summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/reconstruction/algs.py128
-rw-r--r--Wrappers/Python/ccpi/reconstruction/astra_ops.py99
-rw-r--r--Wrappers/Python/ccpi/reconstruction/funcs.py118
-rw-r--r--Wrappers/Python/ccpi/reconstruction/ops.py162
4 files changed, 507 insertions, 0 deletions
diff --git a/Wrappers/Python/ccpi/reconstruction/algs.py b/Wrappers/Python/ccpi/reconstruction/algs.py
new file mode 100644
index 0000000..bfe9570
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/algs.py
@@ -0,0 +1,128 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy
+import time
+
+from funcs import BaseFunction
+
+def FISTA(x_init, f=None, g=None, opt=None):
+
+ # default inputs
+ if f is None: f = BaseFunction()
+ if g is None: g = BaseFunction()
+ if opt is None: opt = {'tol': 1e-4, 'iter': 1000}
+
+ # algorithmic parameters
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ # initialization
+ x_old = x_init
+ y = x_init;
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ invL = 1/f.L
+
+ t_old = 1
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ time0 = time.time()
+
+ u = y - invL*f.grad(y)
+
+ x = g.prox(u,invL)
+
+ t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2)))
+
+ y = x + (t_old-1)/t*(x-x_old)
+
+ x_old = x
+ t_old = t
+
+ # time and criterion
+ timing[it] = time.time() - time0
+ criter[it] = f.fun(x) + g.fun(x);
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ #print(it, 'out of', 10, 'iterations', end='\r');
+
+ criter = criter[0:it+1];
+ timing = numpy.cumsum(timing[0:it+1]);
+
+ return x, it, timing, criter
+
+def FBPD(x_init, f=None, g=None, h=None, opt=None):
+
+ # default inputs
+ if f is None: f = BaseFunction()
+ if g is None: g = BaseFunction()
+ if h is None: h = BaseFunction()
+ if opt is None: opt = {'tol': 1e-4, 'iter': 1000}
+
+ # algorithmic parameters
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ # step-sizes
+ tau = 2 / (g.L + 2);
+ sigma = (1/tau - g.L/2) / h.L;
+
+ inv_sigma = 1/sigma
+
+ # initialization
+ x = x_init
+ y = h.dir_op(x);
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ t = time.time()
+
+ # primal forward-backward step
+ x_old = x;
+ x = x - tau * ( g.grad(x) + h.adj_op(y) );
+ x = f.prox(x, tau);
+
+ # dual forward-backward step
+ y = y + sigma * h.dir_op(2*x - x_old);
+ y = y - sigma * h.prox(inv_sigma*y, inv_sigma);
+
+ # time and criterion
+ timing[it] = time.time() - t
+ criter[it] = f.fun(x) + g.fun(x) + h.fun(h.dir_op(x));
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ criter = criter[0:it+1];
+ timing = numpy.cumsum(timing[0:it+1]);
+
+ return x, it, timing, criter
diff --git a/Wrappers/Python/ccpi/reconstruction/astra_ops.py b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
new file mode 100644
index 0000000..0c95b73
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
@@ -0,0 +1,99 @@
+# -*- coding: utf-8 -*-
+# This work is independent part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+from ccpi.reconstruction.ops import Operator
+import astra
+import numpy
+from ccpi.framework import SinogramData, VolumeData
+from ccpi.reconstruction.ops import PowerMethodNonsquare
+
+class AstraProjector(Operator):
+ """A simple 2D/3D parallel/fan beam projection/backprojection class based
+ on ASTRA toolbox"""
+ def __init__(self, DetWidth, DetectorsDim, SourceOrig, OrigDetec,
+ AnglesVec, ObjSize, projtype, device):
+ super(AstraProjector, self).__init__()
+ self.DetectorsDim = DetectorsDim
+ self.AnglesVec = AnglesVec
+ self.ProjNumb = len(AnglesVec)
+ self.ObjSize = ObjSize
+ if projtype == 'parallel':
+ self.proj_geom = astra.create_proj_geom('parallel', DetWidth,
+ DetectorsDim, AnglesVec)
+ elif projtype == 'fanbeam':
+ self.proj_geom = astra.create_proj_geom('fanflat', DetWidth,
+ DetectorsDim, AnglesVec,
+ SourceOrig, OrigDetec)
+ else:
+ print ("Please select for projtype between 'parallel' and 'fanbeam'")
+ self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
+ if device == 'cpu':
+ self.proj_id = astra.create_projector('line', self.proj_geom,
+ self.vol_geom) # for CPU
+ self.device = 1
+ elif device == 'gpu':
+ self.proj_id = astra.create_projector('cuda', self.proj_geom,
+ self.vol_geom) # for GPU
+ self.device = 0
+ else:
+ print ("Select between 'cpu' or 'gpu' for device")
+ self.s1 = None
+ def direct(self, IM):
+ """Applying forward projection to IM [2D or 3D array]"""
+ if numpy.ndim(IM.as_array()) == 3:
+ slices = numpy.size(IM.as_array(),numpy.ndim(IM.as_array())-1)
+ DATA = numpy.zeros((self.ProjNumb,self.DetectorsDim,slices),
+ 'float32')
+ for i in range(0,slices):
+ sinogram_id, DATA[:,:,i] = \
+ astra.create_sino(IM[:,:,i].as_array(), self.proj_id)
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(self.proj_id)
+ else:
+ sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(self.proj_id)
+ return SinogramData(DATA)
+ def adjoint(self, DATA):
+ """Applying backprojection to DATA [2D or 3D]"""
+ if numpy.ndim(DATA) == 3:
+ slices = numpy.size(DATA.as_array(),numpy.ndim(DATA.as_array())-1)
+ IM = numpy.zeros((self.ObjSize,self.ObjSize,slices), 'float32')
+ for i in range(0,slices):
+ rec_id, IM[:,:,i] = \
+ astra.create_backprojection(DATA[:,:,i].as_array(),
+ self.proj_id)
+ astra.data2d.delete(rec_id)
+ astra.data2d.delete(self.proj_id)
+ else:
+ rec_id, IM = astra.create_backprojection(DATA.as_array(),
+ self.proj_id)
+ astra.data2d.delete(rec_id)
+ astra.data2d.delete(self.proj_id)
+ return VolumeData(IM)
+
+ def delete(self):
+ astra.data2d.delete(self.proj_id)
+
+ def get_max_sing_val(self):
+ self.s1, sall, svec = PowerMethodNonsquare(self,10)
+ return self.s1
+
+ def size(self):
+ return ( (self.AnglesVec.size, self.DetectorsDim), \
+ (self.ObjSize, self.ObjSize) )
+
diff --git a/Wrappers/Python/ccpi/reconstruction/funcs.py b/Wrappers/Python/ccpi/reconstruction/funcs.py
new file mode 100644
index 0000000..c6f29d2
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/funcs.py
@@ -0,0 +1,118 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+class BaseFunction(object):
+ def __init__(self): pass
+ def fun(self,x): return 0
+ def grad(self,x): return 0
+ def prox(self,x,tau): return x
+ def dir_op(self,x): return x
+ def adj_op(self,x): return x
+
+# Define a class for 2-norm
+class Norm2sq(BaseFunction):
+ '''
+ f(x) = c*||A*x-b||_2^2
+
+ which has
+
+ grad[f](x) = 2*c*A^T*(A*x-b)
+
+ and Lipschitz constant
+
+ L = 2*c*||A||_2^2 = 2*s1(A)^2
+
+ where s1(A) is the largest singular value of A.
+
+ '''
+
+ def __init__(self,A,b,c=1.0):
+ self.A = A # Should be an operator, default identity
+ self.b = b # Default zero DataSet?
+ self.c = c # Default 1.
+
+ # Compute the Lipschitz parameter from the operator.
+ # Initialise to None instead and only call when needed.
+ self.L = 2.0*self.c*(self.A.get_max_sing_val()**2)
+ super(Norm2sq, self).__init__()
+
+ def grad(self,x):
+ #return 2*self.c*self.A.adjoint( self.A.direct(x) - self.b )
+ return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
+
+ def fun(self,x):
+ #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
+ return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
+
+## Define a class to represent a least squares data fidelity
+#class LeastSquares(BaseFunction):
+#
+# b = None
+# A = None
+# L = None
+#
+# def __init__(self, A, b):
+# self.A = A
+# #b.shape = (b.shape[0],1)
+# self.b = b
+#
+# # Compute the Lipschitz parameter from the operator
+# # Initialise to None instead and only call when needed.
+# self.L = self.A.get_max_sing_val()**2
+#
+# def grad(self, x):
+# #return np.dot(self.A.transpose(), (np.dot(self.A,x) - self.b) )
+# return self.A.adjoint( self.A.direct(x) - self.b )
+#
+# def fun(self, x):
+# # p = np.dot(self.A, x)
+# return 0.5*( ( (self.A.direct(x)-self.b)**2).sum() )
+
+# Define a class to represent the zero-function, to test pure least squares
+# minimization using FISTA
+class ZeroFun(BaseFunction):
+
+ def __init__(self,gamma=0,L=1):
+ self.gamma = gamma
+ self.L = L
+ super(ZeroFun, self).__init__()
+
+ def fun(self,x):
+ return 0
+
+ def prox(self,x,tau):
+ return x
+
+# A more interesting example, least squares plus 1-norm minimization.
+# Define class to represent 1-norm including prox function
+class Norm1(BaseFunction):
+
+ def __init__(self,gamma):
+ # Do nothing
+ self.gamma = gamma
+ self.L = 1
+ super(Norm1, self).__init__()
+
+ def fun(self,x):
+ return self.gamma*(x.abs().sum())
+
+ def prox(self,x,tau):
+ return (x.abs() - tau*self.gamma).maximum(0) * x.sign()
+
diff --git a/Wrappers/Python/ccpi/reconstruction/ops.py b/Wrappers/Python/ccpi/reconstruction/ops.py
new file mode 100644
index 0000000..00a4a3c
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/ops.py
@@ -0,0 +1,162 @@
+
+import numpy as np
+import astra
+from scipy.sparse.linalg import svds
+from framework import DataSet, VolumeData, SinogramData, DataSetProcessor
+
+# Maybe operators need to know what types they take as inputs/outputs
+# to not just use generic DataSet
+
+
+class Operator:
+ def direct(self,x):
+ return x
+ def adjoint(self,x):
+ return x
+ def size(self):
+ # To be defined for specific class
+ return None
+
+# Or should we rather have an attribute isLinear instead of separate class?
+
+#class OperatorLinear(Operator):
+#
+# def __init__():
+
+class ForwardBackProjector(Operator):
+
+ # The constructor should set up everything, ie at least hold equivalent of
+ # projection geometry and volume geometry, so that when calling direct and
+ # adjoint methods, only the volume/sinogram is needed as input. Quite
+ # similar to opTomo operator.
+
+ def __init__(self):
+ # do nothing
+ i = 1
+
+
+class LinearOperatorMatrix(Operator):
+ def __init__(self,A):
+ self.A = A
+ self.s1 = None # Largest singular value, initially unknown
+
+ def direct(self,x):
+ return DataSet(np.dot(self.A,x.as_array()))
+
+ def adjoint(self,x):
+ return DataSet(np.dot(self.A.transpose(),x.as_array()))
+
+ def size(self):
+ return self.A.shape
+
+ def get_max_sing_val(self):
+ # If unknown, compute and store. If known, simply return it.
+ if self.s1 is None:
+ self.s1 = svds(self.A,1,return_singular_vectors=False)[0]
+ return self.s1
+ else:
+ return self.s1
+
+class Identity(Operator):
+ def __init__(self):
+ self.s1 = 1.0
+
+ def direct(self,x):
+ return x
+
+ def adjoint(self,x):
+ return x
+
+ def size(self):
+ return NotImplemented
+
+ def get_max_sing_val(self):
+ return self.s1
+
+class AstraProjector:
+ """A simple 2D/3D parallel/fan beam projection/backprojection class based on ASTRA toolbox"""
+ def __init__(self, DetWidth, DetectorsDim, SourceOrig, OrigDetec, AnglesVec, ObjSize, projtype, device):
+ self.DetectorsDim = DetectorsDim
+ self.AnglesVec = AnglesVec
+ self.ProjNumb = len(AnglesVec)
+ self.ObjSize = ObjSize
+ if projtype == 'parallel':
+ self.proj_geom = astra.create_proj_geom('parallel', DetWidth, DetectorsDim, AnglesVec)
+ elif projtype == 'fanbeam':
+ self.proj_geom = astra.create_proj_geom('fanflat', DetWidth, DetectorsDim, AnglesVec, SourceOrig, OrigDetec)
+ else:
+ print ("Please select for projtype between 'parallel' and 'fanbeam'")
+ self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
+ if device == 'cpu':
+ self.proj_id = astra.create_projector('line', self.proj_geom, self.vol_geom) # for CPU
+ self.device = 1
+ elif device == 'gpu':
+ self.proj_id = astra.create_projector('cuda', self.proj_geom, self.vol_geom) # for GPU
+ self.device = 0
+ else:
+ print ("Select between 'cpu' or 'gpu' for device")
+ self.s1 = None
+ def direct(self, IM):
+ """Applying forward projection to IM [2D or 3D array]"""
+ if np.ndim(IM.as_array()) == 3:
+ slices = np.size(IM.as_array(),np.ndim(IM.as_array())-1)
+ DATA = np.zeros((self.ProjNumb,self.DetectorsDim,slices), 'float32')
+ for i in range(0,slices):
+ sinogram_id, DATA[:,:,i] = astra.create_sino(IM[:,:,i].as_array(), self.proj_id)
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(self.proj_id)
+ else:
+ sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(self.proj_id)
+ return SinogramData(DATA)
+ def adjoint(self, DATA):
+ """Applying backprojection to DATA [2D or 3D]"""
+ if np.ndim(DATA) == 3:
+ slices = np.size(DATA.as_array(),np.ndim(DATA.as_array())-1)
+ IM = np.zeros((self.ObjSize,self.ObjSize,slices), 'float32')
+ for i in range(0,slices):
+ rec_id, IM[:,:,i] = astra.create_backprojection(DATA[:,:,i].as_array(), self.proj_id)
+ astra.data2d.delete(rec_id)
+ astra.data2d.delete(self.proj_id)
+ else:
+ rec_id, IM = astra.create_backprojection(DATA.as_array(), self.proj_id)
+ astra.data2d.delete(rec_id)
+ astra.data2d.delete(self.proj_id)
+ return VolumeData(IM)
+
+ def delete(self):
+ astra.data2d.delete(self.proj_id)
+
+ def get_max_sing_val(self):
+ self.s1, sall, svec = PowerMethodNonsquare(self,10)
+ return self.s1
+
+ def size(self):
+ return ( (self.AnglesVec.size, self.DetectorsDim), \
+ (self.ObjSize, self.ObjSize) )
+
+def PowerMethodNonsquare(op,numiters):
+ # Initialise random
+ inputsize = op.size()[1]
+ x0 = DataSet(np.random.randn(inputsize[0],inputsize[1]))
+ s = np.zeros(numiters)
+ # Loop
+ for it in np.arange(numiters):
+ x1 = op.adjoint(op.direct(x0))
+ x1norm = np.sqrt((x1**2).sum())
+ s[it] = (x1*x0).sum() / (x0*x0).sum()
+ x0 = (1.0/x1norm)*x1
+ return np.sqrt(s[-1]), np.sqrt(s), x0
+
+#def PowerMethod(op,numiters):
+# # Initialise random
+# x0 = np.random.randn(400)
+# s = np.zeros(numiters)
+# # Loop
+# for it in np.arange(numiters):
+# x1 = np.dot(op.transpose(),np.dot(op,x0))
+# x1norm = np.sqrt(np.sum(np.dot(x1,x1)))
+# s[it] = np.dot(x1,x0) / np.dot(x1,x0)
+# x0 = (1.0/x1norm)*x1
+# return s, x0 \ No newline at end of file