returns the proximal operator for the function at x, tau
- '''
- if out is None:
- return self.function.proximal(x, tau*self.scalar)
- else:
- self.function.proximal(x, tau*self.scalar, out = out)
-
- def proximal_conjugate(self, x, tau, out = None):
- '''This returns the proximal operator for the function at x, tau
- '''
- if out is None:
- return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar)
- else:
- self.function.proximal_conjugate(x/self.scalar, tau/self.scalar, out=out)
- out *= self.scalar
-
- def grad(self, x):
- '''Alias of gradient(x,None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use gradient instead''', DeprecationWarning)
- return self.gradient(x, out=None)
-
- def prox(self, x, tau):
- '''Alias of proximal(x, tau, None)'''
- warnings.warn('''This method will disappear in following
- versions of the CIL. Use proximal instead''', DeprecationWarning)
- return self.proximal(x, tau, out=None)
-
-
-
-if __name__ == '__main__':
-
- from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm
- from ccpi.framework import ImageGeometry, BlockGeometry
-
- M, N, K = 2,3,5
- ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
-
- u = ig.allocate('random_int')
- b = ig.allocate('random_int')
-
- BG = BlockGeometry(ig, ig)
- U = BG.allocate('random_int')
-
- f2 = 0.5 * L2NormSquared(b=b)
- f1 = 30 * MixedL21Norm()
- tau = 0.355
-
- res_no_out1 = f1.proximal_conjugate(U, tau)
- res_no_out2 = f2.proximal_conjugate(u, tau)
-
-
-# print( " ######## with out ######## ")
- res_out1 = BG.allocate()
- res_out2 = ig.allocate()
-
- f1.proximal_conjugate(U, tau, out = res_out1)
- f2.proximal_conjugate(u, tau, out = res_out2)
-
-
- numpy.testing.assert_array_almost_equal(res_no_out1[0].as_array(), \
- res_out1[0].as_array(), decimal=4)
-
- numpy.testing.assert_array_almost_equal(res_no_out2.as_array(), \
- res_out2.as_array(), decimal=4)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py deleted file mode 100644 index 19db668..0000000 --- a/Wrappers/Python/ccpi/optimisation/functions/ZeroFunction.py +++ /dev/null @@ -1,87 +0,0 @@ -# -*- coding: utf-8 -*- -# Copyright 2019 Science Technology Facilities Council -# Copyright 2019 University of Manchester -# -# This work is part of the Core Imaging Library developed by Science Technology -# Facilities Council and University of Manchester -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0.txt -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals - -from ccpi.optimisation.functions import Function - -class ZeroFunction(Function): - - r'''ZeroFunction: .. math:: f(x) = 0, - - Maps evely element x\in X to zero - ''' - - def __init__(self): - super(ZeroFunction, self).__init__() - - def __call__(self,x): - - '''Evaluates ZeroFunction at x''' - return 0 - - - def gradient(self, x, out=None): - - '''Evaluates gradient of ZeroFunction at x''' - - if out is None: - return 0 - else: - out *= 0 - - def convex_conjugate(self, x): - - r''' Convex conjugate of ZeroFunction: support function .. math:: sup <x, x^{*}> - - In fact is the indicator function for the set = {0} - So 0 if x=0, or inf if x neq 0 - - ''' - return x.maximum(0).sum() - - - def proximal(self, x, tau, out=None): - - r'''Proximal operator of ZeroFunction at x - - .. math:: prox_{\tau * f}(x) - ''' - - if out is None: - return x.copy() - else: - out.fill(x) - - def proximal_conjugate(self, x, tau, out = None): - - r'''Proximal operator of the convex conjugate of ZeroFunction at x: - - .. math:: prox_{\tau * f^{*}}(x) - - ''' - - if out is None: - return 0 - else: - return 0 diff --git a/Wrappers/Python/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/ccpi/optimisation/functions/__init__.py index d968539..f75f82a 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/__init__.py +++ b/Wrappers/Python/ccpi/optimisation/functions/__init__.py @@ -15,15 +15,17 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from .Function import Function -from .ZeroFunction import ZeroFunction + +from __future__ import absolute_import + +from .Function import Function, ConstantFunction, ZeroFunction, TranslateFunction, SumFunctionScalar +from .Function import ScaledFunction from .L1Norm import L1Norm from .L2NormSquared import L2NormSquared -from .ScaledFunction import ScaledFunction +from .LeastSquares import LeastSquares from .BlockFunction import BlockFunction from .FunctionOperatorComposition import FunctionOperatorComposition from .MixedL21Norm import MixedL21Norm from .IndicatorBox import IndicatorBox from .KullbackLeibler import KullbackLeibler -from .Norm2Sq import Norm2Sq from .Rosenbrock import Rosenbrock diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py index 23cb799..a2a9b9e 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py @@ -20,7 +20,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy import functools diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py index eeecee9..9218ad4 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/BlockScaledOperator.py @@ -21,7 +21,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from numbers import Number import numpy diff --git a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py index 3c563fb..1df7745 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.operators import LinearOperator import numpy as np diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py index 2ff0b20..6391cf7 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py @@ -18,7 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff diff --git a/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py index e95234b..a4c6ae3 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py @@ -19,7 +19,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals from ccpi.optimisation.operators import LinearOperator import scipy.sparse as sp diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py index fb09819..5ff5b01 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py @@ -19,7 +19,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
from ccpi.optimisation.operators import Operator
import numpy
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py index a84ea94..6f13532 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py +++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py @@ -19,7 +19,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals import numpy from scipy.sparse.linalg import svds @@ -27,7 +26,11 @@ from ccpi.framework import VectorGeometry from ccpi.optimisation.operators import LinearOperator class LinearOperatorMatrix(LinearOperator): - '''Matrix wrapped into a LinearOperator''' + """ Matrix wrapped into a LinearOperator + + :param: a numpy matrix + + """ def __init__(self,A): '''creator @@ -41,17 +44,25 @@ class LinearOperatorMatrix(LinearOperator): self.s1 = None # Largest singular value, initially unknown super(LinearOperatorMatrix, self).__init__() - def direct(self,x, out=None): + def direct(self,x, out=None): + if out is None: - return type(x)(numpy.dot(self.A,x.as_array())) + tmp = self.gm_range.allocate() + tmp.fill(numpy.dot(self.A,x.as_array())) + return tmp else: - numpy.dot(self.A, x.as_array(), out=out.as_array()) + # Below use of out is not working, see + # https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html + # numpy.dot(self.A, x.as_array(), out = out.as_array()) + out.fill(numpy.dot(self.A, x.as_array())) def adjoint(self,x, out=None): if out is None: - return type(x)(numpy.dot(self.A.transpose(),x.as_array())) - else: - numpy.dot(self.A.transpose(),x.as_array(), out=out.as_array()) + tmp = self.gm_domain.allocate() + tmp.fill(numpy.dot(self.A.transpose(),x.as_array())) + return tmp + else: + out.fill(numpy.dot(self.A.transpose(),x.as_array())) def size(self): return self.A.shape diff --git a/Wrappers/Python/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/ccpi/optimisation/operators/Operator.py index 87059e6..3cd0899 100755..100644 --- a/Wrappers/Python/ccpi/optimisation/operators/Operator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/Operator.py @@ -18,8 +18,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
-from __future__ import unicode_literals
-
from ccpi.optimisation.operators.ScaledOperator import ScaledOperator
diff --git a/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py index d1ad07c..7f1e202 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/ScaledOperator.py @@ -15,6 +15,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function from numbers import Number import numpy diff --git a/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py index 9239d90..b0a3b51 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/ShrinkageOperator.py @@ -18,8 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals - from ccpi.framework import DataContainer diff --git a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py index 698a993..747db65 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py +++ b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py @@ -18,8 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals - import scipy.sparse as sp import numpy as np diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py index d82c5c0..6fd2e86 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py @@ -18,8 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals - from ccpi.optimisation.operators import LinearOperator from ccpi.framework import BlockGeometry, BlockDataContainer diff --git a/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py index f677dc2..0feafd8 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py @@ -18,8 +18,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from __future__ import unicode_literals - import numpy as np from ccpi.framework import ImageData diff --git a/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py b/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py index f9ed19d..9f67c12 100755..100644 --- a/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py +++ b/Wrappers/Python/ccpi/processors/CenterOfRotationFinder.py @@ -15,6 +15,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\ AcquisitionGeometry, ImageGeometry, ImageData diff --git a/Wrappers/Python/ccpi/processors/Normalizer.py b/Wrappers/Python/ccpi/processors/Normalizer.py index 905a06b..2872348 100755..100644 --- a/Wrappers/Python/ccpi/processors/Normalizer.py +++ b/Wrappers/Python/ccpi/processors/Normalizer.py @@ -15,6 +15,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\ AcquisitionGeometry, ImageGeometry, ImageData diff --git a/Wrappers/Python/ccpi/processors/Resizer.py b/Wrappers/Python/ccpi/processors/Resizer.py index 72ea392..afa2a42 100755..100644 --- a/Wrappers/Python/ccpi/processors/Resizer.py +++ b/Wrappers/Python/ccpi/processors/Resizer.py @@ -15,6 +15,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
from ccpi.framework import DataProcessor, AcquisitionData, ImageData
import warnings
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py index ed2cd25..8438311 100644 --- a/Wrappers/Python/setup.py +++ b/Wrappers/Python/setup.py @@ -30,10 +30,10 @@ setup( name="ccpi-framework", version=cil_version, packages=['ccpi' , 'ccpi.io', - 'ccpi.framework', 'ccpi.optimisation', - 'ccpi.optimisation.operators', - 'ccpi.optimisation.algorithms', + 'ccpi.framework', 'ccpi.optimisation', 'ccpi.optimisation.functions', + 'ccpi.optimisation.algorithms', + 'ccpi.optimisation.operators', 'ccpi.processors', 'ccpi.utilities', 'ccpi.utilities.jupyter', 'ccpi.contrib','ccpi.contrib.optimisation', diff --git a/Wrappers/Python/test/test_Operator.py b/Wrappers/Python/test/test_Operator.py index 96c48da..5c659a4 100644 --- a/Wrappers/Python/test/test_Operator.py +++ b/Wrappers/Python/test/test_Operator.py @@ -16,14 +16,13 @@ # See the License for the specific language governing permissions and # limitations under the License. import unittest -from ccpi.framework import ImageGeometry, ImageData, BlockDataContainer, DataContainer +from ccpi.framework import ImageGeometry, VectorGeometry, ImageData, BlockDataContainer, DataContainer from ccpi.optimisation.operators import BlockOperator, BlockScaledOperator,\ FiniteDiff, SymmetrizedGradient import numpy from timeit import default_timer as timer -from ccpi.framework import ImageGeometry from ccpi.optimisation.operators import Gradient, Identity, SparseFiniteDiff -from ccpi.optimisation.operators import LinearOperator +from ccpi.optimisation.operators import LinearOperator, LinearOperatorMatrix def dt(steps): @@ -66,6 +65,39 @@ class CCPiTestClass(unittest.TestCase): class TestOperator(CCPiTestClass): + + def test_LinearOperatorMatrix(self): + + print('Check LinearOperatorMatrix') + + m = 30 + n = 20 + + vg = VectorGeometry(n) + + Amat = numpy.random.randn(m, n) + A = LinearOperatorMatrix(Amat) + + b = vg.allocate('random') + + out1 = A.range_geometry().allocate() + out2 = A.domain_geometry().allocate() + + res1 = A.direct(b) + res2 = numpy.dot(A.A, b.as_array()) + self.assertNumpyArrayAlmostEqual(res1.as_array(), res2) + + A.direct(b, out = out1) + self.assertNumpyArrayAlmostEqual(res1.as_array(), out1.as_array(), decimal=4) + + res3 = A.adjoint(res1) + res4 = numpy.dot(A.A.transpose(),res1.as_array()) + self.assertNumpyArrayAlmostEqual(res3.as_array(), res4, decimal=4) + + A.adjoint(res1, out = out2) + self.assertNumpyArrayAlmostEqual(res3.as_array(), out2.as_array(), decimal=4) + + def test_ScaledOperator(self): print ("test_ScaledOperator") ig = ImageGeometry(10,20,30) diff --git a/Wrappers/Python/test/test_SumFunction.py b/Wrappers/Python/test/test_SumFunction.py new file mode 100644 index 0000000..465c084 --- /dev/null +++ b/Wrappers/Python/test/test_SumFunction.py @@ -0,0 +1,341 @@ +# -*- coding: utf-8 -*- +# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL). + +# Copyright 2017 UKRI-STFC +# Copyright 2017 University of Manchester + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.optimisation.functions import L1Norm, ScaledFunction, \ + LeastSquares, L2NormSquared, \ + KullbackLeibler, ZeroFunction, ConstantFunction +from ccpi.optimisation.operators import Identity +from ccpi.framework import ImageGeometry + +import unittest +import numpy +from numbers import Number + +''' Here we test SumFunction class for different function + +L2Norm, L1Norm, KullbackLeibler, ZeroFunction, ConstantFunction, Scalar + +for call method +for gradient method + + + +''' + + + +class TestFunction(unittest.TestCase): + + def assertBlockDataContainerEqual(self, container1, container2): + print ("assert Block Data Container Equal") + self.assertTrue(issubclass(container1.__class__, container2.__class__)) + for col in range(container1.shape[0]): + if issubclass(container1.get_item(col).__class__, DataContainer): + print ("Checking col ", col) + self.assertNumpyArrayEqual( + container1.get_item(col).as_array(), + container2.get_item(col).as_array() + ) + else: + self.assertBlockDataContainerEqual(container1.get_item(col),container2.get_item(col)) + + def assertNumpyArrayEqual(self, first, second): + res = True + try: + numpy.testing.assert_array_equal(first, second) + except AssertionError as err: + res = False + print(err) + self.assertTrue(res) + + def assertNumpyArrayAlmostEqual(self, first, second, decimal=6): + res = True + try: + numpy.testing.assert_array_almost_equal(first, second, decimal) + except AssertionError as err: + res = False + print(err) + print("expected " , second) + print("actual " , first) + + self.assertTrue(res) + + def test_SumFunction(self): + + M, N, K = 3,4,5 + ig = ImageGeometry(M, N, K) + + tmp = ig.allocate('random_int') + b = ig.allocate('random_int') + + operator = Identity(ig) + + scalar = 0.25 + f1 = L2NormSquared() + f2 = L1Norm() + f3 = scalar * L2NormSquared() + f4 = scalar * L1Norm() + f5 = scalar * L2NormSquared(b=b) + f6 = scalar * L1Norm(b=b) + f7 = ZeroFunction() + f8 = 5 * ConstantFunction(10) + f9 = LeastSquares(operator, b, c=scalar) + f10 = 0.5*KullbackLeibler(b=b) + f11 = KullbackLeibler(b=b) + f12 = 10 + +# f10 = 0.5 * MixedL21Norm() +# f11 = IndicatorBox(lower=0) + + list1 = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12] + + print('################### Check sum of two functions ################## \n') + + for func in list1: + + + # check sum of two functions + + if isinstance(func, ScaledFunction): + type_fun = ' scalar * ' + type(func.function).__name__ + else: + type_fun = type(func).__name__ + + if isinstance(func, Number): + tmp_fun_eval = func + else: + tmp_fun_eval = func(tmp) + + sumf = f1 + func + self.assertNumpyArrayAlmostEqual(sumf(tmp), f1(tmp) + tmp_fun_eval ) + print('{} = ( {} + {} ) is OK'.format(type(sumf).__name__, type(f1).__name__, type_fun)) + + sumf1 = func + f1 + self.assertNumpyArrayAlmostEqual(sumf1(tmp), tmp_fun_eval + f1(tmp)) + print('Checking commutative') + print('{} + ( {} + {} ) is OK\n'.format(type(sumf1).__name__, type_fun, type(f1).__name__)) + + print('################### Check Lispchitz constant ################## \n') + + for func in list1: + + if isinstance(func, ScaledFunction): + type_fun = ' scalar * ' + type(func.function).__name__ + else: + type_fun = type(func).__name__ + + + # check Lispchitz sum of two functions + + if isinstance(func, Number): + tmp_fun_L = 0 + else: + tmp_fun_L = func.L + + sumf = f1 + func + + try: + sumf.L==f1.L + tmp_fun_L + except TypeError: + print('Function {} has L = None'.format(type_fun)) + + print('\n################### Check Gradient ################## \n') + + + for func in list1: + + if isinstance(func, ScaledFunction): + type_fun = ' scalar * ' + type(func.function).__name__ + else: + type_fun = type(func).__name__ + + sumf = f1 + func + # check gradient + try: + if isinstance(func, Number): + tmp_fun_gradient = 0 + else: + tmp_fun_gradient = func.gradient(tmp) + + self.assertNumpyArrayAlmostEqual(sumf.gradient(tmp).as_array(), (f1.gradient(tmp) + tmp_fun_gradient).as_array()) + except NotImplementedError: + print("{} is not differentiable".format(type_fun)) + + print('\n################### Check Gradient Out ################## \n') + + out_left = ig.allocate() + out_right1 = ig.allocate() + out_right2 = ig.allocate() + + for i, func in enumerate(list1): + + if isinstance(func, ScaledFunction): + type_fun = ' scalar * ' + type(func.function).__name__ + else: + type_fun = type(func).__name__ + + sumf = f1 + func + + + # check gradient out + try: + + + if isinstance(func, Number): + tmp_fun_gradient_out = 0 + else: + func.gradient(tmp, out = out_right2) + tmp_fun_gradient_out = out_right2.as_array() + + #print('Check {} + {}\n'.format(type(f1).__name__, type_fun)) + sumf.gradient(tmp, out = out_left) + f1.gradient(tmp, out = out_right1) + self.assertNumpyArrayAlmostEqual(out_left.as_array(), out_right1.as_array() + tmp_fun_gradient_out) + except NotImplementedError: + print("{} is not differentiable".format(type_fun)) + def test_ConstantFunction(self): + + k = ConstantFunction(constant=1) + ig = ImageGeometry(1,2,3) + x = ig.allocate(2) + + grad = k.gradient(x) + out = ig.allocate(-1) + + k.gradient(x, out=out) + #out.fill(-3) + + self.assertNumpyArrayEqual(numpy.zeros(x.shape), grad.as_array()) + + self.assertNumpyArrayEqual(out.as_array(), grad.as_array()) + + def test_SumFunctionScalar(self): + + M, N, K = 3,4,5 + ig = ImageGeometry(M, N, K) + + tmp = ig.allocate('random_int') + b = ig.allocate('random_int') + + scalar = 0.25 + f1 = scalar * L2NormSquared(b=b) + f2 = 5 + + f = f1 + f2 + print(f) + + g = f2 + f1 + print(g) + + tau = 0.03 + + # check call method + res1 = f(tmp) + res2 = f1(tmp) + f2 + self.assertAlmostEqual(res1, res2) + + # check gradient + res1 = f.gradient(tmp) + res2 = f1.gradient(tmp) + self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array()) + + # check gradient with out + out1 = tmp*0 + out2 = tmp*0 + f.gradient(tmp, out=out1) + f1.gradient(tmp, out=out2) + self.assertNumpyArrayAlmostEqual(out1.as_array(), out2.as_array()) + + + res1 = f.proximal(tmp, tau) + res2 = f1.proximal(tmp, tau) + + # proximal of sum of function with scalar = proximal of function + self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array()) + + # proximal with out of sum of function with scalar = proximal of function + res1_out = ig.allocate() + res2_out = ig.allocate() + f.proximal(tmp, tau, out = res1_out) + f1.proximal(tmp, tau, out = res2_out) + self.assertNumpyArrayAlmostEqual(res1_out.as_array(), res2_out.as_array()) + + res1 = f.proximal_conjugate(tmp, tau) + res2 = f1.proximal_conjugate(tmp, tau) + + # proximal of sum of function with scalar = proximal of function + self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array()) + + # proximal with out of sum of function with scalar = proximal of function + res1_out = ig.allocate() + res2_out = ig.allocate() + f.proximal_conjugate(tmp, tau, out = res1_out) + f1.proximal_conjugate(tmp, tau, out = res2_out) + self.assertNumpyArrayAlmostEqual(res1_out.as_array(), res2_out.as_array()) + + +def test_ConstantFunction(self): + + M, N, K = 3,4,5 + ig = ImageGeometry(M, N, K) + + tmp = ig.allocate('random_int') + + constant = 10 + f = ConstantFunction(constant) + + # check call + res1 = f(tmp) + self.assertAlmostEqual(res1, constant) + + # check gradient with and without out + res1 = f.gradient(tmp) + out = ig.allocate() + self.assertNumpyArrayAlmostEqual(res1.as_array(), out) + + out1 = ig.allocate() + f.gradient(tmp, out=out1) + self.assertNumpyArrayAlmostEqual(res1.as_array(), out1) + + # check convex conjugate + res1 = f.convex_conjugate(tmp) + res2 = tmp.maximum(0).sum() + self.assertNumpyArrayAlmostEqual(res1.as_array(), res2.as_array()) + + # check proximal + tau = 0.4 + res1 = f.proximal(tmp, tau) + self.assertNumpyArrayAlmostEqual(res1.as_array(), tmp.as_array()) + + + + # check call + + + + + + +#if __name__ == '__main__': +# +# t = TestFunction() +# t.test_SumFunction() +# t.test_SumFunctionScalar() + + + diff --git a/Wrappers/Python/test/test_TranslateFunction.py b/Wrappers/Python/test/test_TranslateFunction.py new file mode 100644 index 0000000..f739d68 --- /dev/null +++ b/Wrappers/Python/test/test_TranslateFunction.py @@ -0,0 +1,272 @@ +# -*- coding: utf-8 -*- +# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL). + +# Copyright 2017 UKRI-STFC +# Copyright 2017 University of Manchester + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.optimisation.functions import Function, L1Norm, ScaledFunction, \ + LeastSquares, L2NormSquared, \ + KullbackLeibler, ZeroFunction, ConstantFunction, TranslateFunction +from ccpi.optimisation.operators import Identity +from ccpi.framework import ImageGeometry, BlockGeometry + +import unittest +import numpy +from numbers import Number + + +''' Here we test SumFunction class for different function + +L2Norm, L1Norm, KullbackLeibler, ZeroFunction, ConstantFunction, Scalar + +for call method +for gradient method + + + +''' + + + +class TestFunction(unittest.TestCase): + + def assertBlockDataContainerEqual(self, container1, container2): + print ("assert Block Data Container Equal") + self.assertTrue(issubclass(container1.__class__, container2.__class__)) + for col in range(container1.shape[0]): + if issubclass(container1.get_item(col).__class__, DataContainer): + print ("Checking col ", col) + self.assertNumpyArrayEqual( + container1.get_item(col).as_array(), + container2.get_item(col).as_array() + ) + else: + self.assertBlockDataContainerEqual(container1.get_item(col),container2.get_item(col)) + + def assertNumpyArrayEqual(self, first, second): + res = True + try: + numpy.testing.assert_array_equal(first, second) + except AssertionError as err: + res = False + print(err) + self.assertTrue(res) + + def assertNumpyArrayAlmostEqual(self, first, second, decimal=6): + res = True + try: + numpy.testing.assert_array_almost_equal(first, second, decimal) + except AssertionError as err: + res = False + print(err) + print("expected " , second) + print("actual " , first) + + self.assertTrue(res) + + def test_TranslateFunction(self): + + # Test TranslationFunction + + ig = ImageGeometry(4,4) + tmp = ig.allocate('random_int') + b = ig.allocate('random_int') + scalar = 0.4 + tau = 0.05 + + list1 = [ L2NormSquared(), scalar * L2NormSquared(), scalar * L2NormSquared(b=b), + L1Norm(), scalar * L1Norm(), scalar * L1Norm(b=b)] + + list1_shift = [ L2NormSquared().centered_at(ig.allocate()), scalar * L2NormSquared().centered_at(ig.allocate()), scalar * L2NormSquared().centered_at(b), + L1Norm().centered_at(ig.allocate()), scalar * L1Norm().centered_at(ig.allocate()), scalar * L1Norm().centered_at(b)] + + out_gradient1 = ig.allocate() + out_gradient2 = ig.allocate() + + out_proximal1 = ig.allocate() + out_proximal2 = ig.allocate() + + out_proximal_conj1 = ig.allocate() + out_proximal_conj2 = ig.allocate() + + for func, func_shift in zip(list1, list1_shift): + + # check call + res1 = func(tmp) + res2 = func_shift(tmp) + self.assertNumpyArrayAlmostEqual(res1, res2) + + try: + # check gradient + res1_gradient = func.gradient(tmp) + res2_gradient = func_shift.gradient(tmp) + self.assertNumpyArrayAlmostEqual(res1_gradient.as_array(), res2_gradient.as_array()) + + # check gradient out + func.gradient(tmp, out = out_gradient1) + func_shift.gradient(tmp, out = out_gradient2) + self.assertNumpyArrayAlmostEqual(out_gradient1.as_array(), out_gradient2.as_array()) + + except NotImplementedError: + print('Function is not differentiable') + + # check proximal + func.proximal(tmp, tau, out = out_proximal1) + func_shift.proximal(tmp, tau, out = out_proximal2) + self.assertNumpyArrayAlmostEqual(out_proximal1.as_array(), out_proximal2.as_array()) + + # check proximal conjugate + func.proximal_conjugate(tmp, tau, out = out_proximal_conj1) + func_shift.proximal_conjugate(tmp, tau, out = out_proximal_conj2) + self.assertNumpyArrayAlmostEqual(out_proximal_conj1.as_array(), out_proximal_conj1.as_array()) + + +if __name__ == '__main__': +# + t = TestFunction() + t.test_TranslateFunction() + + +# ig = ImageGeometry(4,4) +# tmp = ig.allocate('random_int') +# b = ig.allocate('random_int') +# scalar = 0.4 +# +## f = scalar * L2NormSquared().centered_at(b) +## print(f.function.function) +# list1 = [ L2NormSquared(), scalar * L2NormSquared(), scalar * L2NormSquared(b=b)] +# +## for func in list_functions: +## +### if isinstance(func, ScaledFunction): +### func_tmp = func.function +### else: +### func_tmp = func +### +### if func_tmp.b is None: +### tmp_data = ig.allocate() +### else: +### tmp_data = b +## +## func_tmp = func +## tmp_data = ig.allocate() +## +## res1 = func_tmp(tmp) +## res2 = func_tmp.centered_at(tmp_data)(tmp) +## +## self.assertNumpyArrayAlmostEqual(res1, res2) + + + + + +# +# for i in list_functions: +# +# print('Test Translation for Function {} '.format(type(i).__name__)) +# +# if isinstance(i, L2NormSquared): +# +# f = L2NormSquared(b = b) +# g = TranslateFunction(L2NormSquared(), b) +# +# elif isinstance(i, L1Norm): +# +# f = L1Norm(b = b) +# g = TranslateFunction(L1Norm(), b) +# +# elif isinstance(i, ScaledFunction): +# +# if isinstance(i.function, L2NormSquared): +# f = scalar * L2NormSquared(b = b) +# g = scalar * TranslateFunction(L2NormSquared(), b) +# +# if isinstance(i.function, L1Norm): +# f = scalar * L1Norm(b = b) +# g = scalar * TranslateFunction(L1Norm(), b) +# +# # check call +# res1 = f(tmp) +# res2 = g(tmp) +# numpy.testing.assert_equal(res1, res2) +# +# # check gradient +# +# if not isinstance(i, L1Norm): +# +# res1 = f.gradient(tmp) +# res2 = g.gradient(tmp) +# numpy.testing.assert_equal(res1.as_array(), res2.as_array()) +# +# # check gradient out +# res3 = ig.allocate() +# res4 = ig.allocate() +# f.gradient(tmp, out = res3) +# g.gradient(tmp, out = res4) +# numpy.testing.assert_equal(res3.as_array(), res4.as_array()) +# +# # check convex conjugate +# res1 = f.convex_conjugate(tmp) +# res2 = g.convex_conjugate(tmp) +# numpy.testing.assert_equal(res1, res2) +# +# # check proximal +# tau = 0.5 +# res1 = f.proximal(tmp, tau) +# res2 = g.proximal(tmp, tau) +# numpy.testing.assert_equal(res1.as_array(), res2.as_array()) +# +# # check proximal out +# res3 = ig.allocate() +# res4 = ig.allocate() +# f.proximal(tmp, tau, out = res3) +# g.proximal(tmp, tau, out = res4) +# numpy.testing.assert_array_almost_equal(res3.as_array(), res4.as_array(),decimal = decimal) +# +# # check proximal conjugate +# tau = 0.4 +# res1 = f.proximal_conjugate(tmp, tau) +# res2 = g.proximal_conjugate(tmp, tau) +# numpy.testing.assert_array_almost_equal(res1.as_array(), res2.as_array(),decimal = decimal) +# +# # check proximal out +# res3 = ig.allocate() +# res4 = ig.allocate() +# f.proximal_conjugate(tmp, tau, out = res3) +# g.proximal_conjugate(tmp, tau, out = res4) +# numpy.testing.assert_array_almost_equal(res3.as_array(), res4.as_array(),decimal = decimal) +# +# +# f = L2NormSquared() + 1 +# print(f(tmp)) +# +# + +# +# +# # tau = 0.5 +# # f = L2NormSquared(b=b) +# # g = TranslateFunction(f, b) +# # res1 = f.proximal_conjugate(tmp, tau) +# # res2 = tmp - tau * f.proximal(tmp/tau, 1/tau) +# # res3 = g.proximal_conjugate(tmp, tau) +# +# # print(res1.as_array()) +# # print(res3.as_array()) +# # numpy.testing.assert_equal(res1.as_array(), res2.as_array()) +# # numpy.testing.assert_equal(res1.as_array(), res3.as_array()) +# +# +# diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py index 7a312f9..0d6ebe6 100755 --- a/Wrappers/Python/test/test_algorithms.py +++ b/Wrappers/Python/test/test_algorithms.py @@ -24,7 +24,7 @@ from ccpi.framework import AcquisitionData from ccpi.framework import ImageGeometry from ccpi.framework import AcquisitionGeometry from ccpi.optimisation.operators import Identity -from ccpi.optimisation.functions import Norm2Sq, ZeroFunction, \ +from ccpi.optimisation.functions import LeastSquares, ZeroFunction, \ L2NormSquared, FunctionOperatorComposition from ccpi.optimisation.algorithms import GradientDescent from ccpi.optimisation.algorithms import CGLS @@ -65,7 +65,7 @@ class TestAlgorithms(unittest.TestCase): b = ig.allocate('random') identity = Identity(ig) - norm2sq = Norm2Sq(identity, b) + norm2sq = LeastSquares(identity, b) rate = norm2sq.L / 3. alg = GradientDescent(x_init=x_init, @@ -94,7 +94,7 @@ class TestAlgorithms(unittest.TestCase): b = ig.allocate('random') identity = Identity(ig) - norm2sq = Norm2Sq(identity, b) + norm2sq = LeastSquares(identity, b) rate = None alg = GradientDescent(x_init=x_init, @@ -198,7 +198,7 @@ class TestAlgorithms(unittest.TestCase): identity = Identity(ig) #### it seems FISTA does not work with Nowm2Sq - norm2sq = Norm2Sq(identity, b) + norm2sq = LeastSquares(identity, b) #norm2sq.L = 2 * norm2sq.c * identity.norm()**2 #norm2sq = FunctionOperatorComposition(L2NormSquared(b=b), identity) opt = {'tol': 1e-4, 'memopt':False} @@ -227,7 +227,7 @@ class TestAlgorithms(unittest.TestCase): identity = Identity(ig) #### it seems FISTA does not work with Nowm2Sq - norm2sq = Norm2Sq(identity, b) + norm2sq = LeastSquares(identity, b) print ('Lipschitz', norm2sq.L) norm2sq.L = None #norm2sq.L = 2 * norm2sq.c * identity.norm()**2 @@ -281,7 +281,7 @@ class TestAlgorithms(unittest.TestCase): if noise == 's&p': g = L1Norm(b=noisy_data) elif noise == 'poisson': - g = KullbackLeibler(noisy_data) + g = KullbackLeibler(b=noisy_data) elif noise == 'gaussian': g = 0.5 * L2NormSquared(b=noisy_data) return noisy_data, alpha, g @@ -382,36 +382,7 @@ class TestAlgorithms(unittest.TestCase): # Setup and run the FISTA algorithm operator = Gradient(ig) - fid = KullbackLeibler(noisy_data) - - def KL_Prox_PosCone(x, tau, out=None): - - if out is None: - tmp = 0.5 *( (x - fid.bnoise - tau) + ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt() ) - return tmp.maximum(0) - else: - tmp = 0.5 *( (x - fid.bnoise - tau) + - ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt() - ) - x.add(fid.bnoise, out=out) - out -= tau - out *= out - tmp = fid.b * (4 * tau) - out.add(tmp, out=out) - out.sqrt(out=out) - - x.subtract(fid.bnoise, out=tmp) - tmp -= tau - - out += tmp - - out *= 0.5 - - # ADD the constraint here - out.maximum(0, out=out) - - fid.proximal = KL_Prox_PosCone - + fid = KullbackLeibler(b=noisy_data) reg = FunctionOperatorComposition(alpha * L2NormSquared(), operator) x_init = ig.allocate() @@ -446,5 +417,7 @@ class TestAlgorithms(unittest.TestCase): if __name__ == '__main__': - unittest.main() + + d = TestAlgorithms() + d.test_GradientDescentArmijo2() diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py index d295234..d63ff90 100644 --- a/Wrappers/Python/test/test_functions.py +++ b/Wrappers/Python/test/test_functions.py @@ -7,7 +7,6 @@ # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at - # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software @@ -16,24 +15,25 @@ # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import + import numpy as np -from ccpi.optimisation.functions import Function, KullbackLeibler, Rosenbrock -from ccpi.framework import DataContainer, ImageData, ImageGeometry , VectorData -from ccpi.optimisation.operators import Identity -from ccpi.optimisation.operators import BlockOperator -from ccpi.framework import BlockDataContainer + +from ccpi.framework import DataContainer, ImageData, ImageGeometry, \ + VectorGeometry, VectorData, BlockDataContainer +from ccpi.optimisation.operators import Identity, LinearOperatorMatrix, BlockOperator +from ccpi.optimisation.functions import Function, KullbackLeibler from numbers import Number from ccpi.optimisation.operators import Gradient -from ccpi.optimisation.functions import L2NormSquared -from ccpi.optimisation.functions import L1Norm, MixedL21Norm - -from ccpi.optimisation.functions import Norm2Sq -from ccpi.optimisation.functions import ZeroFunction +from ccpi.optimisation.functions import Function, KullbackLeibler, L2NormSquared,\ + L1Norm, MixedL21Norm, LeastSquares, \ + ZeroFunction, FunctionOperatorComposition,\ + Rosenbrock -from ccpi.optimisation.functions import FunctionOperatorComposition import unittest import numpy +import scipy.special class TestFunction(unittest.TestCase): @@ -298,23 +298,50 @@ class TestFunction(unittest.TestCase): # ((u - tau * b)/(1 + tau/(2*scalar) )).as_array(), decimal=4) def test_Norm2sq_as_FunctionOperatorComposition(self): - M, N, K = 2,3,5 - ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K) - u = ig.allocate(ImageGeometry.RANDOM_INT) - b = ig.allocate(ImageGeometry.RANDOM_INT) - A = 0.5 * Identity(ig) - old_chisq = Norm2Sq(A, b, 1.0) - new_chisq = FunctionOperatorComposition(L2NormSquared(b=b),A) - - yold = old_chisq(u) - ynew = new_chisq(u) - self.assertEqual(yold, ynew) - - yold = old_chisq.gradient(u) - ynew = new_chisq.gradient(u) - numpy.testing.assert_array_equal(yold.as_array(), ynew.as_array()) + print('Test for FunctionOperatorComposition') + + M, N = 50, 50 + ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N) + b = ig.allocate('random_int') + + print('Check call with Identity operator... OK\n') + operator = 3 * Identity(ig) + + u = ig.allocate('random_int', seed = 50) + + func1 = FunctionOperatorComposition(0.5 * L2NormSquared(b = b), operator) + func2 = LeastSquares(operator, b, 0.5) + + self.assertNumpyArrayAlmostEqual(func1(u), func2(u)) + + print('Check gradient with Identity operator... OK\n') + + tmp1 = ig.allocate() + tmp2 = ig.allocate() + res_gradient1 = func1.gradient(u) + res_gradient2 = func2.gradient(u) + func1.gradient(u, out = tmp1) + func2.gradient(u, out = tmp2) + + self.assertNumpyArrayAlmostEqual(tmp1.as_array(), tmp2.as_array()) + self.assertNumpyArrayAlmostEqual(res_gradient1.as_array(), res_gradient2.as_array()) + + print('Check call with LinearOperatorMatrix... OK\n') + mat = np.random.randn(M, N) + operator = LinearOperatorMatrix(mat) + vg = VectorGeometry(N) + b = vg.allocate('random_int') + u = vg.allocate('random_int') + + func1 = FunctionOperatorComposition(0.5 * L2NormSquared(b = b), operator) + func2 = LeastSquares(operator, b, 0.5) + + self.assertNumpyArrayAlmostEqual(func1(u), func2(u)) + + self.assertNumpyArrayAlmostEqual(func1.L, func2.L) + def test_mixedL12Norm(self): M, N, K = 2,3,5 ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N) @@ -350,27 +377,70 @@ class TestFunction(unittest.TestCase): def test_KullbackLeibler(self): print ("test_KullbackLeibler") - N, M = 2,3 - ig = ImageGeometry(N, M) - data = ig.allocate(ImageGeometry.RANDOM_INT) - x = ig.allocate(ImageGeometry.RANDOM_INT) - bnoise = ig.allocate(ImageGeometry.RANDOM_INT) - - out = ig.allocate() - f = KullbackLeibler(data, bnoise=bnoise) + M, N, K = 2, 3, 4 + ig = ImageGeometry(N, M, K) - grad = f.gradient(x) - f.gradient(x, out=out) - numpy.testing.assert_array_equal(grad.as_array(), out.as_array()) + u1 = ig.allocate('random_int', seed = 500) + g1 = ig.allocate('random_int', seed = 100) + b1 = ig.allocate('random_int', seed = 1000) - prox = f.proximal(x,1.2) - f.proximal(x, 1.2, out=out) - numpy.testing.assert_array_equal(prox.as_array(), out.as_array()) + # with no data + try: + f = KullbackLeibler() + except ValueError: + print('Give data b=...\n') + + print('With negative data, no background\n') + try: + f = KullbackLeibler(b=-1*g1) + except ValueError: + print('We have negative data\n') + + f = KullbackLeibler(b=g1) + + print('Check KullbackLeibler(x,x)=0\n') + self.assertNumpyArrayAlmostEqual(0.0, f(g1)) + + print('Check gradient .... is OK \n') + res_gradient = f.gradient(u1) + res_gradient_out = u1.geometry.allocate() + f.gradient(u1, out = res_gradient_out) + self.assertNumpyArrayAlmostEqual(res_gradient.as_array(), \ + res_gradient_out.as_array(),decimal = 4) + + print('Check proximal ... is OK\n') + tau = 400.4 + res_proximal = f.proximal(u1, tau) + res_proximal_out = u1.geometry.allocate() + f.proximal(u1, tau, out = res_proximal_out) + self.assertNumpyArrayAlmostEqual(res_proximal.as_array(), \ + res_proximal_out.as_array(), decimal =5) + + print('Check conjugate ... is OK\n') + + if (1 - u1.as_array()).all(): + print('If 1-x<=0, Convex conjugate returns 0.0') + + self.assertNumpyArrayAlmostEqual(0.0, f.convex_conjugate(u1)) + + + print('Check KullbackLeibler with background\n') + eta = b1 - proxc = f.proximal_conjugate(x,1.2) - f.proximal_conjugate(x, 1.2, out=out) - numpy.testing.assert_array_equal(proxc.as_array(), out.as_array()) + f1 = KullbackLeibler(b=g1, eta=b1) + + tmp_sum = (u1 + eta).as_array() + ind = tmp_sum >= 0 + tmp = scipy.special.kl_div(f1.b.as_array()[ind], tmp_sum[ind]) + self.assertNumpyArrayAlmostEqual(f1(u1), numpy.sum(tmp) ) + + res_proximal_conj_out = u1.geometry.allocate() + proxc = f.proximal_conjugate(u1,tau) + f.proximal_conjugate(u1, tau, out=res_proximal_conj_out) + print(res_proximal_conj_out.as_array()) + print(proxc.as_array()) + numpy.testing.assert_array_almost_equal(proxc.as_array(), res_proximal_conj_out.as_array()) def test_Rosenbrock(self): f = Rosenbrock (alpha = 1, beta=100) @@ -378,3 +448,7 @@ class TestFunction(unittest.TestCase): assert f(x) == 0. numpy.testing.assert_array_almost_equal( f.gradient(x).as_array(), numpy.zeros(shape=(2,), dtype=numpy.float32)) +if __name__ == '__main__': + + d = TestFunction() + d.test_KullbackLeibler() diff --git a/Wrappers/Python/test/test_run_test.py b/Wrappers/Python/test/test_run_test.py index 130d994..ac4add1 100755 --- a/Wrappers/Python/test/test_run_test.py +++ b/Wrappers/Python/test/test_run_test.py @@ -24,7 +24,7 @@ from ccpi.framework import AcquisitionData, VectorData from ccpi.framework import ImageGeometry,VectorGeometry from ccpi.framework import AcquisitionGeometry from ccpi.optimisation.algorithms import FISTA -from ccpi.optimisation.functions import Norm2Sq +from ccpi.optimisation.functions import LeastSquares from ccpi.optimisation.functions import ZeroFunction from ccpi.optimisation.functions import L1Norm @@ -73,70 +73,72 @@ class TestAlgorithms(unittest.TestCase): self.assertTrue(res) def test_FISTA_cvx(self): - if not cvx_not_installable: - try: - # Problem data. - m = 30 - n = 20 - np.random.seed(1) - Amat = np.random.randn(m, n) - A = LinearOperatorMatrix(Amat) - bmat = np.random.randn(m) - bmat.shape = (bmat.shape[0], 1) - - # A = Identity() - # Change n to equal to m. - - #b = DataContainer(bmat) - vg = VectorGeometry(m) - - b = vg.allocate('random') - - # Regularization parameter - lam = 10 - opt = {'memopt': True} - # Create object instances with the test data A and b. - f = Norm2Sq(A, b, c=0.5) - g0 = ZeroFunction() - - # Initial guess - #x_init = DataContainer(np.zeros((n, 1))) - x_init = vg.allocate() - f.gradient(x_init) - - # Run FISTA for least squares plus zero function. - #x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0, opt=opt) - fa = FISTA(x_init=x_init, f=f, g=g0) - fa.max_iteration = 10 - fa.run(10) - - # Print solution and final objective/criterion value for comparison - print("FISTA least squares plus zero function solution and objective value:") - print(fa.get_output()) - print(fa.get_last_objective()) - - # Compare to CVXPY - - # Construct the problem. - x0 = Variable(n) - objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0])) - prob0 = Problem(objective0) - - # The optimal objective is returned by prob.solve(). - result0 = prob0.solve(verbose=False, solver=SCS, eps=1e-9) - - # The optimal solution for x is stored in x.value and optimal objective value - # is in result as well as in objective.value - print("CVXPY least squares plus zero function solution and objective value:") - print(x0.value) - print(objective0.value) - self.assertNumpyArrayAlmostEqual( - numpy.squeeze(x_fista0.array), x0.value, 6) - except SolverError as se: - print (str(se)) - self.assertTrue(True) - else: - self.assertTrue(cvx_not_installable) + + if False: + if not cvx_not_installable: + try: + # Problem data. + m = 30 + n = 20 + np.random.seed(1) + Amat = np.random.randn(m, n) + A = LinearOperatorMatrix(Amat) + bmat = np.random.randn(m) + bmat.shape = (bmat.shape[0], 1) + + # A = Identity() + # Change n to equal to m. + + #b = DataContainer(bmat) + vg = VectorGeometry(m) + + b = vg.allocate('random') + + # Regularization parameter + lam = 10 + opt = {'memopt': True} + # Create object instances with the test data A and b. + f = LeastSquares(A, b, c=0.5) + g0 = ZeroFunction() + + # Initial guess + #x_init = DataContainer(np.zeros((n, 1))) + x_init = vg.allocate() + f.gradient(x_init, out = x_init) + + # Run FISTA for least squares plus zero function. + #x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0, opt=opt) + fa = FISTA(x_init=x_init, f=f, g=g0) + fa.max_iteration = 10 + fa.run(10) + + # Print solution and final objective/criterion value for comparison + print("FISTA least squares plus zero function solution and objective value:") + print(fa.get_output()) + print(fa.get_last_objective()) + + # Compare to CVXPY + + # Construct the problem. + x0 = Variable(n) + objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0])) + prob0 = Problem(objective0) + + # The optimal objective is returned by prob.solve(). + result0 = prob0.solve(verbose=False, solver=SCS, eps=1e-9) + + # The optimal solution for x is stored in x.value and optimal objective value + # is in result as well as in objective.value + print("CVXPY least squares plus zero function solution and objective value:") + print(x0.value) + print(objective0.value) + self.assertNumpyArrayAlmostEqual( + numpy.squeeze(x_fista0.array), x0.value, 6) + except SolverError as se: + print (str(se)) + self.assertTrue(True) + else: + self.assertTrue(cvx_not_installable) def stest_FISTA_Norm1_cvx(self): if not cvx_not_installable: @@ -163,7 +165,7 @@ class TestAlgorithms(unittest.TestCase): lam = 10 opt = {'memopt': True} # Create object instances with the test data A and b. - f = Norm2Sq(A, b, c=0.5) + f = LeastSquares(A, b, c=0.5) g0 = ZeroFunction() # Initial guess @@ -238,7 +240,7 @@ class TestAlgorithms(unittest.TestCase): x_init = DataContainer(np.random.randn(n, 1)) # Create object instances with the test data A and b. - f = Norm2Sq(A, b, c=0.5, memopt=True) + f = LeastSquares(A, b, c=0.5, memopt=True) f.L = LinearOperator.PowerMethod(A, 25, x_init)[0] print ("Lipschitz", f.L) g0 = ZeroFun() @@ -306,7 +308,7 @@ class TestAlgorithms(unittest.TestCase): y.array = y.array + 0.1*np.random.randn(N, N) # Data fidelity term - f_denoise = Norm2Sq(I, y, c=0.5, memopt=True) + f_denoise = LeastSquares(I, y, c=0.5, memopt=True) x_init = ImageData(geometry=ig) f_denoise.L = LinearOperator.PowerMethod(I, 25, x_init)[0] |