summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py160
-rw-r--r--Wrappers/Python/test/test_Operator.py104
6 files changed, 160 insertions, 112 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
index d71f597..a6c9545 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
@@ -240,4 +240,4 @@ if __name__ == '__main__':
-
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
index 09e550e..1c2c43f 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -177,4 +177,4 @@ if __name__ == '__main__':
-
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index 92e0116..f5108ba 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -280,4 +280,4 @@ if __name__ == '__main__':
numpy.testing.assert_array_almost_equal(res1.as_array(), \
res2.as_array(), decimal=4)
-
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
index 6e2f49a..0dd7d4b 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
@@ -194,7 +194,7 @@ class FiniteDiff(LinearOperator):
def adjoint(self, x, out=None):
-
+
x_asarr = x.as_array()
x_sz = len(x.shape)
outnone = False
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
index 8d14cf8..c85abfa 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -21,15 +21,12 @@ from __future__ import print_function
from __future__ import unicode_literals
-from ccpi.optimisation.operators import Gradient, Operator, LinearOperator,\
- ScaledOperator
-from ccpi.framework import ImageData, ImageGeometry, BlockGeometry, \
- BlockDataContainer
-import numpy
+from ccpi.optimisation.operators import LinearOperator
+from ccpi.framework import BlockGeometry, BlockDataContainer
from ccpi.optimisation.operators import FiniteDiff
-class SymmetrizedGradient(Gradient):
+class SymmetrizedGradient(LinearOperator):
r'''Symmetrized Gradient Operator: E: V -> W
@@ -49,21 +46,23 @@ class SymmetrizedGradient(Gradient):
|
'''
+ CORRELATION_SPACE = "Space"
+ CORRELATION_SPACECHANNEL = "SpaceChannels"
def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs):
- super(SymmetrizedGradient, self).__init__(gm_domain, bnd_cond, **kwargs)
+ super(SymmetrizedGradient, self).__init__()
- self.gm_domain = self.gm_range
+ self.gm_domain = gm_domain
self.bnd_cond = bnd_cond
-
- self.channels = self.gm_range.get_item(0).channels
-
+ self.correlation = kwargs.get('correlation',SymmetrizedGradient.CORRELATION_SPACE)
+
tmp_gm = len(self.gm_domain.geometries)*self.gm_domain.geometries
self.gm_range = BlockGeometry(*tmp_gm)
- self.FD = FiniteDiff(self.gm_domain, direction = 0, bnd_cond = self.bnd_cond)
+ # Define FD operator. We need one geometry from the BlockGeometry of the domain
+ self.FD = FiniteDiff(self.gm_domain.get_item(0), direction = 0, bnd_cond = self.bnd_cond)
if self.gm_domain.shape[0]==2:
self.order_ind = [0,2,1,3]
@@ -130,8 +129,6 @@ class SymmetrizedGradient(Gradient):
i+=1
tmp1+=tmp[j]
out[k].fill(tmp1)
-# tmp = self.adjoint(x)
-# out.fill(tmp)
def domain_geometry(self):
@@ -144,110 +141,59 @@ if __name__ == '__main__':
###########################################################################
## Symmetrized Gradient Tests
- from ccpi.framework import DataContainer
- from ccpi.optimisation.operators import Gradient, BlockOperator, FiniteDiff
+ from ccpi.framework import ImageGeometry
+ from ccpi.optimisation.operators import Gradient
import numpy as np
N, M = 2, 3
K = 2
C = 2
- ig1 = ImageGeometry(N, M)
- ig2 = ImageGeometry(N, M, channels=C)
+ ###########################################################################
+ # 2D geometry no channels
+ ig = ImageGeometry(N, M)
+ Grad = Gradient(ig)
- E1 = SymmetrizedGradient(ig1, correlation = 'Space', bnd_cond='Neumann')
+ E1 = SymmetrizedGradient(Grad.range_geometry())
+ np.testing.assert_almost_equal(E1.norm(), np.sqrt(8), 1e-5)
- try:
- E1 = SymmetrizedGradient(ig1, correlation = 'SpaceChannels', bnd_cond='Neumann')
- except:
- print("No Channels to correlate")
-
- E2 = SymmetrizedGradient(ig2, correlation = 'SpaceChannels', bnd_cond='Neumann')
-
print(E1.domain_geometry().shape, E1.range_geometry().shape)
- print(E2.domain_geometry().shape, E2.range_geometry().shape)
-
- #check Linear operator property
-
u1 = E1.domain_geometry().allocate('random_int')
- u2 = E2.domain_geometry().allocate('random_int')
-
- # Need to allocate random_int at the Range of SymGradient
-
- #a1 = ig1.allocate('random_int')
- #a2 = ig1.allocate('random_int')
- #a3 = ig1.allocate('random_int')
-
- #a4 = ig1.allocate('random_int')
- #a5 = ig1.allocate('random_int')
- #a6 = ig1.allocate('random_int')
-
- # TODO allocate has to create this symmetry by default!!!!!
- #w1 = BlockDataContainer(*[a1, a2, \
- # a2, a3])
- w1 = E1.range_geometry().allocate('random_int',symmetry=True)
-
- LHS = (E1.direct(u1) * w1).sum()
- RHS = (u1 * E1.adjoint(w1)).sum()
-
- numpy.testing.assert_equal(LHS, RHS)
+ w1 = E1.range_geometry().allocate('random_int', symmetry = True)
+
- u2 = E2.gm_domain.allocate('random_int')
+ lhs = E1.direct(u1).dot(w1)
+ rhs = u1.dot(E1.adjoint(w1))
+ np.testing.assert_almost_equal(lhs, rhs)
- #aa1 = ig2.allocate('random_int')
- #aa2 = ig2.allocate('random_int')
- #aa3 = ig2.allocate('random_int')
- #aa4 = ig2.allocate('random_int')
- #aa5 = ig2.allocate('random_int')
- #aa6 = ig2.allocate('random_int')
+ ###########################################################################
+ # 2D geometry with channels
+ ig2 = ImageGeometry(N, M, channels = C)
+ Grad2 = Gradient(ig2, correlation = 'Space')
- #w2 = BlockDataContainer(*[aa1, aa2, aa3, \
- # aa2, aa4, aa5, \
- # aa3, aa5, aa6])
- w2 = E2.range_geometry().allocate('random_int',symmetry=True)
-
+ E2 = SymmetrizedGradient(Grad2.range_geometry())
+ np.testing.assert_almost_equal(E2.norm(), np.sqrt(12), 1e-6)
- LHS1 = (E2.direct(u2) * w2).sum()
- RHS1 = (u2 * E2.adjoint(w2)).sum()
-
- numpy.testing.assert_equal(LHS1, RHS1)
-
- out = E1.range_geometry().allocate()
- E1.direct(u1, out=out)
- a1 = E1.direct(u1)
- numpy.testing.assert_array_equal(a1[0].as_array(), out[0].as_array())
- numpy.testing.assert_array_equal(a1[1].as_array(), out[1].as_array())
- numpy.testing.assert_array_equal(a1[2].as_array(), out[2].as_array())
- numpy.testing.assert_array_equal(a1[3].as_array(), out[3].as_array())
-
-
- out1 = E1.domain_geometry().allocate()
- E1.adjoint(w1, out=out1)
- b1 = E1.adjoint(w1)
-
- LHS_out = (out * w1).sum()
- RHS_out = (u1 * out1).sum()
- print(LHS_out, RHS_out)
-
-
- out2 = E2.range_geometry().allocate()
- E2.direct(u2, out=out2)
- a2 = E2.direct(u2)
-
- out21 = E2.domain_geometry().allocate()
- E2.adjoint(w2, out=out21)
- b2 = E2.adjoint(w2)
-
- LHS_out = (out2 * w2).sum()
- RHS_out = (u2 * out21).sum()
- print(LHS_out, RHS_out)
-
-
- out = E1.range_geometry().allocate()
- E1.direct(u1, out=out)
- E1.adjoint(out, out=out1)
-
- print(E1.norm())
- print(E2.norm())
-
-
+ print(E2.domain_geometry().shape, E2.range_geometry().shape)
+ u2 = E2.domain_geometry().allocate('random_int')
+ w2 = E2.range_geometry().allocate('random_int', symmetry = True)
+#
+ lhs2 = E2.direct(u2).dot(w2)
+ rhs2 = u2.dot(E2.adjoint(w2))
+ np.testing.assert_almost_equal(lhs2, rhs2)
+
+ ###########################################################################
+ # 3D geometry no channels
+ ig3 = ImageGeometry(N, M, K)
+ Grad3 = Gradient(ig3, correlation = 'Space')
+
+ E3 = SymmetrizedGradient(Grad3.range_geometry())
+ np.testing.assert_almost_equal(E3.norm(), np.sqrt(12), 1e-6)
+
+ print(E3.domain_geometry().shape, E3.range_geometry().shape)
+ u3 = E3.domain_geometry().allocate('random_int')
+ w3 = E3.range_geometry().allocate('random_int', symmetry = True)
+#
+ lhs3 = E3.direct(u3).dot(w3)
+ rhs3 = u3.dot(E3.adjoint(w3))
+ np.testing.assert_almost_equal(lhs3, rhs3) \ No newline at end of file
diff --git a/Wrappers/Python/test/test_Operator.py b/Wrappers/Python/test/test_Operator.py
index b26bb5d..3372b9b 100644
--- a/Wrappers/Python/test/test_Operator.py
+++ b/Wrappers/Python/test/test_Operator.py
@@ -18,13 +18,14 @@
import unittest
from ccpi.framework import ImageGeometry, ImageData, BlockDataContainer, DataContainer
from ccpi.optimisation.operators import BlockOperator, BlockScaledOperator,\
- FiniteDiff
+ FiniteDiff, SymmetrizedGradient
import numpy
from timeit import default_timer as timer
from ccpi.framework import ImageGeometry
from ccpi.optimisation.operators import Gradient, Identity, SparseFiniteDiff
from ccpi.optimisation.operators import LinearOperator
+
def dt(steps):
return steps[-1] - steps[-2]
@@ -170,6 +171,107 @@ class TestOperator(CCPiTestClass):
print ("Norm dT1 {} dT2 {}".format(t1-t0,t2-t1))
self.assertLess(t2-t1, t1-t0)
+class TestGradients(CCPiTestClass):
+ def setUp(self):
+ N, M = 20, 30
+ K = 20
+ C = 20
+ self.decimal = 1
+ self.iterations = 50
+ ###########################################################################
+ # 2D geometry no channels
+ self.ig = ImageGeometry(N, M)
+ self.ig2 = ImageGeometry(N, M, channels = C)
+ self.ig3 = ImageGeometry(N, M, K)
+
+ def test_SymmetrizedGradient1a(self):
+ ###########################################################################
+ ## Symmetrized Gradient Tests
+ print ("Test SymmetrizedGradient")
+ ###########################################################################
+ # 2D geometry no channels
+ # ig = ImageGeometry(N, M)
+ Grad = Gradient(self.ig)
+
+ E1 = SymmetrizedGradient(Grad.range_geometry())
+ numpy.testing.assert_almost_equal(E1.norm(iterations=self.iterations), numpy.sqrt(8), decimal = self.decimal)
+
+ def test_SymmetrizedGradient1b(self):
+ ###########################################################################
+ ## Symmetrized Gradient Tests
+ print ("Test SymmetrizedGradient")
+ ###########################################################################
+ # 2D geometry no channels
+ # ig = ImageGeometry(N, M)
+ Grad = Gradient(self.ig)
+
+ E1 = SymmetrizedGradient(Grad.range_geometry())
+ u1 = E1.domain_geometry().allocate('random_int')
+ w1 = E1.range_geometry().allocate('random_int', symmetry = True)
+
+
+ lhs = E1.direct(u1).dot(w1)
+ rhs = u1.dot(E1.adjoint(w1))
+ # self.assertAlmostEqual(lhs, rhs)
+ numpy.testing.assert_almost_equal(lhs, rhs)
+
+ def test_SymmetrizedGradient2(self):
+ ###########################################################################
+ # 2D geometry with channels
+ # ig2 = ImageGeometry(N, M, channels = C)
+ Grad2 = Gradient(self.ig2, correlation = 'Space')
+
+ E2 = SymmetrizedGradient(Grad2.range_geometry())
+
+ u2 = E2.domain_geometry().allocate('random_int')
+ w2 = E2.range_geometry().allocate('random_int', symmetry = True)
+ #
+ lhs2 = E2.direct(u2).dot(w2)
+ rhs2 = u2.dot(E2.adjoint(w2))
+
+ numpy.testing.assert_almost_equal(lhs2, rhs2)
+
+ def test_SymmetrizedGradient2a(self):
+ ###########################################################################
+ # 2D geometry with channels
+ # ig2 = ImageGeometry(N, M, channels = C)
+ Grad2 = Gradient(self.ig2, correlation = 'Space')
+
+ E2 = SymmetrizedGradient(Grad2.range_geometry())
+ numpy.testing.assert_almost_equal(E2.norm(iterations=self.iterations),
+ numpy.sqrt(8), decimal = self.decimal)
+
+
+ def test_SymmetrizedGradient3a(self):
+ ###########################################################################
+ # 3D geometry no channels
+ #ig3 = ImageGeometry(N, M, K)
+ Grad3 = Gradient(self.ig3, correlation = 'Space')
+
+ E3 = SymmetrizedGradient(Grad3.range_geometry())
+
+ norm1 = E3.norm()
+ norm2 = E3.calculate_norm(iterations=100)
+ print (norm1,norm2)
+ numpy.testing.assert_almost_equal(norm2, numpy.sqrt(12), decimal = self.decimal)
+
+ def test_SymmetrizedGradient3b(self):
+ ###########################################################################
+ # 3D geometry no channels
+ #ig3 = ImageGeometry(N, M, K)
+ Grad3 = Gradient(self.ig3, correlation = 'Space')
+
+ E3 = SymmetrizedGradient(Grad3.range_geometry())
+
+ u3 = E3.domain_geometry().allocate('random_int')
+ w3 = E3.range_geometry().allocate('random_int', symmetry = True)
+ #
+ lhs3 = E3.direct(u3).dot(w3)
+ rhs3 = u3.dot(E3.adjoint(w3))
+ numpy.testing.assert_almost_equal(lhs3, rhs3)
+ # self.assertAlmostEqual(lhs3, rhs3)
+ # self.assertTrue( LinearOperator.dot_test(E3) )
+