diff options
Diffstat (limited to 'Wrappers/Python')
50 files changed, 7191 insertions, 15 deletions
diff --git a/Wrappers/Python/build/lib/ccpi/__init__.py b/Wrappers/Python/build/lib/ccpi/__init__.py new file mode 100644 index 0000000..cf2d93d --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/__init__.py @@ -0,0 +1,18 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License.
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py new file mode 100644 index 0000000..8e55b67 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py @@ -0,0 +1,332 @@ +# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:04:45 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import DataContainer
+#from ccpi.framework import AcquisitionData, ImageData
+#from ccpi.optimisation.operators import Operator, LinearOperator
+
+class BlockDataContainer(object):
+ '''Class to hold DataContainers as column vector'''
+ __array_priority__ = 1
+ def __init__(self, *args, **kwargs):
+ ''''''
+ self.containers = args
+ self.index = 0
+ #shape = kwargs.get('shape', None)
+ #if shape is None:
+ # shape = (len(args),1)
+ shape = (len(args),1)
+ self.shape = shape
+ #print (self.shape)
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements, len(args)))
+
+
+ def __iter__(self):
+ '''BlockDataContainer is Iterable'''
+ return self
+ def next(self):
+ '''python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ try:
+ out = self[self.index]
+ except IndexError as ie:
+ raise StopIteration()
+ self.index+=1
+ return out
+
+ def is_compatible(self, other):
+ '''basic check if the size of the 2 objects fit'''
+ if isinstance(other, Number):
+ return True
+ elif isinstance(other, list):
+ for ot in other:
+ if not isinstance(ot, (Number,\
+ numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ raise ValueError('List/ numpy array can only contain numbers {}'\
+ .format(type(ot)))
+ return len(self.containers) == len(other)
+ elif isinstance(other, numpy.ndarray):
+ return len(self.containers) == len(other)
+ elif issubclass(other.__class__, DataContainer):
+ return self.get_item(0).shape == other.shape
+ return len(self.containers) == len(other.containers)
+
+ def get_item(self, row):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ return self.containers[row]
+
+ def __getitem__(self, row):
+ return self.get_item(row)
+
+ def add(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for add')
+ out = kwargs.get('out', None)
+ #print ("args" , *args)
+ if isinstance(other, Number):
+ return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+
+ return type(self)(
+ *[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def subtract(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for subtract')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def multiply(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('{} Incompatible for multiply'.format(other))
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list):
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def divide(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for divide')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def power(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for power')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.power(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape)
+
+ def maximum(self,other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for maximum')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.maximum(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape)
+
+ ## unary operations
+ def abs(self, *args, **kwargs):
+ return type(self)(*[ el.abs(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def sign(self, *args, **kwargs):
+ return type(self)(*[ el.sign(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def sqrt(self, *args, **kwargs):
+ return type(self)(*[ el.sqrt(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def conjugate(self, out=None):
+ return type(self)(*[el.conjugate() for el in self.containers], shape=self.shape)
+
+ ## reductions
+ def sum(self, *args, **kwargs):
+ return numpy.sum([ el.sum(*args, **kwargs) for el in self.containers])
+ def squared_norm(self):
+ y = numpy.asarray([el.squared_norm() for el in self.containers])
+ return y.sum()
+ def norm(self):
+ return numpy.sqrt(self.squared_norm())
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+ def clone(self):
+ return type(self)(*[el.copy() for el in self.containers], shape=self.shape)
+ def fill(self, x):
+ for el,ot in zip(self.containers, x):
+ el.fill(ot)
+
+ def __add__(self, other):
+ return self.add( other )
+ # __radd__
+
+ def __sub__(self, other):
+ return self.subtract( other )
+ # __rsub__
+
+ def __mul__(self, other):
+ return self.multiply(other)
+ # __rmul__
+
+ def __div__(self, other):
+ return self.divide(other)
+ # __rdiv__
+ def __truediv__(self, other):
+ return self.divide(other)
+
+ def __pow__(self, other):
+ return self.power(other)
+ # reverse operand
+ def __radd__(self, other):
+ '''Reverse addition
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ '''Reverse subtraction
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ '''Reverse multiplication
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ '''Reverse division
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ '''Reverse truedivision
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ '''Reverse power
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return other.power(self)
+
+ def __iadd__(self, other):
+ '''Inline addition'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el += ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el += other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __iadd__')
+ for el,ot in zip(self.containers, other):
+ el += ot
+ return self
+ # __iadd__
+
+ def __isub__(self, other):
+ '''Inline subtraction'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el -= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el -= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __isub__')
+ for el,ot in zip(self.containers, other):
+ el -= ot
+ return self
+ # __isub__
+
+ def __imul__(self, other):
+ '''Inline multiplication'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el *= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el *= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __imul__')
+ for el,ot in zip(self.containers, other):
+ el *= ot
+ return self
+ # __imul__
+
+ def __idiv__(self, other):
+ '''Inline division'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el /= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el /= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __idiv__')
+ for el,ot in zip(self.containers, other):
+ el /= ot
+ return self
+ # __rdiv__
+ def __itruediv__(self, other):
+ '''Inline truedivision'''
+ return self.__idiv__(other)
+
diff --git a/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py b/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py new file mode 100644 index 0000000..d336305 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py @@ -0,0 +1,34 @@ +from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import BlockDataContainer
+#from ccpi.optimisation.operators import Operator, LinearOperator
+
+class BlockGeometry(object):
+ '''Class to hold Geometry as column vector'''
+ #__array_priority__ = 1
+ def __init__(self, *args, **kwargs):
+ ''''''
+ self.geometries = args
+ self.index = 0
+ #shape = kwargs.get('shape', None)
+ #if shape is None:
+ # shape = (len(args),1)
+ shape = (len(args),1)
+ self.shape = shape
+ #print (self.shape)
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements, len(args)))
+
+ def allocate(self, value=0, dimension_labels=None):
+ containers = [geom.allocate(value) for geom in self.geometries]
+ return BlockDataContainer(*containers)
+
diff --git a/Wrappers/Python/build/lib/ccpi/framework/__init__.py b/Wrappers/Python/build/lib/ccpi/framework/__init__.py new file mode 100644 index 0000000..66e2f56 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/framework/__init__.py @@ -0,0 +1,25 @@ +# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:00:18 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+
+from .framework import DataContainer
+from .framework import ImageData, AcquisitionData
+from .framework import ImageGeometry, AcquisitionGeometry
+from .framework import find_key, message
+from .framework import DataProcessor
+from .framework import AX, PixelByPixelDataProcessor, CastDataContainer
+from .BlockDataContainer import BlockDataContainer
+from .BlockGeometry import BlockGeometry
diff --git a/Wrappers/Python/build/lib/ccpi/framework/framework.py b/Wrappers/Python/build/lib/ccpi/framework/framework.py new file mode 100644 index 0000000..ae9faf7 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/framework/framework.py @@ -0,0 +1,1493 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +import numpy +import sys +from datetime import timedelta, datetime +import warnings +from functools import reduce +from numbers import Number + +def find_key(dic, val): + """return the key of dictionary dic given the value""" + return [k for k, v in dic.items() if v == val][0] + +def message(cls, msg, *args): + msg = "{0}: " + msg + for i in range(len(args)): + msg += " {%d}" %(i+1) + args = list(args) + args.insert(0, cls.__name__ ) + + return msg.format(*args ) + + +class ImageGeometry(object): + RANDOM = 'random' + RANDOM_INT = 'random_int' + CHANNEL = 'channel' + ANGLE = 'angle' + VERTICAL = 'vertical' + HORIZONTAL_X = 'horizontal_x' + HORIZONTAL_Y = 'horizontal_y' + + def __init__(self, + voxel_num_x=0, + voxel_num_y=0, + voxel_num_z=0, + voxel_size_x=1, + voxel_size_y=1, + voxel_size_z=1, + center_x=0, + center_y=0, + center_z=0, + channels=1): + + self.voxel_num_x = voxel_num_x + self.voxel_num_y = voxel_num_y + self.voxel_num_z = voxel_num_z + self.voxel_size_x = voxel_size_x + self.voxel_size_y = voxel_size_y + self.voxel_size_z = voxel_size_z + self.center_x = center_x + self.center_y = center_y + self.center_z = center_z + self.channels = channels + + # this is some code repetition + if self.channels > 1: + if self.voxel_num_z>1: + self.length = 4 + self.shape = (self.channels, self.voxel_num_z, self.voxel_num_y, self.voxel_num_x) + dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.VERTICAL, + ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X] + else: + self.length = 3 + self.shape = (self.channels, self.voxel_num_y, self.voxel_num_x) + dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X] + else: + if self.voxel_num_z>1: + self.length = 3 + self.shape = (self.voxel_num_z, self.voxel_num_y, self.voxel_num_x) + dim_labels = [ImageGeometry.VERTICAL, ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + else: + self.length = 2 + self.shape = (self.voxel_num_y, self.voxel_num_x) + dim_labels = [ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X] + + self.dimension_labels = dim_labels + + def get_min_x(self): + return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x + + def get_max_x(self): + return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x + + def get_min_y(self): + return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y + + def get_max_y(self): + return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y + + def get_min_z(self): + if not self.voxel_num_z == 0: + return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z + else: + return 0 + + def get_max_z(self): + if not self.voxel_num_z == 0: + return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z + else: + return 0 + + def clone(self): + '''returns a copy of ImageGeometry''' + return ImageGeometry( + self.voxel_num_x, + self.voxel_num_y, + self.voxel_num_z, + self.voxel_size_x, + self.voxel_size_y, + self.voxel_size_z, + self.center_x, + self.center_y, + self.center_z, + self.channels) + def __str__ (self): + repres = "" + repres += "Number of channels: {0}\n".format(self.channels) + repres += "voxel_num : x{0},y{1},z{2}\n".format(self.voxel_num_x, self.voxel_num_y, self.voxel_num_z) + repres += "voxel_size : x{0},y{1},z{2}\n".format(self.voxel_size_x, self.voxel_size_y, self.voxel_size_z) + repres += "center : x{0},y{1},z{2}\n".format(self.center_x, self.center_y, self.center_z) + return repres + def allocate(self, value=0, dimension_labels=None, **kwargs): + '''allocates an ImageData according to the size expressed in the instance''' + out = ImageData(geometry=self) + if isinstance(value, Number): + if value != 0: + out += value + else: + if value == ImageGeometry.RANDOM: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + out.fill(numpy.random.random_sample(self.shape)) + elif value == ImageGeometry.RANDOM_INT: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + max_value = kwargs.get('max_value', 100) + out.fill(numpy.random.randint(max_value,size=self.shape)) + else: + raise ValueError('Value {} unknown'.format(value)) + if dimension_labels is not None: + if dimension_labels != self.dimension_labels: + return out.subset(dimensions=dimension_labels) + return out + # The following methods return 2 members of the class, therefore I + # don't think we need to implement them. + # Additionally using __len__ is confusing as one would think this is + # an iterable. + #def __len__(self): + # '''returns the length of the geometry''' + # return self.length + #def shape(self): + # '''Returns the shape of the array of the ImageData it describes''' + # return self.shape + +class AcquisitionGeometry(object): + RANDOM = 'random' + RANDOM_INT = 'random_int' + ANGLE_UNIT = 'angle_unit' + DEGREE = 'degree' + RADIAN = 'radian' + CHANNEL = 'channel' + ANGLE = 'angle' + VERTICAL = 'vertical' + HORIZONTAL = 'horizontal' + def __init__(self, + geom_type, + dimension, + angles, + pixel_num_h=0, + pixel_size_h=1, + pixel_num_v=0, + pixel_size_v=1, + dist_source_center=None, + dist_center_detector=None, + channels=1, + **kwargs + ): + """ + General inputs for standard type projection geometries + detectorDomain or detectorpixelSize: + If 2D + If scalar: Width of detector or single detector pixel + If 2-vec: Error + If 3D + If scalar: Width in both dimensions + If 2-vec: Vertical then horizontal size + grid + If 2D + If scalar: number of detectors + If 2-vec: error + If 3D + If scalar: Square grid that size + If 2-vec vertical then horizontal size + cone or parallel + 2D or 3D + parallel_parameters: ? + cone_parameters: + source_to_center_dist (if parallel: NaN) + center_to_detector_dist (if parallel: NaN) + standard or nonstandard (vec) geometry + angles + angles_format radians or degrees + """ + self.geom_type = geom_type # 'parallel' or 'cone' + self.dimension = dimension # 2D or 3D + self.angles = angles + num_of_angles = len (angles) + + self.dist_source_center = dist_source_center + self.dist_center_detector = dist_center_detector + + self.pixel_num_h = pixel_num_h + self.pixel_size_h = pixel_size_h + self.pixel_num_v = pixel_num_v + self.pixel_size_v = pixel_size_v + + self.channels = channels + self.angle_unit=kwargs.get(AcquisitionGeometry.ANGLE_UNIT, + AcquisitionGeometry.DEGREE) + if channels > 1: + if pixel_num_v > 1: + shape = (channels, num_of_angles , pixel_num_v, pixel_num_h) + dim_labels = [AcquisitionGeometry.CHANNEL , + AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL , + AcquisitionGeometry.HORIZONTAL] + else: + shape = (channels , num_of_angles, pixel_num_h) + dim_labels = [AcquisitionGeometry.CHANNEL , + AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL] + else: + if pixel_num_v > 1: + shape = (num_of_angles, pixel_num_v, pixel_num_h) + dim_labels = [AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL , + AcquisitionGeometry.HORIZONTAL] + else: + shape = (num_of_angles, pixel_num_h) + dim_labels = [AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL] + self.shape = shape + + self.dimension_labels = dim_labels + + def clone(self): + '''returns a copy of the AcquisitionGeometry''' + return AcquisitionGeometry(self.geom_type, + self.dimension, + self.angles, + self.pixel_num_h, + self.pixel_size_h, + self.pixel_num_v, + self.pixel_size_v, + self.dist_source_center, + self.dist_center_detector, + self.channels) + + def __str__ (self): + repres = "" + repres += "Number of dimensions: {0}\n".format(self.dimension) + repres += "angles: {0}\n".format(self.angles) + repres += "voxel_num : h{0},v{1}\n".format(self.pixel_num_h, self.pixel_num_v) + repres += "voxel size: h{0},v{1}\n".format(self.pixel_size_h, self.pixel_size_v) + repres += "geometry type: {0}\n".format(self.geom_type) + repres += "distance source-detector: {0}\n".format(self.dist_source_center) + repres += "distance center-detector: {0}\n".format(self.dist_source_center) + repres += "number of channels: {0}\n".format(self.channels) + return repres + def allocate(self, value=0, dimension_labels=None): + '''allocates an AcquisitionData according to the size expressed in the instance''' + out = AcquisitionData(geometry=self) + if isinstance(value, Number): + if value != 0: + out += value + else: + if value == AcquisitionData.RANDOM: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + out.fill(numpy.random.random_sample(self.shape)) + elif value == AcquisitionData.RANDOM_INT: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + max_value = kwargs.get('max_value', 100) + out.fill(numpy.random.randint(max_value,size=self.shape)) + else: + raise ValueError('Value {} unknown'.format(value)) + if dimension_labels is not None: + if dimension_labels != self.dimension_labels: + return out.subset(dimensions=dimension_labels) + return out + +class DataContainer(object): + '''Generic class to hold data + + Data is currently held in a numpy arrays''' + + def __init__ (self, array, deep_copy=True, dimension_labels=None, + **kwargs): + '''Holds the data''' + + self.shape = numpy.shape(array) + self.number_of_dimensions = len (self.shape) + self.dimension_labels = {} + self.geometry = None # Only relevant for AcquisitionData and ImageData + + if dimension_labels is not None and \ + len (dimension_labels) == self.number_of_dimensions: + for i in range(self.number_of_dimensions): + self.dimension_labels[i] = dimension_labels[i] + else: + for i in range(self.number_of_dimensions): + self.dimension_labels[i] = 'dimension_{0:02}'.format(i) + + if type(array) == numpy.ndarray: + if deep_copy: + self.array = array.copy() + else: + self.array = array + else: + raise TypeError('Array must be NumpyArray, passed {0}'\ + .format(type(array))) + + # finally copy the geometry + if 'geometry' in kwargs.keys(): + self.geometry = kwargs['geometry'] + else: + # assume it is parallel beam + pass + + def get_dimension_size(self, dimension_label): + if dimension_label in self.dimension_labels.values(): + acq_size = -1 + for k,v in self.dimension_labels.items(): + if v == dimension_label: + acq_size = self.shape[k] + return acq_size + else: + raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label, + self.dimension_labels)) + def get_dimension_axis(self, dimension_label): + if dimension_label in self.dimension_labels.values(): + for k,v in self.dimension_labels.items(): + if v == dimension_label: + return k + else: + raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label, + self.dimension_labels.values())) + + + def as_array(self, dimensions=None): + '''Returns the DataContainer as Numpy Array + + Returns the pointer to the array if dimensions is not set. + If dimensions is set, it first creates a new DataContainer with the subset + and then it returns the pointer to the array''' + if dimensions is not None: + return self.subset(dimensions).as_array() + return self.array + + + def subset(self, dimensions=None, **kw): + '''Creates a DataContainer containing a subset of self according to the + labels in dimensions''' + if dimensions is None: + if kw == {}: + return self.array.copy() + else: + reduced_dims = [v for k,v in self.dimension_labels.items()] + for dim_l, dim_v in kw.items(): + for k,v in self.dimension_labels.items(): + if v == dim_l: + reduced_dims.pop(k) + return self.subset(dimensions=reduced_dims, **kw) + else: + # check that all the requested dimensions are in the array + # this is done by checking the dimension_labels + proceed = True + unknown_key = '' + # axis_order contains the order of the axis that the user wants + # in the output DataContainer + axis_order = [] + if type(dimensions) == list: + for dl in dimensions: + if dl not in self.dimension_labels.values(): + proceed = False + unknown_key = dl + break + else: + axis_order.append(find_key(self.dimension_labels, dl)) + if not proceed: + raise KeyError('Subset error: Unknown key specified {0}'.format(dl)) + + # slice away the unwanted data from the array + unwanted_dimensions = self.dimension_labels.copy() + left_dimensions = [] + for ax in sorted(axis_order): + this_dimension = unwanted_dimensions.pop(ax) + left_dimensions.append(this_dimension) + #print ("unwanted_dimensions {0}".format(unwanted_dimensions)) + #print ("left_dimensions {0}".format(left_dimensions)) + #new_shape = [self.shape[ax] for ax in axis_order] + #print ("new_shape {0}".format(new_shape)) + command = "self.array[" + for i in range(self.number_of_dimensions): + if self.dimension_labels[i] in unwanted_dimensions.values(): + value = 0 + for k,v in kw.items(): + if k == self.dimension_labels[i]: + value = v + + command = command + str(value) + else: + command = command + ":" + if i < self.number_of_dimensions -1: + command = command + ',' + command = command + ']' + + cleaned = eval(command) + # cleaned has collapsed dimensions in the same order of + # self.array, but we want it in the order stated in the + # "dimensions". + # create axes order for numpy.transpose + axes = [] + for key in dimensions: + #print ("key {0}".format( key)) + for i in range(len( left_dimensions )): + ld = left_dimensions[i] + #print ("ld {0}".format( ld)) + if ld == key: + axes.append(i) + #print ("axes {0}".format(axes)) + + cleaned = numpy.transpose(cleaned, axes).copy() + + return type(self)(cleaned , True, dimensions) + + def fill(self, array, **dimension): + '''fills the internal numpy array with the one provided''' + if dimension == {}: + if issubclass(type(array), DataContainer) or\ + issubclass(type(array), numpy.ndarray): + if array.shape != self.shape: + raise ValueError('Cannot fill with the provided array.' + \ + 'Expecting {0} got {1}'.format( + self.shape,array.shape)) + if issubclass(type(array), DataContainer): + numpy.copyto(self.array, array.array) + else: + #self.array[:] = array + numpy.copyto(self.array, array) + else: + + command = 'self.array[' + i = 0 + for k,v in self.dimension_labels.items(): + for dim_label, dim_value in dimension.items(): + if dim_label == v: + command = command + str(dim_value) + else: + command = command + ":" + if i < self.number_of_dimensions -1: + command = command + ',' + i += 1 + command = command + "] = array[:]" + exec(command) + + + def check_dimensions(self, other): + return self.shape == other.shape + + ## algebra + def __add__(self, other, *args, **kwargs): + out = kwargs.get('out', None) + if issubclass(type(other), DataContainer): + if self.check_dimensions(other): + out = self.as_array() + other.as_array() + return type(self)(out, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('Wrong shape: {0} and {1}'.format(self.shape, + other.shape)) + elif isinstance(other, (int, float, complex)): + return type(self)( + self.as_array() + other, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise TypeError('Cannot {0} DataContainer with {1}'.format("add" , + type(other))) + # __add__ + + def __sub__(self, other): + if issubclass(type(other), DataContainer): + if self.check_dimensions(other): + out = self.as_array() - other.as_array() + return type(self)(out, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('__sub__ Wrong shape: {0} and {1}'.format(self.shape, + other.shape)) + elif isinstance(other, (int, float, complex)): + return type(self)(self.as_array() - other, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise TypeError('Cannot {0} DataContainer with {1}'.format("subtract" , + type(other))) + # __sub__ + def __truediv__(self,other): + return self.__div__(other) + + def __div__(self, other): + if issubclass(type(other), DataContainer): + if self.check_dimensions(other): + out = self.as_array() / other.as_array() + return type(self)(out, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('__div__ Wrong shape: {0} and {1}'.format(self.shape, + other.shape)) + elif isinstance(other, (int, float, complex)): + return type(self)(self.as_array() / other, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise TypeError('Cannot {0} DataContainer with {1}'.format("divide" , + type(other))) + # __div__ + + def __pow__(self, other): + if issubclass(type(other), DataContainer): + if self.check_dimensions(other): + out = self.as_array() ** other.as_array() + return type(self)(out, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('__pow__ Wrong shape: {0} and {1}'.format(self.shape, + other.shape)) + elif isinstance(other, (int, float, complex)): + return type(self)(self.as_array() ** other, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise TypeError('pow: Cannot {0} DataContainer with {1}'.format("power" , + type(other))) + # __pow__ + + def __mul__(self, other): + if issubclass(type(other), DataContainer): + if self.check_dimensions(other): + out = self.as_array() * other.as_array() + return type(self)(out, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('*:Wrong shape: {0} and {1}'.format(self.shape, + other.shape)) + elif isinstance(other, (int, float, complex,\ + numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\ + numpy.float, numpy.float16, numpy.float32, numpy.float64, \ + numpy.complex)): + return type(self)(self.as_array() * other, + deep_copy=True, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise TypeError('Cannot {0} DataContainer with {1}'.format("multiply" , + type(other))) + # __mul__ + + # reverse operand + def __radd__(self, other): + return self + other + # __radd__ + + def __rsub__(self, other): + return (-1 * self) + other + # __rsub__ + + def __rmul__(self, other): + return self * other + # __rmul__ + + def __rdiv__(self, other): + print ("call __rdiv__") + return pow(self / other, -1) + # __rdiv__ + def __rtruediv__(self, other): + return self.__rdiv__(other) + + def __rpow__(self, other): + if isinstance(other, (int, float)) : + fother = numpy.ones(numpy.shape(self.array)) * other + return type(self)(fother ** self.array , + dimension_labels=self.dimension_labels, + geometry=self.geometry) + elif issubclass(type(other), DataContainer): + if self.check_dimensions(other): + return type(self)(other.as_array() ** self.array , + dimension_labels=self.dimension_labels, + geometry=self.geometry) + else: + raise ValueError('Dimensions do not match') + # __rpow__ + + # in-place arithmetic operators: + # (+=, -=, *=, /= , //=, + # must return self + + + + def __iadd__(self, other): + if isinstance(other, (int, float)) : + numpy.add(self.array, other, out=self.array) + elif issubclass(type(other), DataContainer): + if self.check_dimensions(other): + numpy.add(self.array, other.array, out=self.array) + else: + raise ValueError('Dimensions do not match') + return self + # __iadd__ + + def __imul__(self, other): + if isinstance(other, (int, float)) : + arr = self.as_array() + numpy.multiply(arr, other, out=arr) + elif issubclass(type(other), DataContainer): + if self.check_dimensions(other): + numpy.multiply(self.array, other.array, out=self.array) + else: + raise ValueError('Dimensions do not match') + return self + # __imul__ + + def __isub__(self, other): + if isinstance(other, (int, float)) : + numpy.subtract(self.array, other, out=self.array) + elif issubclass(type(other), DataContainer): + if self.check_dimensions(other): + numpy.subtract(self.array, other.array, out=self.array) + else: + raise ValueError('Dimensions do not match') + return self + # __isub__ + + def __idiv__(self, other): + return self.__itruediv__(other) + def __itruediv__(self, other): + if isinstance(other, (int, float)) : + numpy.divide(self.array, other, out=self.array) + elif issubclass(type(other), DataContainer): + if self.check_dimensions(other): + numpy.divide(self.array, other.array, out=self.array) + else: + raise ValueError('Dimensions do not match') + return self + # __idiv__ + + def __str__ (self, representation=False): + repres = "" + repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions) + repres += "Shape: {0}\n".format(self.shape) + repres += "Axis labels: {0}\n".format(self.dimension_labels) + if representation: + repres += "Representation: \n{0}\n".format(self.array) + return repres + + def clone(self): + '''returns a copy of itself''' + + return type(self)(self.array, + dimension_labels=self.dimension_labels, + deep_copy=True, + geometry=self.geometry ) + + def get_data_axes_order(self,new_order=None): + '''returns the axes label of self as a list + + if new_order is None returns the labels of the axes as a sorted-by-key list + if new_order is a list of length number_of_dimensions, returns a list + with the indices of the axes in new_order with respect to those in + self.dimension_labels: i.e. + self.dimension_labels = {0:'horizontal',1:'vertical'} + new_order = ['vertical','horizontal'] + returns [1,0] + ''' + if new_order is None: + + axes_order = [i for i in range(len(self.shape))] + for k,v in self.dimension_labels.items(): + axes_order[k] = v + return axes_order + else: + if len(new_order) == self.number_of_dimensions: + axes_order = [i for i in range(self.number_of_dimensions)] + + for i in range(len(self.shape)): + found = False + for k,v in self.dimension_labels.items(): + if new_order[i] == v: + axes_order[i] = k + found = True + if not found: + raise ValueError('Axis label {0} not found.'.format(new_order[i])) + return axes_order + else: + raise ValueError('Expecting {0} axes, got {2}'\ + .format(len(self.shape),len(new_order))) + + + def copy(self): + '''alias of clone''' + return self.clone() + + ## binary operations + + def pixel_wise_binary(self, pwop, x2, *args, **kwargs): + out = kwargs.get('out', None) + if out is None: + if isinstance(x2, (int, float, complex)): + out = pwop(self.as_array() , x2 , *args, **kwargs ) + elif isinstance(x2, (numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\ + numpy.float, numpy.float16, numpy.float32, numpy.float64, \ + numpy.complex)): + out = pwop(self.as_array() , x2 , *args, **kwargs ) + elif issubclass(type(x2) , DataContainer): + out = pwop(self.as_array() , x2.as_array() , *args, **kwargs ) + return type(self)(out, + deep_copy=False, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + + + elif issubclass(type(out), DataContainer) and issubclass(type(x2), DataContainer): + if self.check_dimensions(out) and self.check_dimensions(x2): + kwargs['out'] = out.as_array() + pwop(self.as_array(), x2.as_array(), *args, **kwargs ) + #return type(self)(out.as_array(), + # deep_copy=False, + # dimension_labels=self.dimension_labels, + # geometry=self.geometry) + return out + else: + raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape)) + elif issubclass(type(out), DataContainer) and isinstance(x2, (int,float,complex)): + if self.check_dimensions(out): + kwargs['out']=out.as_array() + pwop(self.as_array(), x2, *args, **kwargs ) + return out + else: + raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape)) + elif issubclass(type(out), numpy.ndarray): + if self.array.shape == out.shape and self.array.dtype == out.dtype: + kwargs['out'] = out + pwop(self.as_array(), x2, *args, **kwargs) + #return type(self)(out, + # deep_copy=False, + # dimension_labels=self.dimension_labels, + # geometry=self.geometry) + else: + raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out))) + + def add(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.add, other, *args, **kwargs) + + def subtract(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.subtract, other, *args, **kwargs) + + def multiply(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.multiply, other, *args, **kwargs) + + def divide(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs) + + def power(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.power, other, *args, **kwargs) + + def maximum(self, x2, *args, **kwargs): + return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs) + + ## unary operations + def pixel_wise_unary(self, pwop, *args, **kwargs): + out = kwargs.get('out', None) + if out is None: + out = pwop(self.as_array() , *args, **kwargs ) + return type(self)(out, + deep_copy=False, + dimension_labels=self.dimension_labels, + geometry=self.geometry) + elif issubclass(type(out), DataContainer): + if self.check_dimensions(out): + kwargs['out'] = out.as_array() + pwop(self.as_array(), *args, **kwargs ) + else: + raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape)) + elif issubclass(type(out), numpy.ndarray): + if self.array.shape == out.shape and self.array.dtype == out.dtype: + kwargs['out'] = out + pwop(self.as_array(), *args, **kwargs) + else: + raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out))) + + def abs(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.abs, *args, **kwargs) + + def sign(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.sign, *args, **kwargs) + + def sqrt(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.sqrt, *args, **kwargs) + + def conjugate(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.conjugate, *args, **kwargs) + #def __abs__(self): + # operation = FM.OPERATION.ABS + # return self.callFieldMath(operation, None, self.mask, self.maskOnValue) + # __abs__ + + ## reductions + def sum(self, *args, **kwargs): + return self.as_array().sum(*args, **kwargs) + def squared_norm(self): + '''return the squared euclidean norm of the DataContainer viewed as a vector''' + #shape = self.shape + #size = reduce(lambda x,y:x*y, shape, 1) + #y = numpy.reshape(self.as_array(), (size, )) + return self.dot(self.conjugate()) + #return self.dot(self) + def norm(self): + '''return the euclidean norm of the DataContainer viewed as a vector''' + return numpy.sqrt(self.squared_norm()) + def dot(self, other, *args, **kwargs): + '''return the inner product of 2 DataContainers viewed as vectors''' + if self.shape == other.shape: + return numpy.dot(self.as_array().ravel(), other.as_array().ravel()) + else: + raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape)) + + + + + +class ImageData(DataContainer): + '''DataContainer for holding 2D or 3D DataContainer''' + + def __init__(self, + array = None, + deep_copy=False, + dimension_labels=None, + **kwargs): + + self.geometry = None + if array is None: + if 'geometry' in kwargs.keys(): + geometry = kwargs['geometry'] + self.geometry = geometry + channels = geometry.channels + horiz_x = geometry.voxel_num_x + horiz_y = geometry.voxel_num_y + vert = 1 if geometry.voxel_num_z is None\ + else geometry.voxel_num_z # this should be 1 for 2D + if dimension_labels is None: + if channels > 1: + if vert > 1: + shape = (channels, vert, horiz_y, horiz_x) + dim_labels = [ImageGeometry.CHANNEL, + ImageGeometry.VERTICAL, + ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + else: + shape = (channels , horiz_y, horiz_x) + dim_labels = [ImageGeometry.CHANNEL, + ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + else: + if vert > 1: + shape = (vert, horiz_y, horiz_x) + dim_labels = [ImageGeometry.VERTICAL, + ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + else: + shape = (horiz_y, horiz_x) + dim_labels = [ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + dimension_labels = dim_labels + else: + shape = [] + for dim in dimension_labels: + if dim == ImageGeometry.CHANNEL: + shape.append(channels) + elif dim == ImageGeometry.HORIZONTAL_Y: + shape.append(horiz_y) + elif dim == ImageGeometry.VERTICAL: + shape.append(vert) + elif dim == ImageGeometry.HORIZONTAL_X: + shape.append(horiz_x) + if len(shape) != len(dimension_labels): + raise ValueError('Missing {0} axes'.format( + len(dimension_labels) - len(shape))) + shape = tuple(shape) + + array = numpy.zeros( shape , dtype=numpy.float32) + super(ImageData, self).__init__(array, deep_copy, + dimension_labels, **kwargs) + + else: + raise ValueError('Please pass either a DataContainer, ' +\ + 'a numpy array or a geometry') + else: + if issubclass(type(array) , DataContainer): + # if the array is a DataContainer get the info from there + if not ( array.number_of_dimensions == 2 or \ + array.number_of_dimensions == 3 or \ + array.number_of_dimensions == 4): + raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\ + .format(array.number_of_dimensions)) + + #DataContainer.__init__(self, array.as_array(), deep_copy, + # array.dimension_labels, **kwargs) + super(ImageData, self).__init__(array.as_array(), deep_copy, + array.dimension_labels, **kwargs) + elif issubclass(type(array) , numpy.ndarray): + if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ): + raise ValueError( + 'Number of dimensions are not 2 or 3 or 4 : {0}'\ + .format(array.ndim)) + + if dimension_labels is None: + if array.ndim == 4: + dimension_labels = [ImageGeometry.CHANNEL, + ImageGeometry.VERTICAL, + ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + elif array.ndim == 3: + dimension_labels = [ImageGeometry.VERTICAL, + ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + else: + dimension_labels = [ ImageGeometry.HORIZONTAL_Y, + ImageGeometry.HORIZONTAL_X] + + #DataContainer.__init__(self, array, deep_copy, dimension_labels, **kwargs) + super(ImageData, self).__init__(array, deep_copy, + dimension_labels, **kwargs) + + # load metadata from kwargs if present + for key, value in kwargs.items(): + if (type(value) == list or type(value) == tuple) and \ + ( len (value) == 3 and len (value) == 2) : + if key == 'origin' : + self.origin = value + if key == 'spacing' : + self.spacing = value + + def subset(self, dimensions=None, **kw): + # FIXME: this is clearly not rigth + # it should be something like + # out = DataContainer.subset(self, dimensions, **kw) + # followed by regeneration of the proper geometry. + out = super(ImageData, self).subset(dimensions, **kw) + #out.geometry = self.recalculate_geometry(dimensions , **kw) + out.geometry = self.geometry + return out + + +class AcquisitionData(DataContainer): + '''DataContainer for holding 2D or 3D sinogram''' + + def __init__(self, + array = None, + deep_copy=True, + dimension_labels=None, + **kwargs): + self.geometry = None + if array is None: + if 'geometry' in kwargs.keys(): + geometry = kwargs['geometry'] + self.geometry = geometry + channels = geometry.channels + horiz = geometry.pixel_num_h + vert = geometry.pixel_num_v + angles = geometry.angles + num_of_angles = numpy.shape(angles)[0] + + if dimension_labels is None: + if channels > 1: + if vert > 1: + shape = (channels, num_of_angles , vert, horiz) + dim_labels = [AcquisitionGeometry.CHANNEL, + AcquisitionGeometry.ANGLE, + AcquisitionGeometry.VERTICAL, + AcquisitionGeometry.HORIZONTAL] + else: + shape = (channels , num_of_angles, horiz) + dim_labels = [AcquisitionGeometry.CHANNEL, + AcquisitionGeometry.ANGLE, + AcquisitionGeometry.HORIZONTAL] + else: + if vert > 1: + shape = (num_of_angles, vert, horiz) + dim_labels = [AcquisitionGeometry.ANGLE, + AcquisitionGeometry.VERTICAL, + AcquisitionGeometry.HORIZONTAL + ] + else: + shape = (num_of_angles, horiz) + dim_labels = [AcquisitionGeometry.ANGLE, + AcquisitionGeometry.HORIZONTAL + ] + + dimension_labels = dim_labels + else: + shape = [] + for dim in dimension_labels: + if dim == AcquisitionGeometry.CHANNEL: + shape.append(channels) + elif dim == AcquisitionGeometry.ANGLE: + shape.append(num_of_angles) + elif dim == AcquisitionGeometry.VERTICAL: + shape.append(vert) + elif dim == AcquisitionGeometry.HORIZONTAL: + shape.append(horiz) + if len(shape) != len(dimension_labels): + raise ValueError('Missing {0} axes.\nExpected{1} got {2}'\ + .format( + len(dimension_labels) - len(shape), + dimension_labels, shape) + ) + shape = tuple(shape) + + array = numpy.zeros( shape , dtype=numpy.float32) + super(AcquisitionData, self).__init__(array, deep_copy, + dimension_labels, **kwargs) + else: + + if issubclass(type(array) ,DataContainer): + # if the array is a DataContainer get the info from there + if not ( array.number_of_dimensions == 2 or \ + array.number_of_dimensions == 3 or \ + array.number_of_dimensions == 4): + raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\ + .format(array.number_of_dimensions)) + + #DataContainer.__init__(self, array.as_array(), deep_copy, + # array.dimension_labels, **kwargs) + super(AcquisitionData, self).__init__(array.as_array(), deep_copy, + array.dimension_labels, **kwargs) + elif issubclass(type(array) ,numpy.ndarray): + if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ): + raise ValueError( + 'Number of dimensions are not 2 or 3 or 4 : {0}'\ + .format(array.ndim)) + + if dimension_labels is None: + if array.ndim == 4: + dimension_labels = ['channel' ,'angle' , 'vertical' , + 'horizontal'] + elif array.ndim == 3: + dimension_labels = ['angle' , 'vertical' , + 'horizontal'] + else: + dimension_labels = ['angle' , + 'horizontal'] + + #DataContainer.__init__(self, array, deep_copy, dimension_labels, **kwargs) + super(AcquisitionData, self).__init__(array, deep_copy, + dimension_labels, **kwargs) + + +class DataProcessor(object): + '''Defines a generic DataContainer processor + + accepts DataContainer as inputs and + outputs DataContainer + additional attributes can be defined with __setattr__ + ''' + + def __init__(self, **attributes): + if not 'store_output' in attributes.keys(): + attributes['store_output'] = True + attributes['output'] = False + attributes['runTime'] = -1 + attributes['mTime'] = datetime.now() + attributes['input'] = None + for key, value in attributes.items(): + self.__dict__[key] = value + + + def __setattr__(self, name, value): + if name == 'input': + self.set_input(value) + elif name in self.__dict__.keys(): + self.__dict__[name] = value + self.__dict__['mTime'] = datetime.now() + else: + raise KeyError('Attribute {0} not found'.format(name)) + #pass + + def set_input(self, dataset): + if issubclass(type(dataset), DataContainer): + if self.check_input(dataset): + self.__dict__['input'] = dataset + else: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(type(dataset), DataContainer)) + + def check_input(self, dataset): + '''Checks parameters of the input DataContainer + + Should raise an Error if the DataContainer does not match expectation, e.g. + if the expected input DataContainer is 3D and the Processor expects 2D. + ''' + raise NotImplementedError('Implement basic checks for input DataContainer') + + def get_output(self, out=None): + for k,v in self.__dict__.items(): + if v is None and k != 'output': + raise ValueError('Key {0} is None'.format(k)) + shouldRun = False + if self.runTime == -1: + shouldRun = True + elif self.mTime > self.runTime: + shouldRun = True + + # CHECK this + if self.store_output and shouldRun: + self.runTime = datetime.now() + try: + self.output = self.process(out=out) + return self.output + except TypeError as te: + self.output = self.process() + return self.output + self.runTime = datetime.now() + try: + return self.process(out=out) + except TypeError as te: + return self.process() + + + def set_input_processor(self, processor): + if issubclass(type(processor), DataProcessor): + self.__dict__['input'] = processor + else: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(type(processor), DataProcessor)) + + def get_input(self): + '''returns the input DataContainer + + It is useful in the case the user has provided a DataProcessor as + input + ''' + if issubclass(type(self.input), DataProcessor): + dsi = self.input.get_output() + else: + dsi = self.input + return dsi + + def process(self, out=None): + raise NotImplementedError('process must be implemented') + + + + +class DataProcessor23D(DataProcessor): + '''Regularizers DataProcessor + ''' + + def check_input(self, dataset): + '''Checks number of dimensions input DataContainer + + Expected input is 2D or 3D + ''' + if dataset.number_of_dimensions == 2 or \ + dataset.number_of_dimensions == 3: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + +###### Example of DataProcessors + +class AX(DataProcessor): + '''Example DataProcessor + The AXPY routines perform a vector multiplication operation defined as + + y := a*x + where: + + a is a scalar + + x a DataContainer. + ''' + + def __init__(self): + kwargs = {'scalar':None, + 'input':None, + } + + #DataProcessor.__init__(self, **kwargs) + super(AX, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def process(self, out=None): + + dsi = self.get_input() + a = self.scalar + if out is None: + y = DataContainer( a * dsi.as_array() , True, + dimension_labels=dsi.dimension_labels ) + #self.setParameter(output_dataset=y) + return y + else: + out.fill(a * dsi.as_array()) + + +###### Example of DataProcessors + +class CastDataContainer(DataProcessor): + '''Example DataProcessor + Cast a DataContainer array to a different type. + + y := a*x + where: + + a is a scalar + + x a DataContainer. + ''' + + def __init__(self, dtype=None): + kwargs = {'dtype':dtype, + 'input':None, + } + + #DataProcessor.__init__(self, **kwargs) + super(CastDataContainer, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def process(self, out=None): + + dsi = self.get_input() + dtype = self.dtype + if out is None: + y = numpy.asarray(dsi.as_array(), dtype=dtype) + + return type(dsi)(numpy.asarray(dsi.as_array(), dtype=dtype), + dimension_labels=dsi.dimension_labels ) + else: + out.fill(numpy.asarray(dsi.as_array(), dtype=dtype)) + + + + + +class PixelByPixelDataProcessor(DataProcessor): + '''Example DataProcessor + + This processor applies a python function to each pixel of the DataContainer + + f is a python function + + x a DataSet. + ''' + + def __init__(self): + kwargs = {'pyfunc':None, + 'input':None, + } + #DataProcessor.__init__(self, **kwargs) + super(PixelByPixelDataProcessor, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def process(self, out=None): + + pyfunc = self.pyfunc + dsi = self.get_input() + + eval_func = numpy.frompyfunc(pyfunc,1,1) + + + y = DataContainer( eval_func( dsi.as_array() ) , True, + dimension_labels=dsi.dimension_labels ) + return y + + + + +if __name__ == '__main__': + shape = (2,3,4,5) + size = shape[0] + for i in range(1, len(shape)): + size = size * shape[i] + #print("a refcount " , sys.getrefcount(a)) + a = numpy.asarray([i for i in range( size )]) + print("a refcount " , sys.getrefcount(a)) + a = numpy.reshape(a, shape) + print("a refcount " , sys.getrefcount(a)) + ds = DataContainer(a, False, ['X', 'Y','Z' ,'W']) + print("a refcount " , sys.getrefcount(a)) + print ("ds label {0}".format(ds.dimension_labels)) + subset = ['W' ,'X'] + b = ds.subset( subset ) + print("a refcount " , sys.getrefcount(a)) + print ("b label {0} shape {1}".format(b.dimension_labels, + numpy.shape(b.as_array()))) + c = ds.subset(['Z','W','X']) + print("a refcount " , sys.getrefcount(a)) + + # Create a ImageData sharing the array with c + volume0 = ImageData(c.as_array(), False, dimensions = c.dimension_labels) + volume1 = ImageData(c, False) + + print ("volume0 {0} volume1 {1}".format(id(volume0.array), + id(volume1.array))) + + # Create a ImageData copying the array from c + volume2 = ImageData(c.as_array(), dimensions = c.dimension_labels) + volume3 = ImageData(c) + + print ("volume2 {0} volume3 {1}".format(id(volume2.array), + id(volume3.array))) + + # single number DataSet + sn = DataContainer(numpy.asarray([1])) + + ax = AX() + ax.scalar = 2 + ax.set_input(c) + #ax.apply() + print ("ax in {0} out {1}".format(c.as_array().flatten(), + ax.get_output().as_array().flatten())) + + cast = CastDataContainer(dtype=numpy.float32) + cast.set_input(c) + out = cast.get_output() + out *= 0 + axm = AX() + axm.scalar = 0.5 + axm.set_input_processor(cast) + axm.get_output(out) + #axm.apply() + print ("axm in {0} out {1}".format(c.as_array(), axm.get_output().as_array())) + + # check out in DataSetProcessor + #a = numpy.asarray([i for i in range( size )]) + + + # create a PixelByPixelDataProcessor + + #define a python function which will take only one input (the pixel value) + pyfunc = lambda x: -x if x > 20 else x + clip = PixelByPixelDataProcessor() + clip.pyfunc = pyfunc + clip.set_input(c) + #clip.apply() + + print ("clip in {0} out {1}".format(c.as_array(), clip.get_output().as_array())) + + #dsp = DataProcessor() + #dsp.set_input(ds) + #dsp.input = a + # pipeline + + chain = AX() + chain.scalar = 0.5 + chain.set_input_processor(ax) + print ("chain in {0} out {1}".format(ax.get_output().as_array(), chain.get_output().as_array())) + + # testing arithmetic operations + + print (b) + print ((b+1)) + print ((1+b)) + + print (b) + print ((b*2)) + + print (b) + print ((2*b)) + + print (b) + print ((b/2)) + + print (b) + print ((2/b)) + + print (b) + print ((b**2)) + + print (b) + print ((2**b)) + + print (type(volume3 + 2)) + + s = [i for i in range(3 * 4 * 4)] + s = numpy.reshape(numpy.asarray(s), (3,4,4)) + sino = AcquisitionData( s ) + + shape = (4,3,2) + a = [i for i in range(2*3*4)] + a = numpy.asarray(a) + a = numpy.reshape(a, shape) + print (numpy.shape(a)) + ds = DataContainer(a, True, ['X', 'Y','Z']) + # this means that I expect the X to be of length 2 , + # y of length 3 and z of length 4 + subset = ['Y' ,'Z'] + b0 = ds.subset( subset ) + print ("shape b 3,2? {0}".format(numpy.shape(b0.as_array()))) + # expectation on b is that it is + # 3x2 cut at z = 0 + + subset = ['X' ,'Y'] + b1 = ds.subset( subset , Z=1) + print ("shape b 2,3? {0}".format(numpy.shape(b1.as_array()))) + + + + # create VolumeData from geometry + vgeometry = ImageGeometry(voxel_num_x=2, voxel_num_y=3, channels=2) + vol = ImageData(geometry=vgeometry) + + sgeometry = AcquisitionGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20), + geom_type='parallel', pixel_num_v=3, + pixel_num_h=5 , channels=2) + sino = AcquisitionData(geometry=sgeometry) + sino2 = sino.clone() + + a0 = numpy.asarray([i for i in range(2*3*4)]) + a1 = numpy.asarray([2*i for i in range(2*3*4)]) + + + ds0 = DataContainer(numpy.reshape(a0,(2,3,4))) + ds1 = DataContainer(numpy.reshape(a1,(2,3,4))) + + numpy.testing.assert_equal(ds0.dot(ds1), a0.dot(a1)) + + a2 = numpy.asarray([2*i for i in range(2*3*5)]) + ds2 = DataContainer(numpy.reshape(a2,(2,3,5))) + +# # it should fail if the shape is wrong +# try: +# ds2.dot(ds0) +# self.assertTrue(False) +# except ValueError as ve: +# self.assertTrue(True) + diff --git a/Wrappers/Python/build/lib/ccpi/io/__init__.py b/Wrappers/Python/build/lib/ccpi/io/__init__.py new file mode 100644 index 0000000..9233d7a --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/io/__init__.py @@ -0,0 +1,18 @@ +# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/io/reader.py b/Wrappers/Python/build/lib/ccpi/io/reader.py new file mode 100644 index 0000000..856f5e0 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/io/reader.py @@ -0,0 +1,500 @@ +# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev, Edoardo Pasca and Srikanth Nagella
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''
+This is a reader module with classes for loading 3D datasets.
+
+@author: Mr. Srikanth Nagella
+'''
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+from ccpi.framework import AcquisitionGeometry
+from ccpi.framework import AcquisitionData
+import numpy as np
+import os
+
+h5pyAvailable = True
+try:
+ from h5py import File as NexusFile
+except:
+ h5pyAvailable = False
+
+pilAvailable = True
+try:
+ from PIL import Image
+except:
+ pilAvailable = False
+
+class NexusReader(object):
+ '''
+ Reader class for loading Nexus files.
+ '''
+
+ def __init__(self, nexus_filename=None):
+ '''
+ This takes in input as filename and loads the data dataset.
+ '''
+ self.flat = None
+ self.dark = None
+ self.angles = None
+ self.geometry = None
+ self.filename = nexus_filename
+ self.key_path = 'entry1/tomo_entry/instrument/detector/image_key'
+ self.data_path = 'entry1/tomo_entry/data/data'
+ self.angle_path = 'entry1/tomo_entry/data/rotation_angle'
+
+ def get_image_keys(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ return np.array(file[self.key_path])
+ except KeyError as ke:
+ raise KeyError("get_image_keys: " , ke.args[0] , self.key_path)
+
+
+ def load(self, dimensions=None, image_key_id=0):
+ '''
+ This is generic loading function of flat field, dark field and projection data.
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ image_keys = np.array(file[self.key_path])
+ projections = None
+ if dimensions == None:
+ projections = np.array(file[self.data_path])
+ result = projections[image_keys==image_key_id]
+ return result
+ else:
+ #When dimensions are specified they need to be mapped to image_keys
+ index_array = np.where(image_keys==image_key_id)
+ projection_indexes = index_array[0][dimensions[0]]
+ new_dimensions = list(dimensions)
+ new_dimensions[0]= projection_indexes
+ new_dimensions = tuple(new_dimensions)
+ result = np.array(file[self.data_path][new_dimensions])
+ return result
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def load_projection(self, dimensions=None):
+ '''
+ Loads the projection data from the nexus file.
+ returns: numpy array with projection data
+ '''
+ try:
+ if 0 not in self.get_image_keys():
+ raise ValueError("Projections are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 0)
+
+ def load_flat(self, dimensions=None):
+ '''
+ Loads the flat field data from the nexus file.
+ returns: numpy array with flat field data
+ '''
+ try:
+ if 1 not in self.get_image_keys():
+ raise ValueError("Flats are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 1)
+
+ def load_dark(self, dimensions=None):
+ '''
+ Loads the Dark field data from the nexus file.
+ returns: numpy array with dark field data
+ '''
+ try:
+ if 2 not in self.get_image_keys():
+ raise ValueError("Darks are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 2)
+
+ def get_projection_angles(self):
+ '''
+ This function returns the projection angles
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ angles = np.array(file[self.angle_path],np.float32)
+ image_keys = np.array(file[self.key_path])
+ return angles[image_keys==0]
+ except:
+ print("get_projection_angles Error reading nexus file")
+ raise
+
+
+ def get_sinogram_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ projections = file[self.data_path]
+ image_keys = np.array(file[self.key_path])
+ dims = list(projections.shape)
+ dims[0] = dims[1]
+ dims[1] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def get_projection_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ try:
+ projections = file[self.data_path]
+ except KeyError as ke:
+ raise KeyError('Error: data path {0} not found\n{1}'\
+ .format(self.data_path,
+ ke.args[0]))
+ #image_keys = np.array(file[self.key_path])
+ image_keys = self.get_image_keys()
+ dims = list(projections.shape)
+ dims[0] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Warning: Error reading image_keys trying accessing data on " , self.data_path)
+ with NexusFile(self.filename,'r') as file:
+ dims = file[self.data_path].shape
+ return tuple(dims)
+
+
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ dims = self.get_projection_dimensions()
+ geometry = AcquisitionGeometry('parallel', '3D',
+ self.get_projection_angles(),
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = dims[1],
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+
+ def get_acquisition_data_subset(self, ymin=None, ymax=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ pass
+ dims = file[self.data_path].shape
+ if ymin is None and ymax is None:
+ data = np.array(file[self.data_path])
+ else:
+ if ymin is None:
+ ymin = 0
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ data = np.array(file[self.data_path][:,:ymax,:])
+ elif ymax is None:
+ ymax = dims[1]
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+ data = np.array(file[self.data_path][:,ymin:,:])
+ else:
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+
+ data = np.array(file[self.data_path]
+ [: , ymin:ymax , :] )
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)
+
+ if ymax-ymin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = ymax-ymin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif ymax-ymin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+ def get_acquisition_data_slice(self, y_slice=0):
+ return self.get_acquisition_data_subset(ymin=y_slice , ymax=y_slice+1)
+ def get_acquisition_data_whole(self):
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ print ("Warning: ")
+ dims = file[self.data_path].shape
+
+ ymin = 0
+ ymax = dims[1] - 1
+
+ return self.get_acquisition_data_subset(ymin=ymin, ymax=ymax)
+
+
+
+ def list_file_content(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ file.visit(print)
+ except:
+ print("Error reading nexus file")
+ raise
+ def get_acquisition_data_batch(self, bmin=None, bmax=None):
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ dims = file[self.data_path].shape
+ if bmin is None or bmax is None:
+ raise ValueError('get_acquisition_data_batch: please specify fastest index batch limits')
+
+ if bmin >= 0 and bmin < bmax and bmax <= dims[0]:
+ data = np.array(file[self.data_path][bmin:bmax])
+ else:
+ raise ValueError('get_acquisition_data_batch: bmin {0}>0 bmax {1}<{2}'.format(bmin, bmax, dims[0]))
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()[bmin:bmax]
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)[bmin:bmax]
+
+ if bmax-bmin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = bmax-bmin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif bmax-bmin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+
+
+
+class XTEKReader(object):
+ '''
+ Reader class for loading XTEK files
+ '''
+
+ def __init__(self, xtek_config_filename=None):
+ '''
+ This takes in the xtek config filename and loads the dataset and the
+ required geometry parameters
+ '''
+ self.projections = None
+ self.geometry = {}
+ self.filename = xtek_config_filename
+ self.load()
+
+ def load(self):
+ pixel_num_h = 0
+ pixel_num_v = 0
+ xpixel_size = 0
+ ypixel_size = 0
+ source_x = 0
+ detector_x = 0
+ with open(self.filename) as f:
+ content = f.readlines()
+ content = [x.strip() for x in content]
+ for line in content:
+ if line.startswith("SrcToObject"):
+ source_x = float(line.split('=')[1])
+ elif line.startswith("SrcToDetector"):
+ detector_x = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelsY"):
+ pixel_num_v = int(line.split('=')[1])
+ #self.num_of_vertical_pixels = self.calc_v_alighment(self.num_of_vertical_pixels, self.pixels_per_voxel)
+ elif line.startswith("DetectorPixelsX"):
+ pixel_num_h = int(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeX"):
+ xpixel_size = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeY"):
+ ypixel_size = float(line.split('=')[1])
+ elif line.startswith("Projections"):
+ self.num_projections = int(line.split('=')[1])
+ elif line.startswith("InitialAngle"):
+ self.initial_angle = float(line.split('=')[1])
+ elif line.startswith("Name"):
+ self.experiment_name = line.split('=')[1]
+ elif line.startswith("Scattering"):
+ self.scattering = float(line.split('=')[1])
+ elif line.startswith("WhiteLevel"):
+ self.white_level = float(line.split('=')[1])
+ elif line.startswith("MaskRadius"):
+ self.mask_radius = float(line.split('=')[1])
+
+ #Read Angles
+ angles = self.read_angles()
+ self.geometry = AcquisitionGeometry('cone', '3D', angles, pixel_num_h, xpixel_size, pixel_num_v, ypixel_size, -1 * source_x,
+ detector_x - source_x,
+ )
+
+ def read_angles(self):
+ """
+ Read the angles file .ang or _ctdata.txt file and returns the angles
+ as an numpy array.
+ """
+ input_path = os.path.dirname(self.filename)
+ angles_ctdata_file = os.path.join(input_path, '_ctdata.txt')
+ angles_named_file = os.path.join(input_path, self.experiment_name+'.ang')
+ angles = np.zeros(self.num_projections,dtype='f')
+ #look for _ctdata.txt
+ if os.path.exists(angles_ctdata_file):
+ #read txt file with angles
+ with open(angles_ctdata_file) as f:
+ content = f.readlines()
+ #skip firt three lines
+ #read the middle value of 3 values in each line as angles in degrees
+ index = 0
+ for line in content[3:]:
+ self.angles[index]=float(line.split(' ')[1])
+ index+=1
+ angles = np.deg2rad(self.angles+self.initial_angle);
+ elif os.path.exists(angles_named_file):
+ #read the angles file which is text with first line as header
+ with open(angles_named_file) as f:
+ content = f.readlines()
+ #skip first line
+ index = 0
+ for line in content[1:]:
+ angles[index] = float(line.split(':')[1])
+ index+=1
+ angles = np.flipud(angles+self.initial_angle) #angles are in the reverse order
+ else:
+ raise RuntimeError("Can't find angles file")
+ return angles
+
+ def load_projection(self, dimensions=None):
+ '''
+ This method reads the projection images from the directory and returns a numpy array
+ '''
+ if not pilAvailable:
+ raise('Image library pillow is not installed')
+ if dimensions != None:
+ raise('Extracting subset of data is not implemented')
+ input_path = os.path.dirname(self.filename)
+ pixels = np.zeros((self.num_projections, self.geometry.pixel_num_h, self.geometry.pixel_num_v), dtype='float32')
+ for i in range(1, self.num_projections+1):
+ im = Image.open(os.path.join(input_path,self.experiment_name+"_%04d"%i+".tif"))
+ pixels[i-1,:,:] = np.fliplr(np.transpose(np.array(im))) ##Not sure this is the correct way to populate the image
+
+ #normalising the data
+ #TODO: Move this to a processor
+ pixels = pixels - (self.white_level*self.scattering)/100.0
+ pixels[pixels < 0.0] = 0.000001 # all negative values to approximately 0 as the std log of zero and non negative number is not defined
+ return pixels
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ return AcquisitionData(data, geometry=self.geometry)
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py new file mode 100644 index 0000000..cf2d93d --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py @@ -0,0 +1,18 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License.
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py new file mode 100644 index 0000000..ed95c3f --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py @@ -0,0 +1,158 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import time +from numbers import Integral + +class Algorithm(object): + '''Base class for iterative algorithms + + provides the minimal infrastructure. + Algorithms are iterables so can be easily run in a for loop. They will + stop as soon as the stop cryterion is met. + The user is required to implement the set_up, __init__, update and + and update_objective methods + + A courtesy method run is available to run n iterations. The method accepts + a callback function that receives the current iteration number and the actual objective + value and can be used to trigger print to screens and other user interactions. The run + method will stop when the stopping cryterion is met. + ''' + + def __init__(self): + '''Constructor + + Set the minimal number of parameters: + iteration: current iteration number + max_iteration: maximum number of iterations + memopt: whether to use memory optimisation () + timing: list to hold the times it took to run each iteration + update_objectice_interval: the interval every which we would save the current + objective. 1 means every iteration, 2 every 2 iteration + and so forth. This is by default 1 and should be increased + when evaluating the objective is computationally expensive. + ''' + self.iteration = 0 + self.__max_iteration = 0 + self.__loss = [] + self.memopt = False + self.timing = [] + self.update_objective_interval = 1 + def set_up(self, *args, **kwargs): + '''Set up the algorithm''' + raise NotImplementedError() + def update(self): + '''A single iteration of the algorithm''' + raise NotImplementedError() + + def should_stop(self): + '''default stopping cryterion: number of iterations + + The user can change this in concrete implementatition of iterative algorithms.''' + return self.max_iteration_stop_cryterion() + + def max_iteration_stop_cryterion(self): + '''default stop cryterion for iterative algorithm: max_iteration reached''' + return self.iteration >= self.max_iteration + def __iter__(self): + '''Algorithm is an iterable''' + return self + def next(self): + '''Algorithm is an iterable + + python2 backwards compatibility''' + return self.__next__() + def __next__(self): + '''Algorithm is an iterable + + calling this method triggers update and update_objective + ''' + if self.should_stop(): + raise StopIteration() + else: + time0 = time.time() + self.update() + self.timing.append( time.time() - time0 ) + if self.iteration % self.update_objective_interval == 0: + self.update_objective() + self.iteration += 1 + def get_output(self): + '''Returns the solution found''' + return self.x + def get_last_loss(self): + '''Returns the last stored value of the loss function + + if update_objective_interval is 1 it is the value of the objective at the current + iteration. If update_objective_interval > 1 it is the last stored value. + ''' + return self.__loss[-1] + def get_last_objective(self): + '''alias to get_last_loss''' + return self.get_last_loss() + def update_objective(self): + '''calculates the objective with the current solution''' + raise NotImplementedError() + @property + def loss(self): + '''returns the list of the values of the objective during the iteration + + The length of this list may be shorter than the number of iterations run when + the update_objective_interval > 1 + ''' + return self.__loss + @property + def objective(self): + '''alias of loss''' + return self.loss + @property + def max_iteration(self): + '''gets the maximum number of iterations''' + return self.__max_iteration + @max_iteration.setter + def max_iteration(self, value): + '''sets the maximum number of iterations''' + assert isinstance(value, int) + self.__max_iteration = value + @property + def update_objective_interval(self): + return self.__update_objective_interval + @update_objective_interval.setter + def update_objective_interval(self, value): + if isinstance(value, Integral): + if value >= 1: + self.__update_objective_interval = value + else: + raise ValueError('Update objective interval must be an integer >= 1') + else: + raise ValueError('Update objective interval must be an integer >= 1') + def run(self, iterations, verbose=True, callback=None): + '''run n iterations and update the user with the callback if specified''' + if self.should_stop(): + print ("Stop cryterion has been reached.") + i = 0 + for _ in self: + if verbose and self.iteration % self.update_objective_interval == 0: + print ("Iteration {}/{}, objective {}".format(self.iteration, + self.max_iteration, self.get_last_objective()) ) + else: + if callback is not None: + callback(self.iteration, self.get_last_objective()) + i += 1 + if i == iterations: + break + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py new file mode 100644 index 0000000..7194eb8 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py @@ -0,0 +1,87 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Created on Thu Feb 21 11:11:23 2019 + +@author: ofn77899 +""" + +from ccpi.optimisation.algorithms import Algorithm +#from collections.abc import Iterable +class CGLS(Algorithm): + + '''Conjugate Gradient Least Squares algorithm + + Parameters: + x_init: initial guess + operator: operator for forward/backward projections + data: data to operate on + ''' + def __init__(self, **kwargs): + super(CGLS, self).__init__() + self.x = kwargs.get('x_init', None) + self.operator = kwargs.get('operator', None) + self.data = kwargs.get('data', None) + if self.x is not None and self.operator is not None and \ + self.data is not None: + print ("Calling from creator") + self.set_up(x_init =kwargs['x_init'], + operator=kwargs['operator'], + data =kwargs['data']) + + def set_up(self, x_init, operator , data ): + + self.r = data.copy() + self.x = x_init.copy() + + self.operator = operator + self.d = operator.adjoint(self.r) + + + self.normr2 = self.d.squared_norm() + #if isinstance(self.normr2, Iterable): + # self.normr2 = sum(self.normr2) + #self.normr2 = numpy.sqrt(self.normr2) + #print ("set_up" , self.normr2) + + def update(self): + + Ad = self.operator.direct(self.d) + #norm = (Ad*Ad).sum() + #if isinstance(norm, Iterable): + # norm = sum(norm) + norm = Ad.squared_norm() + + alpha = self.normr2/norm + self.x += (self.d * alpha) + self.r -= (Ad * alpha) + s = self.operator.adjoint(self.r) + + normr2_new = s.squared_norm() + #if isinstance(normr2_new, Iterable): + # normr2_new = sum(normr2_new) + #normr2_new = numpy.sqrt(normr2_new) + #print (normr2_new) + + beta = normr2_new/self.normr2 + self.normr2 = normr2_new + self.d = s + beta*self.d + + def update_objective(self): + self.loss.append(self.r.squared_norm())
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py new file mode 100644 index 0000000..445ba7a --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py @@ -0,0 +1,86 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Created on Thu Feb 21 11:09:03 2019 + +@author: ofn77899 +""" + +from ccpi.optimisation.algorithms import Algorithm +from ccpi.optimisation.functions import ZeroFun + +class FBPD(Algorithm): + '''FBPD Algorithm + + Parameters: + x_init: initial guess + f: constraint + g: data fidelity + h: regularizer + opt: additional algorithm + ''' + constraint = None + data_fidelity = None + regulariser = None + def __init__(self, **kwargs): + pass + def set_up(self, x_init, operator=None, constraint=None, data_fidelity=None,\ + regulariser=None, opt=None): + + # default inputs + if constraint is None: + self.constraint = ZeroFun() + else: + self.constraint = constraint + if data_fidelity is None: + data_fidelity = ZeroFun() + else: + self.data_fidelity = data_fidelity + if regulariser is None: + self.regulariser = ZeroFun() + else: + self.regulariser = regulariser + + # algorithmic parameters + + + # step-sizes + self.tau = 2 / (self.data_fidelity.L + 2) + self.sigma = (1/self.tau - self.data_fidelity.L/2) / self.regulariser.L + + self.inv_sigma = 1/self.sigma + + # initialization + self.x = x_init + self.y = operator.direct(self.x) + + + def update(self): + + # primal forward-backward step + x_old = self.x + self.x = self.x - self.tau * ( self.data_fidelity.grad(self.x) + self.operator.adjoint(self.y) ) + self.x = self.constraint.prox(self.x, self.tau); + + # dual forward-backward step + self.y = self.y + self.sigma * self.operator.direct(2*self.x - x_old); + self.y = self.y - self.sigma * self.regulariser.prox(self.inv_sigma*self.y, self.inv_sigma); + + # time and criterion + self.loss = self.constraint(self.x) + self.data_fidelity(self.x) + self.regulariser(self.operator.direct(self.x)) diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py new file mode 100644 index 0000000..93ba178 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py @@ -0,0 +1,121 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 21 11:07:30 2019 + +@author: ofn77899 +""" + +from ccpi.optimisation.algorithms import Algorithm +from ccpi.optimisation.functions import ZeroFun +import numpy + +class FISTA(Algorithm): + '''Fast Iterative Shrinkage-Thresholding Algorithm + + Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding + algorithm for linear inverse problems. + SIAM journal on imaging sciences,2(1), pp.183-202. + + Parameters: + x_init: initial guess + f: data fidelity + g: regularizer + h: + opt: additional algorithm + ''' + + def __init__(self, **kwargs): + '''initialisation can be done at creation time if all + proper variables are passed or later with set_up''' + super(FISTA, self).__init__() + self.f = None + self.g = None + self.invL = None + self.t_old = 1 + args = ['x_init', 'f', 'g', 'opt'] + for k,v in kwargs.items(): + if k in args: + args.pop(args.index(k)) + if len(args) == 0: + return self.set_up(kwargs['x_init'], + f=kwargs['f'], + g=kwargs['g'], + opt=kwargs['opt']) + + def set_up(self, x_init, f=None, g=None, opt=None): + + # default inputs + if f is None: + self.f = ZeroFun() + else: + self.f = f + if g is None: + g = ZeroFun() + self.g = g + else: + self.g = g + + # algorithmic parameters + if opt is None: + opt = {'tol': 1e-4, 'memopt':False} + + self.tol = opt['tol'] if 'tol' in opt.keys() else 1e-4 + memopt = opt['memopt'] if 'memopt' in opt.keys() else False + self.memopt = memopt + + # initialization + if memopt: + self.y = x_init.clone() + self.x_old = x_init.clone() + self.x = x_init.clone() + self.u = x_init.clone() + else: + self.x_old = x_init.copy() + self.y = x_init.copy() + + #timing = numpy.zeros(max_iter) + #criter = numpy.zeros(max_iter) + + + self.invL = 1/f.L + + self.t_old = 1 + + def update(self): + # algorithm loop + #for it in range(0, max_iter): + + if self.memopt: + # u = y - invL*f.grad(y) + # store the result in x_old + self.f.gradient(self.y, out=self.u) + self.u.__imul__( -self.invL ) + self.u.__iadd__( self.y ) + # x = g.prox(u,invL) + self.g.proximal(self.u, self.invL, out=self.x) + + self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2))) + + # y = x + (t_old-1)/t*(x-x_old) + self.x.subtract(self.x_old, out=self.y) + self.y.__imul__ ((self.t_old-1)/self.t) + self.y.__iadd__( self.x ) + + self.x_old.fill(self.x) + self.t_old = self.t + + + else: + u = self.y - self.invL*self.f.grad(self.y) + + self.x = self.g.prox(u,self.invL) + + self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2))) + + self.y = self.x + (self.t_old-1)/self.t*(self.x-self.x_old) + + self.x_old = self.x.copy() + self.t_old = self.t + + def update_objective(self): + self.loss.append( self.f(self.x) + self.g(self.x) )
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py new file mode 100644 index 0000000..f1e4132 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py @@ -0,0 +1,76 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Created on Thu Feb 21 11:05:09 2019 + +@author: ofn77899 +""" +from ccpi.optimisation.algorithms import Algorithm + +class GradientDescent(Algorithm): + '''Implementation of Gradient Descent algorithm + ''' + + def __init__(self, **kwargs): + '''initialisation can be done at creation time if all + proper variables are passed or later with set_up''' + super(GradientDescent, self).__init__() + self.x = None + self.rate = 0 + self.objective_function = None + self.regulariser = None + args = ['x_init', 'objective_function', 'rate'] + for k,v in kwargs.items(): + if k in args: + args.pop(args.index(k)) + if len(args) == 0: + return self.set_up(x_init=kwargs['x_init'], + objective_function=kwargs['objective_function'], + rate=kwargs['rate']) + + def should_stop(self): + '''stopping cryterion, currently only based on number of iterations''' + return self.iteration >= self.max_iteration + + def set_up(self, x_init, objective_function, rate): + '''initialisation of the algorithm''' + self.x = x_init.copy() + self.objective_function = objective_function + self.rate = rate + self.loss.append(objective_function(x_init)) + self.iteration = 0 + try: + self.memopt = self.objective_function.memopt + except AttributeError as ae: + self.memopt = False + if self.memopt: + self.x_update = x_init.copy() + + def update(self): + '''Single iteration''' + if self.memopt: + self.objective_function.gradient(self.x, out=self.x_update) + self.x_update *= -self.rate + self.x += self.x_update + else: + self.x += -self.rate * self.objective_function.gradient(self.x) + + def update_objective(self): + self.loss.append(self.objective_function(self.x)) +
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py new file mode 100644 index 0000000..043fe38 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py @@ -0,0 +1,82 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Feb 4 16:18:06 2019 + +@author: evangelos +""" +from ccpi.optimisation.algorithms import Algorithm +from ccpi.framework import ImageData +import numpy as np +#import matplotlib.pyplot as plt +import time +from ccpi.optimisation.operators import BlockOperator +from ccpi.framework import BlockDataContainer + +class PDHG(Algorithm): + '''Primal Dual Hybrid Gradient''' + + def __init__(self, **kwargs): + super(PDHG, self).__init__() + self.f = kwargs.get('f', None) + self.operator = kwargs.get('operator', None) + self.g = kwargs.get('g', None) + self.tau = kwargs.get('tau', None) + self.sigma = kwargs.get('sigma', None) + + if self.f is not None and self.operator is not None and \ + self.g is not None: + print ("Calling from creator") + self.set_up(self.f, + self.operator, + self.g, + self.tau, + self.sigma) + + def set_up(self, f, g, operator, tau = None, sigma = None, opt = None, **kwargs): + # algorithmic parameters + + if sigma is None and tau is None: + raise ValueError('Need sigma*tau||K||^2<1') + + + self.x_old = self.operator.domain_geometry().allocate() + self.y_old = self.operator.range_geometry().allocate() + + self.xbar = self.x_old.copy() + #x_tmp = x_old + self.x = self.x_old.copy() + self.y = self.y_old.copy() + #y_tmp = y_old + #y = y_tmp + + # relaxation parameter + self.theta = 1 + + def update(self): + # Gradient descent, Dual problem solution + self.y_old += self.sigma * self.operator.direct(self.xbar) + self.y = self.f.proximal_conjugate(self.y_old, self.sigma) + + # Gradient ascent, Primal problem solution + self.x_old -= self.tau * self.operator.adjoint(self.y) + self.x = self.g.proximal(self.x_old, self.tau) + + #Update + #xbar = x + theta * (x - x_old) + self.xbar.fill(self.x) + self.xbar -= self.x_old + self.xbar *= self.theta + self.xbar += self.x + + self.x_old.fill(self.x) + self.y_old.fill(self.y) + #self.y_old = y.copy() + #self.y = self.y_old + + def update_objective(self): + self.loss.append([self.f(self.operator.direct(self.x)) + self.g(self.x), + -(self.f.convex_conjugate(self.y) + self.g.convex_conjugate(- 1 * self.operator.adjoint(self.y))) + ]) + + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py new file mode 100644 index 0000000..443bc78 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py @@ -0,0 +1,30 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Created on Thu Feb 21 11:03:13 2019 + +@author: ofn77899 +""" + +from .Algorithm import Algorithm +from .CGLS import CGLS +from .GradientDescent import GradientDescent +from .FISTA import FISTA +from .FBPD import FBPD +from .PDHG import PDHG diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algs.py b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py new file mode 100644 index 0000000..6b6ae2c --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py @@ -0,0 +1,319 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy +import time + +from ccpi.optimisation.functions import Function +from ccpi.optimisation.functions import ZeroFun +from ccpi.framework import ImageData +from ccpi.framework import AcquisitionData +from ccpi.optimisation.spdhg import spdhg +from ccpi.optimisation.spdhg import KullbackLeibler +from ccpi.optimisation.spdhg import KullbackLeiblerConvexConjugate + +def FISTA(x_init, f=None, g=None, opt=None): + '''Fast Iterative Shrinkage-Thresholding Algorithm + + Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding + algorithm for linear inverse problems. + SIAM journal on imaging sciences,2(1), pp.183-202. + + Parameters: + x_init: initial guess + f: data fidelity + g: regularizer + h: + opt: additional algorithm + ''' + # default inputs + if f is None: f = ZeroFun() + if g is None: g = ZeroFun() + + # algorithmic parameters + if opt is None: + opt = {'tol': 1e-4, 'iter': 1000, 'memopt':False} + + max_iter = opt['iter'] if 'iter' in opt.keys() else 1000 + tol = opt['tol'] if 'tol' in opt.keys() else 1e-4 + memopt = opt['memopt'] if 'memopt' in opt.keys() else False + + + # initialization + if memopt: + y = x_init.clone() + x_old = x_init.clone() + x = x_init.clone() + u = x_init.clone() + else: + x_old = x_init + y = x_init; + + timing = numpy.zeros(max_iter) + criter = numpy.zeros(max_iter) + + invL = 1/f.L + + t_old = 1 + + c = f(x_init) + g(x_init) + + # algorithm loop + for it in range(0, max_iter): + + time0 = time.time() + if memopt: + # u = y - invL*f.grad(y) + # store the result in x_old + f.gradient(y, out=u) + u.__imul__( -invL ) + u.__iadd__( y ) + # x = g.prox(u,invL) + g.proximal(u, invL, out=x) + + t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2))) + + # y = x + (t_old-1)/t*(x-x_old) + x.subtract(x_old, out=y) + y.__imul__ ((t_old-1)/t) + y.__iadd__( x ) + + x_old.fill(x) + t_old = t + + + else: + u = y - invL*f.grad(y) + + x = g.prox(u,invL) + + t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2))) + + y = x + (t_old-1)/t*(x-x_old) + + x_old = x.copy() + t_old = t + + # time and criterion + timing[it] = time.time() - time0 + criter[it] = f(x) + g(x); + + # stopping rule + #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10: + # break + + #print(it, 'out of', 10, 'iterations', end='\r'); + + #criter = criter[0:it+1]; + timing = numpy.cumsum(timing[0:it+1]); + + return x, it, timing, criter + +def FBPD(x_init, operator=None, constraint=None, data_fidelity=None,\ + regulariser=None, opt=None): + '''FBPD Algorithm + + Parameters: + x_init: initial guess + f: constraint + g: data fidelity + h: regularizer + opt: additional algorithm + ''' + # default inputs + if constraint is None: constraint = ZeroFun() + if data_fidelity is None: data_fidelity = ZeroFun() + if regulariser is None: regulariser = ZeroFun() + + # algorithmic parameters + if opt is None: + opt = {'tol': 1e-4, 'iter': 1000} + else: + try: + max_iter = opt['iter'] + except KeyError as ke: + opt[ke] = 1000 + try: + opt['tol'] = 1000 + except KeyError as ke: + opt[ke] = 1e-4 + tol = opt['tol'] + max_iter = opt['iter'] + memopt = opt['memopts'] if 'memopts' in opt.keys() else False + + # step-sizes + tau = 2 / (data_fidelity.L + 2) + sigma = (1/tau - data_fidelity.L/2) / regulariser.L + inv_sigma = 1/sigma + + # initialization + x = x_init + y = operator.direct(x); + + timing = numpy.zeros(max_iter) + criter = numpy.zeros(max_iter) + + + + + # algorithm loop + for it in range(0, max_iter): + + t = time.time() + + # primal forward-backward step + x_old = x; + x = x - tau * ( data_fidelity.grad(x) + operator.adjoint(y) ); + x = constraint.prox(x, tau); + + # dual forward-backward step + y = y + sigma * operator.direct(2*x - x_old); + y = y - sigma * regulariser.prox(inv_sigma*y, inv_sigma); + + # time and criterion + timing[it] = time.time() - t + criter[it] = constraint(x) + data_fidelity(x) + regulariser(operator.direct(x)) + + # stopping rule + #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10: + # break + + criter = criter[0:it+1] + timing = numpy.cumsum(timing[0:it+1]) + + return x, it, timing, criter + +def CGLS(x_init, operator , data , opt=None): + '''Conjugate Gradient Least Squares algorithm + + Parameters: + x_init: initial guess + operator: operator for forward/backward projections + data: data to operate on + opt: additional algorithm + ''' + + if opt is None: + opt = {'tol': 1e-4, 'iter': 1000} + else: + try: + max_iter = opt['iter'] + except KeyError as ke: + opt[ke] = 1000 + try: + opt['tol'] = 1000 + except KeyError as ke: + opt[ke] = 1e-4 + tol = opt['tol'] + max_iter = opt['iter'] + + r = data.copy() + x = x_init.copy() + + d = operator.adjoint(r) + + normr2 = (d**2).sum() + + timing = numpy.zeros(max_iter) + criter = numpy.zeros(max_iter) + + # algorithm loop + for it in range(0, max_iter): + + t = time.time() + + Ad = operator.direct(d) + alpha = normr2/( (Ad**2).sum() ) + x = x + alpha*d + r = r - alpha*Ad + s = operator.adjoint(r) + + normr2_new = (s**2).sum() + beta = normr2_new/normr2 + normr2 = normr2_new + d = s + beta*d + + # time and criterion + timing[it] = time.time() - t + criter[it] = (r**2).sum() + + return x, it, timing, criter + +def SIRT(x_init, operator , data , opt=None, constraint=None): + '''Simultaneous Iterative Reconstruction Technique + + Parameters: + x_init: initial guess + operator: operator for forward/backward projections + data: data to operate on + opt: additional algorithm + constraint: func of Indicator type specifying convex constraint. + ''' + + if opt is None: + opt = {'tol': 1e-4, 'iter': 1000} + else: + try: + max_iter = opt['iter'] + except KeyError as ke: + opt[ke] = 1000 + try: + opt['tol'] = 1000 + except KeyError as ke: + opt[ke] = 1e-4 + tol = opt['tol'] + max_iter = opt['iter'] + + # Set default constraint to unconstrained + if constraint==None: + constraint = Function() + + x = x_init.clone() + + timing = numpy.zeros(max_iter) + criter = numpy.zeros(max_iter) + + # Relaxation parameter must be strictly between 0 and 2. For now fix at 1.0 + relax_par = 1.0 + + # Set up scaling matrices D and M. + im1 = ImageData(geometry=x_init.geometry) + im1.array[:] = 1.0 + M = 1/operator.direct(im1) + del im1 + aq1 = AcquisitionData(geometry=M.geometry) + aq1.array[:] = 1.0 + D = 1/operator.adjoint(aq1) + del aq1 + + # algorithm loop + for it in range(0, max_iter): + t = time.time() + r = data - operator.direct(x) + + x = constraint.prox(x + relax_par * (D*operator.adjoint(M*r)),None) + + timing[it] = time.time() - t + if it > 0: + criter[it-1] = (r**2).sum() + + r = data - operator.direct(x) + criter[it] = (r**2).sum() + return x, it, timing, criter + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py b/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py new file mode 100644 index 0000000..efc465c --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py @@ -0,0 +1,272 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.optimisation.ops import Identity, FiniteDiff2D +import numpy +from ccpi.framework import DataContainer +import warnings +from ccpi.optimisation.functions import Function +def isSizeCorrect(data1 ,data2): + if issubclass(type(data1), DataContainer) and \ + issubclass(type(data2), DataContainer): + # check dimensionality + if data1.check_dimensions(data2): + return True + elif issubclass(type(data1) , numpy.ndarray) and \ + issubclass(type(data2) , numpy.ndarray): + return data1.shape == data2.shape + else: + raise ValueError("{0}: getting two incompatible types: {1} {2}"\ + .format('Function', type(data1), type(data2))) + return False +class Norm2(Function): + + def __init__(self, + gamma=1.0, + direction=None): + super(Norm2, self).__init__() + self.gamma = gamma; + self.direction = direction; + + def __call__(self, x, out=None): + + if out is None: + xx = numpy.sqrt(numpy.sum(numpy.square(x.as_array()), self.direction, + keepdims=True)) + else: + if isSizeCorrect(out, x): + # check dimensionality + if issubclass(type(out), DataContainer): + arr = out.as_array() + numpy.square(x.as_array(), out=arr) + xx = numpy.sqrt(numpy.sum(arr, self.direction, keepdims=True)) + + elif issubclass(type(out) , numpy.ndarray): + numpy.square(x.as_array(), out=out) + xx = numpy.sqrt(numpy.sum(out, self.direction, keepdims=True)) + else: + raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) ) + + p = numpy.sum(self.gamma*xx) + + return p + + def prox(self, x, tau): + + xx = numpy.sqrt(numpy.sum( numpy.square(x.as_array()), self.direction, + keepdims=True )) + xx = numpy.maximum(0, 1 - tau*self.gamma / xx) + p = x.as_array() * xx + + return type(x)(p,geometry=x.geometry) + def proximal(self, x, tau, out=None): + if out is None: + return self.prox(x,tau) + else: + if isSizeCorrect(out, x): + # check dimensionality + if issubclass(type(out), DataContainer): + numpy.square(x.as_array(), out = out.as_array()) + xx = numpy.sqrt(numpy.sum( out.as_array() , self.direction, + keepdims=True )) + xx = numpy.maximum(0, 1 - tau*self.gamma / xx) + x.multiply(xx, out= out.as_array()) + + + elif issubclass(type(out) , numpy.ndarray): + numpy.square(x.as_array(), out=out) + xx = numpy.sqrt(numpy.sum(out, self.direction, keepdims=True)) + + xx = numpy.maximum(0, 1 - tau*self.gamma / xx) + x.multiply(xx, out= out) + else: + raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) ) + + +class TV2D(Norm2): + + def __init__(self, gamma): + super(TV2D,self).__init__(gamma, 0) + self.op = FiniteDiff2D() + self.L = self.op.get_max_sing_val() + + +# Define a class for squared 2-norm +class Norm2sq(Function): + ''' + f(x) = c*||A*x-b||_2^2 + + which has + + grad[f](x) = 2*c*A^T*(A*x-b) + + and Lipschitz constant + + L = 2*c*||A||_2^2 = 2*s1(A)^2 + + where s1(A) is the largest singular value of A. + + ''' + + def __init__(self,A,b,c=1.0,memopt=False): + super(Norm2sq, self).__init__() + + self.A = A # Should be an operator, default identity + self.b = b # Default zero DataSet? + self.c = c # Default 1. + if memopt: + try: + self.range_tmp = A.range_geometry().allocate() + self.domain_tmp = A.domain_geometry().allocate() + self.memopt = True + except NameError as ne: + warnings.warn(str(ne)) + self.memopt = False + except NotImplementedError as nie: + print (nie) + warnings.warn(str(nie)) + self.memopt = False + else: + self.memopt = False + + # Compute the Lipschitz parameter from the operator if possible + # Leave it initialised to None otherwise + try: + self.L = 2.0*self.c*(self.A.norm()**2) + except AttributeError as ae: + pass + except NotImplementedError as noe: + pass + + #def grad(self,x): + # return self.gradient(x, out=None) + + def __call__(self,x): + #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel())) + #if out is None: + # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() ) + #else: + y = self.A.direct(x) + y.__isub__(self.b) + #y.__imul__(y) + #return y.sum() * self.c + try: + return y.squared_norm() * self.c + except AttributeError as ae: + # added for compatibility with SIRF + return (y.norm()**2) * self.c + + def gradient(self, x, out = None): + if self.memopt: + #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b ) + + self.A.direct(x, out=self.range_tmp) + self.range_tmp -= self.b + self.A.adjoint(self.range_tmp, out=out) + #self.direct_placehold.multiply(2.0*self.c, out=out) + out *= (self.c * 2.0) + else: + return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b ) + + + +# Box constraints indicator function. Calling returns 0 if argument is within +# the box. The prox operator is projection onto the box. Only implements one +# scalar lower and one upper as constraint on all elements. Should generalise +# to vectors to allow different constraints one elements. +class IndicatorBox(Function): + + def __init__(self,lower=-numpy.inf,upper=numpy.inf): + # Do nothing + super(IndicatorBox, self).__init__() + self.lower = lower + self.upper = upper + + + def __call__(self,x): + + if (numpy.all(x.array>=self.lower) and + numpy.all(x.array <= self.upper) ): + val = 0 + else: + val = numpy.inf + return val + + def prox(self,x,tau=None): + return (x.maximum(self.lower)).minimum(self.upper) + + def proximal(self, x, tau, out=None): + if out is None: + return self.prox(x, tau) + else: + if not x.shape == out.shape: + raise ValueError('Norm1 Incompatible size:', + x.shape, out.shape) + #(x.abs() - tau*self.gamma).maximum(0) * x.sign() + x.abs(out = out) + out.__isub__(tau*self.gamma) + out.maximum(0, out=out) + if self.sign_x is None or not x.shape == self.sign_x.shape: + self.sign_x = x.sign() + else: + x.sign(out=self.sign_x) + + out.__imul__( self.sign_x ) + +# A more interesting example, least squares plus 1-norm minimization. +# Define class to represent 1-norm including prox function +class Norm1(Function): + + def __init__(self,gamma): + super(Norm1, self).__init__() + self.gamma = gamma + self.L = 1 + self.sign_x = None + + def __call__(self,x,out=None): + if out is None: + return self.gamma*(x.abs().sum()) + else: + if not x.shape == out.shape: + raise ValueError('Norm1 Incompatible size:', + x.shape, out.shape) + x.abs(out=out) + return out.sum() * self.gamma + + def prox(self,x,tau): + return (x.abs() - tau*self.gamma).maximum(0) * x.sign() + + def proximal(self, x, tau, out=None): + if out is None: + return self.prox(x, tau) + else: + if isSizeCorrect(x,out): + # check dimensionality + if issubclass(type(out), DataContainer): + v = (x.abs() - tau*self.gamma).maximum(0) + x.sign(out=out) + out *= v + #out.fill(self.prox(x,tau)) + elif issubclass(type(out) , numpy.ndarray): + v = (x.abs() - tau*self.gamma).maximum(0) + out[:] = x.sign() + out *= v + #out[:] = self.prox(x,tau) + else: + raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) ) diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py new file mode 100644 index 0000000..70216a9 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 8 10:01:31 2019 + +@author: evangelos +""" + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.framework import BlockDataContainer + +class BlockFunction(Function): + '''A Block vector of Functions + + .. math:: + + f = [f_1,f_2,f_3] + f([x_1,x_2,x_3]) = f_1(x_1) + f_2(x_2) + f_3(x_3) + + ''' + def __init__(self, *functions): + '''Creator''' + self.functions = functions + self.length = len(self.functions) + + super(BlockFunction, self).__init__() + + def __call__(self, x): + '''evaluates the BlockFunction on the BlockDataContainer + + :param: x (BlockDataContainer): must have as many rows as self.length + + returns sum(f_i(x_i)) + ''' + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + t = 0 + for i in range(x.shape[0]): + t += self.functions[i](x.get_item(i)) + return t + + def convex_conjugate(self, x): + '''Convex_conjugate does not take into account the BlockOperator''' + t = 0 + for i in range(x.shape[0]): + t += self.functions[i].convex_conjugate(x.get_item(i)) + return t + + + def proximal_conjugate(self, x, tau, out = None): + '''proximal_conjugate does not take into account the BlockOperator''' + out = [None]*self.length + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau) + + return BlockDataContainer(*out) + + def proximal(self, x, tau, out = None): + '''proximal does not take into account the BlockOperator''' + out = [None]*self.length + for i in range(self.length): + out[i] = self.functions[i].proximal(x.get_item(i), tau) + + return BlockDataContainer(*out) + + def gradient(self,x, out=None): + '''FIXME: gradient returns pass''' + pass
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py new file mode 100644 index 0000000..82f24a6 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py @@ -0,0 +1,69 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import warnings +from ccpi.optimisation.functions.ScaledFunction import ScaledFunction + +class Function(object): + '''Abstract class representing a function + + Members: + L is the Lipschitz constant of the gradient of the Function + ''' + def __init__(self): + self.L = None + + def __call__(self,x, out=None): + '''Evaluates the function at x ''' + raise NotImplementedError + + def gradient(self, x, out=None): + '''Returns the gradient of the function at x, if the function is differentiable''' + raise NotImplementedError + + def proximal(self, x, tau, out=None): + '''This returns the proximal operator for the function at x, tau''' + raise NotImplementedError + + def convex_conjugate(self, x, out=None): + '''This evaluates the convex conjugate of the function at x''' + raise NotImplementedError + + def proximal_conjugate(self, x, tau, out = None): + '''This returns the proximal operator for the convex conjugate of the function at x, tau''' + raise NotImplementedError + + def grad(self, x): + '''Alias of gradient(x,None)''' + warnings.warn('''This method will disappear in following + versions of the CIL. Use gradient instead''', DeprecationWarning) + return self.gradient(x, out=None) + + def prox(self, x, tau): + '''Alias of proximal(x, tau, None)''' + warnings.warn('''This method will disappear in following + versions of the CIL. Use proximal instead''', DeprecationWarning) + return self.proximal(x, out=None) + + def __rmul__(self, scalar): + '''Defines the multiplication by a scalar on the left + + returns a ScaledFunction''' + return ScaledFunction(self, scalar) + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py new file mode 100644 index 0000000..34b7e35 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py @@ -0,0 +1,65 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 8 09:55:36 2019 + +@author: evangelos +""" + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.optimisation.functions import ScaledFunction + + +class FunctionOperatorComposition(Function): + + def __init__(self, operator, function): + super(FunctionOperatorComposition, self).__init__() + self.function = function + self.operator = operator + alpha = 1 + if isinstance (function, ScaledFunction): + alpha = function.scalar + self.L = 2 * alpha * operator.norm()**2 + + + def __call__(self, x): + + return self.function(self.operator.direct(x)) + + def call_adjoint(self, x): + + return self.function(self.operator.adjoint(x)) + + def convex_conjugate(self, x): + + ''' convex_conjugate does not take into account the Operator''' + return self.function.convex_conjugate(x) + + def proximal(self, x, tau, out=None): + + '''proximal does not take into account the Operator''' + + return self.function.proximal(x, tau, out=out) + + def proximal_conjugate(self, x, tau, out=None): + + ''' proximal conjugate does not take into account the Operator''' + + return self.function.proximal_conjugate(x, tau, out=out) + + def gradient(self, x, out=None): + + ''' Gradient takes into account the Operator''' + if out is None: + return self.operator.adjoint( + self.function.gradient(self.operator.direct(x)) + ) + else: + self.operator.adjoint( + self.function.gradient(self.operator.direct(x), + out=out) + ) + +
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py new file mode 100644 index 0000000..df8dc89 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py @@ -0,0 +1,65 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ccpi.optimisation.functions import Function +import numpy + +class IndicatorBox(Function): + '''Box constraints indicator function. + + Calling returns 0 if argument is within the box. The prox operator is projection onto the box. + Only implements one scalar lower and one upper as constraint on all elements. Should generalise + to vectors to allow different constraints one elements. +''' + + def __init__(self,lower=-numpy.inf,upper=numpy.inf): + # Do nothing + super(IndicatorBox, self).__init__() + self.lower = lower + self.upper = upper + + + def __call__(self,x): + + if (numpy.all(x.array>=self.lower) and + numpy.all(x.array <= self.upper) ): + val = 0 + else: + val = numpy.inf + return val + + def prox(self,x,tau=None): + return (x.maximum(self.lower)).minimum(self.upper) + + def proximal(self, x, tau, out=None): + if out is None: + return self.prox(x, tau) + else: + if not x.shape == out.shape: + raise ValueError('Norm1 Incompatible size:', + x.shape, out.shape) + #(x.abs() - tau*self.gamma).maximum(0) * x.sign() + x.abs(out = out) + out.__isub__(tau*self.gamma) + out.maximum(0, out=out) + if self.sign_x is None or not x.shape == self.sign_x.shape: + self.sign_x = x.sign() + else: + x.sign(out=self.sign_x) + + out.__imul__( self.sign_x ) diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py new file mode 100644 index 0000000..5a47edd --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py @@ -0,0 +1,92 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Created on Wed Mar 6 19:42:34 2019 + +@author: evangelos +""" + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.framework import DataContainer, ImageData, ImageGeometry + + +############################ L1NORM FUNCTIONS ############################# +class SimpleL1Norm(Function): + + def __init__(self, alpha=1): + + super(SimpleL1Norm, self).__init__() + self.alpha = alpha + + def __call__(self, x): + return self.alpha * x.abs().sum() + + def gradient(self,x): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + return 0 + + def proximal(self, x, tau): + ''' Soft Threshold''' + return x.sign() * (x.abs() - tau * self.alpha).maximum(0) + + def proximal_conjugate(self, x, tau): + return x.divide((x.abs()/self.alpha).maximum(1.0)) + +class L1Norm(SimpleL1Norm): + + def __init__(self, alpha=1, **kwargs): + + super(L1Norm, self).__init__() + self.alpha = alpha + self.b = kwargs.get('b',None) + + def __call__(self, x): + + if self.b is None: + return SimpleL1Norm.__call__(self, x) + else: + return SimpleL1Norm.__call__(self, x - self.b) + + def gradient(self, x): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + if self.b is None: + return SimpleL1Norm.convex_conjugate(self, x) + else: + return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum() + + def proximal(self, x, tau): + + if self.b is None: + return SimpleL1Norm.proximal(self, x, tau) + else: + return self.b + SimpleL1Norm.proximal(self, x - self.b , tau) + + def proximal_conjugate(self, x, tau): + + if self.b is None: + return SimpleL1Norm.proximal_conjugate(self, x, tau) + else: + return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau) +
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py new file mode 100644 index 0000000..5489d92 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py @@ -0,0 +1,222 @@ +# -*- coding: utf-8 -*- + +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 7 13:10:56 2019 + +@author: evangelos +""" + +import numpy +from ccpi.optimisation.functions import Function +from ccpi.optimisation.functions.ScaledFunction import ScaledFunction +from ccpi.framework import DataContainer, ImageData, ImageGeometry + +############################ L2NORM FUNCTION ############################# +class L2NormSquared(Function): + + def __init__(self, **kwargs): + + ''' L2NormSquared class + f : ImageGeometry --> R + + Cases: f(x) = ||x||^{2}_{2} + f(x) = || x - b ||^{2}_{2} + + ''' + + #TODO need x, b to live in the same geometry if b is not None + + super(L2NormSquared, self).__init__() + self.b = kwargs.get('b',None) + + def __call__(self, x): + ''' Evaluates L2NormSq at point x''' + + y = x + if self.b is not None: +# x.subtract(self.b, out = x) + y = x - self.b +# else: +# y +# if out is None: +# return x.squared_norm() +# else: + try: + return y.squared_norm() + except AttributeError as ae: + # added for compatibility with SIRF + return (y.norm()**2) + + + + def gradient(self, x, out=None): + ''' Evaluates gradient of L2NormSq at point x''' + if out is not None: + out.fill(x) + if self.b is not None: + out -= self.b + out *= 2 + else: + y = x + if self.b is not None: +# x.subtract(self.b, out=x) + y = x - self.b + return 2*y + + + def convex_conjugate(self, x, out=None): + ''' Evaluate convex conjugate of L2NormSq''' + + tmp = 0 + if self.b is not None: + tmp = (self.b * x).sum() + + if out is None: + # FIXME: this is a number + return (1/4) * x.squared_norm() + tmp + else: + # FIXME: this is a DataContainer + out.fill((1/4) * x.squared_norm() + tmp) + + + def proximal(self, x, tau, out = None): + + ''' The proximal operator ( prox_\{tau * f\}(x) ) evaluates i.e., + argmin_x { 0.5||x - u||^{2} + tau f(x) } + ''' + + if out is None: + if self.b is not None: + return (x - self.b)/(1+2*tau) + self.b + else: + return x/(1+2*tau) + else: + out.fill(x) + if self.b is not None: + out -= self.b + out /= (1+2*tau) + if self.b is not None: + out += self.b + #out.fill((x - self.b)/(1+2*tau) + self.b) + #else: + # out.fill(x/(1+2*tau)) + + + def proximal_conjugate(self, x, tau, out=None): + + if out is None: + if self.b is not None: + return (x - tau*self.b)/(1 + tau/2) + else: + return x/(1 + tau/2 ) + else: + if self.b is not None: + out.fill((x - tau*self.b)/(1 + tau/2)) + else: + out.fill(x/(1 + tau/2 )) + + def __rmul__(self, scalar): + return ScaledFunction(self, scalar) + + +if __name__ == '__main__': + + + # TESTS for L2 and scalar * L2 + + M, N, K = 2,3,5 + ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K) + u = ig.allocate('random_int') + b = ig.allocate('random_int') + + # check grad/call no data + f = L2NormSquared() + a1 = f.gradient(u) + a2 = 2 * u + numpy.testing.assert_array_almost_equal(a1.as_array(), a2.as_array(), decimal=4) + numpy.testing.assert_equal(f(u), u.squared_norm()) + + # check grad/call with data + f1 = L2NormSquared(b=b) + b1 = f1.gradient(u) + b2 = 2 * (u-b) + + numpy.testing.assert_array_almost_equal(b1.as_array(), b2.as_array(), decimal=4) + numpy.testing.assert_equal(f1(u), (u-b).squared_norm()) + + #check convex conjuagate no data + c1 = f.convex_conjugate(u) + c2 = 1/4 * u.squared_norm() + numpy.testing.assert_equal(c1, c2) + + #check convex conjuagate with data + d1 = f1.convex_conjugate(u) + d2 = (1/4) * u.squared_norm() + (u*b).sum() + numpy.testing.assert_equal(d1, d2) + + # check proximal no data + tau = 5 + e1 = f.proximal(u, tau) + e2 = u/(1+2*tau) + numpy.testing.assert_array_almost_equal(e1.as_array(), e2.as_array(), decimal=4) + + # check proximal with data + tau = 5 + h1 = f1.proximal(u, tau) + h2 = (u-b)/(1+2*tau) + b + numpy.testing.assert_array_almost_equal(h1.as_array(), h2.as_array(), decimal=4) + + # check proximal conjugate no data + tau = 0.2 + k1 = f.proximal_conjugate(u, tau) + k2 = u/(1 + tau/2 ) + numpy.testing.assert_array_almost_equal(k1.as_array(), k2.as_array(), decimal=4) + + # check proximal conjugate with data + l1 = f1.proximal_conjugate(u, tau) + l2 = (u - tau * b)/(1 + tau/2 ) + numpy.testing.assert_array_almost_equal(l1.as_array(), l2.as_array(), decimal=4) + + + # check scaled function properties + + # scalar + scalar = 100 + f_scaled_no_data = scalar * L2NormSquared() + f_scaled_data = scalar * L2NormSquared(b=b) + + # call + numpy.testing.assert_equal(f_scaled_no_data(u), scalar*f(u)) + numpy.testing.assert_equal(f_scaled_data(u), scalar*f1(u)) + + # grad + numpy.testing.assert_array_almost_equal(f_scaled_no_data.gradient(u).as_array(), scalar*f.gradient(u).as_array(), decimal=4) + numpy.testing.assert_array_almost_equal(f_scaled_data.gradient(u).as_array(), scalar*f1.gradient(u).as_array(), decimal=4) + + # conj + numpy.testing.assert_almost_equal(f_scaled_no_data.convex_conjugate(u), \ + f.convex_conjugate(u/scalar) * scalar, decimal=4) + + numpy.testing.assert_almost_equal(f_scaled_data.convex_conjugate(u), \ + scalar * f1.convex_conjugate(u/scalar), decimal=4) + + # proximal + numpy.testing.assert_array_almost_equal(f_scaled_no_data.proximal(u, tau).as_array(), \ + f.proximal(u, tau*scalar).as_array()) + + + numpy.testing.assert_array_almost_equal(f_scaled_data.proximal(u, tau).as_array(), \ + f1.proximal(u, tau*scalar).as_array()) + + + # proximal conjugate + numpy.testing.assert_array_almost_equal(f_scaled_no_data.proximal_conjugate(u, tau).as_array(), \ + (u/(1 + tau/(2*scalar) )).as_array(), decimal=4) + + numpy.testing.assert_array_almost_equal(f_scaled_data.proximal_conjugate(u, tau).as_array(), \ + ((u - tau * b)/(1 + tau/(2*scalar) )).as_array(), decimal=4) + + + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py new file mode 100644 index 0000000..1c51236 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py @@ -0,0 +1,136 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +from ccpi.optimisation.functions import Function, ScaledFunction +from ccpi.framework import DataContainer, ImageData, \ + ImageGeometry, BlockDataContainer + +############################ mixed_L1,2NORM FUNCTIONS ##################### +class MixedL21Norm(Function): + + def __init__(self, **kwargs): + + super(MixedL21Norm, self).__init__() + self.SymTensor = kwargs.get('SymTensor',False) + + def __call__(self, x, out=None): + + ''' Evaluates L1,2Norm at point x + + :param: x is a BlockDataContainer + + ''' + if self.SymTensor: + + param = [1]*x.shape[0] + param[-1] = 2 + tmp = [param[i]*(x[i] ** 2) for i in range(x.shape[0])] + res = sum(tmp).sqrt().sum() + else: + +# tmp = [ x[i]**2 for i in range(x.shape[0])] + tmp = [ el**2 for el in x.containers ] + +# print(x.containers) +# print(tmp) +# print(type(sum(tmp))) +# print(type(tmp)) + res = sum(tmp).sqrt().sum() +# print(res) + return res + + def gradient(self, x, out=None): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + + ''' This is the Indicator function of ||\cdot||_{2, \infty} + which is either 0 if ||x||_{2, \infty} or \infty + ''' + return 0.0 + + def proximal(self, x, tau, out=None): + + ''' + For this we need to define a MixedL2,2 norm acting on BDC, + different form L2NormSquared which acts on DC + + ''' + + pass + + def proximal_conjugate(self, x, tau, out=None): + + if self.SymTensor: + + param = [1]*x.shape[0] + param[-1] = 2 + tmp = [param[i]*(x[i] ** 2) for i in range(x.shape[0])] + frac = [x[i]/(sum(tmp).sqrt()).maximum(1.0) for i in range(x.shape[0])] + res = BlockDataContainer(*frac) + + return res + +# tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha +# res = x.divide(ImageData(tmp2).maximum(1.0)) + else: + + tmp = [ el*el for el in x] + res = (sum(tmp).sqrt()).maximum(1.0) + frac = [x[i]/res for i in range(x.shape[0])] + res = BlockDataContainer(*frac) + + return res + + def __rmul__(self, scalar): + return ScaledFunction(self, scalar) + +#class MixedL21Norm_tensor(Function): +# +# def __init__(self): +# print("feerf") +# +# +if __name__ == '__main__': + + M, N, K = 2,3,5 + ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N) + u1 = ig.allocate('random_int') + u2 = ig.allocate('random_int') + + U = BlockDataContainer(u1, u2, shape=(2,1)) + + # Define no scale and scaled + f_no_scaled = MixedL21Norm() + f_scaled = 0.5 * MixedL21Norm() + + # call + + a1 = f_no_scaled(U) + a2 = f_scaled(U) + + z = f_no_scaled.proximal_conjugate(U, 1) + + f_no_scaled = MixedL21Norm() + + tmp = [el*el for el in U] + + + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py new file mode 100644 index 0000000..b553d7c --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py @@ -0,0 +1,98 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ccpi.optimisation.functions import Function +import numpy +import warnings + +# Define a class for squared 2-norm +class Norm2sq(Function): + ''' + f(x) = c*||A*x-b||_2^2 + + which has + + grad[f](x) = 2*c*A^T*(A*x-b) + + and Lipschitz constant + + L = 2*c*||A||_2^2 = 2*s1(A)^2 + + where s1(A) is the largest singular value of A. + + ''' + + def __init__(self,A,b,c=1.0,memopt=False): + super(Norm2sq, self).__init__() + + self.A = A # Should be an operator, default identity + self.b = b # Default zero DataSet? + self.c = c # Default 1. + if memopt: + try: + self.range_tmp = A.range_geometry().allocate() + self.domain_tmp = A.domain_geometry().allocate() + self.memopt = True + except NameError as ne: + warnings.warn(str(ne)) + self.memopt = False + except NotImplementedError as nie: + print (nie) + warnings.warn(str(nie)) + self.memopt = False + else: + self.memopt = False + + # Compute the Lipschitz parameter from the operator if possible + # Leave it initialised to None otherwise + try: + self.L = 2.0*self.c*(self.A.norm()**2) + except AttributeError as ae: + pass + except NotImplementedError as noe: + pass + + #def grad(self,x): + # return self.gradient(x, out=None) + + def __call__(self,x): + #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel())) + #if out is None: + # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() ) + #else: + y = self.A.direct(x) + y.__isub__(self.b) + #y.__imul__(y) + #return y.sum() * self.c + try: + return y.squared_norm() * self.c + except AttributeError as ae: + # added for compatibility with SIRF + return (y.norm()**2) * self.c + + def gradient(self, x, out = None): + if self.memopt: + #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b ) + + self.A.direct(x, out=self.range_tmp) + self.range_tmp -= self.b + self.A.adjoint(self.range_tmp, out=out) + #self.direct_placehold.multiply(2.0*self.c, out=out) + out *= (self.c * 2.0) + else: + return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b ) diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py new file mode 100644 index 0000000..046a4a6 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py @@ -0,0 +1,91 @@ +# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from numbers import Number
+import numpy
+
+class ScaledFunction(object):
+ '''ScaledFunction
+
+ A class to represent the scalar multiplication of an Function with a scalar.
+ It holds a function and a scalar. Basically it returns the multiplication
+ of the product of the function __call__, convex_conjugate and gradient with the scalar.
+ For the rest it behaves like the function it holds.
+
+ Args:
+ function (Function): a Function or BlockOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+
+ '''
+ def __init__(self, function, scalar):
+ super(ScaledFunction, self).__init__()
+ self.L = None
+ if not isinstance (scalar, Number):
+ raise TypeError('expected scalar: got {}'.format(type(scalar)))
+ self.scalar = scalar
+ self.function = function
+
+ def __call__(self,x, out=None):
+ '''Evaluates the function at x '''
+ return self.scalar * self.function(x)
+
+ def convex_conjugate(self, x):
+ '''returns the convex_conjugate of the scaled function '''
+ # if out is None:
+ # return self.scalar * self.function.convex_conjugate(x/self.scalar)
+ # else:
+ # out.fill(self.function.convex_conjugate(x/self.scalar))
+ # out *= self.scalar
+ return self.scalar * self.function.convex_conjugate(x/self.scalar)
+
+ def proximal_conjugate(self, x, tau, out = None):
+ '''This returns the proximal operator for the function at x, tau
+ '''
+ if out is None:
+ return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar)
+ else:
+ out.fill(self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar))
+
+ def grad(self, x):
+ '''Alias of gradient(x,None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use gradient instead''', DeprecationWarning)
+ return self.gradient(x, out=None)
+
+ def prox(self, x, tau):
+ '''Alias of proximal(x, tau, None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use proximal instead''', DeprecationWarning)
+ return self.proximal(x, out=None)
+
+ def gradient(self, x, out=None):
+ '''Returns the gradient of the function at x, if the function is differentiable'''
+ if out is None:
+ return self.scalar * self.function.gradient(x)
+ else:
+ out.fill( self.scalar * self.function.gradient(x) )
+
+ def proximal(self, x, tau, out=None):
+ '''This returns the proximal operator for the function at x, tau
+ '''
+ if out is None:
+ return self.function.proximal(x, tau*self.scalar)
+ else:
+ out.fill( self.function.proximal(x, tau*self.scalar) )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py new file mode 100644 index 0000000..88d9b64 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py @@ -0,0 +1,60 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.framework import DataContainer, ImageData +from ccpi.framework import BlockDataContainer + +class ZeroFun(Function): + + def __init__(self): + super(ZeroFun, self).__init__() + + def __call__(self,x): + return 0 + + def convex_conjugate(self, x): + ''' This is the support function sup <x, x^{*}> which in fact is the + indicator function for the set = {0} + So 0 if x=0, or inf if x neq 0 + ''' + + if x.shape[0]==1: + return x.maximum(0).sum() + else: + if isinstance(x, BlockDataContainer): + return x.get_item(0).maximum(0).sum() + x.get_item(1).maximum(0).sum() + else: + return x.maximum(0).sum() + x.maximum(0).sum() + + def proximal(self,x,tau, out=None): + if out is None: + return x.copy() + else: + out.fill(x) + + def proximal_conjugate(self, x, tau): + return 0 + + def domain_geometry(self): + pass + def range_geometry(self): + pass
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py new file mode 100644 index 0000000..2ed36f5 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py @@ -0,0 +1,13 @@ +# -*- coding: utf-8 -*- + +from .Function import Function +from .ZeroFun import ZeroFun +from .L1Norm import SimpleL1Norm, L1Norm +#from .L2NormSquared import L2NormSq, SimpleL2NormSq +from .L2NormSquared import L2NormSquared +from .BlockFunction import BlockFunction +from .ScaledFunction import ScaledFunction +from .FunctionOperatorComposition import FunctionOperatorComposition +from .MixedL21Norm import MixedL21Norm +from .IndicatorBox import IndicatorBox +from .Norm2Sq import Norm2sq diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py new file mode 100644 index 0000000..8632920 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py @@ -0,0 +1,312 @@ +# -*- coding: utf-8 -*- + +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 7 13:10:56 2019 + +@author: evangelos +""" + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.framework import DataContainer, ImageData, ImageGeometry +from operators import CompositeDataContainer, Identity, CompositeOperator +from numbers import Number + + +############################ L2NORM FUNCTIONS ############################# +class SimpleL2NormSq(Function): + + def __init__(self, alpha=1): + + super(SimpleL2NormSq, self).__init__() + self.alpha = alpha + + def __call__(self, x): + return self.alpha * x.power(2).sum() + + def gradient(self,x): + return 2 * self.alpha * x + + def convex_conjugate(self,x): + return (1/4*self.alpha) * x.power(2).sum() + + def proximal(self, x, tau): + return x.divide(1+2*tau*self.alpha) + + def proximal_conjugate(self, x, tau): + return x.divide(1 + tau/2*self.alpha ) + + +class L2NormSq(SimpleL2NormSq): + + def __init__(self, A, b = None, alpha=1, **kwargs): + + super(L2NormSq, self).__init__(alpha=alpha) + self.alpha = alpha + self.A = A + self.b = b + + def __call__(self, x): + + if self.b is None: + return SimpleL2NormSq.__call__(self, self.A.direct(x)) + else: + return SimpleL2NormSq.__call__(self, self.A.direct(x) - self.b) + + def convex_conjugate(self, x): + + ''' The convex conjugate corresponds to the simple functional i.e., + f(x) = alpha * ||x - b||_{2}^{2} + ''' + + if self.b is None: + return SimpleL2NormSq.convex_conjugate(self, x) + else: + return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum() + + def gradient(self, x): + + if self.b is None: + return 2*self.alpha * self.A.adjoint(self.A.direct(x)) + else: + return 2*self.alpha * self.A.adjoint(self.A.direct(x) - self.b) + + def proximal(self, x, tau): + + ''' The proximal operator corresponds to the simple functional i.e., + f(x) = alpha * ||x - b||_{2}^{2} + + argmin_x { 0.5||x - u||^{2} + tau f(x) } + ''' + + if self.b is None: + return SimpleL2NormSq.proximal(self, x, tau) + else: + return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau) + + + def proximal_conjugate(self, x, tau): + + ''' The proximal operator corresponds to the simple convex conjugate + functional i.e., f^{*}(x^{) + argmin_x { 0.5||x - u||^{2} + tau f(x) } + ''' + if self.b is None: + return SimpleL2NormSq.proximal_conjugate(self, x, tau) + else: + return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau) + + +############################ L1NORM FUNCTIONS ############################# +class SimpleL1Norm(Function): + + def __init__(self, alpha=1): + + super(SimpleL1Norm, self).__init__() + self.alpha = alpha + + def __call__(self, x): + return self.alpha * x.abs().sum() + + def gradient(self,x): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + return 0 + + def proximal(self, x, tau): + ''' Soft Threshold''' + return x.sign() * (x.abs() - tau * self.alpha).maximum(1.0) + + def proximal_conjugate(self, x, tau): + return x.divide((x.abs()/self.alpha).maximum(1.0)) + +class L1Norm(SimpleL1Norm): + + def __init__(self, A, b = None, alpha=1, **kwargs): + + super(L1Norm, self).__init__() + self.alpha = alpha + self.A = A + self.b = b + + def __call__(self, x): + + if self.b is None: + return SimpleL1Norm.__call__(self, self.A.direct(x)) + else: + return SimpleL1Norm.__call__(self, self.A.direct(x) - self.b) + + def gradient(self, x): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + if self.b is None: + return SimpleL1Norm.convex_conjugate(self, x) + else: + return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum() + + def proximal(self, x, tau): + + if self.b is None: + return SimpleL1Norm.proximal(self, x, tau) + else: + return self.b + SimpleL1Norm.proximal(self, x + self.b , tau) + + def proximal_conjugate(self, x, tau): + + if self.b is None: + return SimpleL1Norm.proximal_conjugate(self, x, tau) + else: + return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau) + + +############################ mixed_L1,2NORM FUNCTIONS ############################# +class mixed_L12Norm(Function): + + def __init__(self, A, b=None, alpha=1, **kwargs): + + super(mixed_L12Norm, self).__init__() + self.alpha = alpha + self.A = A + self.b = b + + self.sym_grad = kwargs.get('sym_grad',False) + + + + def gradient(self,x): + return ValueError('Not Differentiable') + + + def __call__(self,x): + + y = self.A.direct(x) + eucl_norm = ImageData(y.power(2).sum(axis=0)).sqrt() + eucl_norm.__isub__(self.b) + return eucl_norm.sum() * self.alpha + + def convex_conjugate(self,x): + return 0 + + def proximal_conjugate(self, x, tau): + + if self.b is None: + + if self.sym_grad: + tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha + res = x.divide(ImageData(tmp2).maximum(1.0)) + else: + res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0)) + + else: + res = (x - tau*self.b)/ ((x - tau*self.b)).abs().maximum(1.0) + + return res + + +#%% + +class ZeroFun(Function): + + def __init__(self): + super(ZeroFun, self).__init__() + + def __call__(self,x): + return 0 + + def convex_conjugate(self, x): + ''' This is the support function sup <x, x^{*}> which in fact is the + indicator function for the set = {0} + So 0 if x=0, or inf if x neq 0 + ''' + return x.maximum(0).sum() + + def proximal(self,x,tau): + return x.copy() + + def proximal_conjugate(self, x, tau): + return 0 + + +class CompositeFunction(Function): + + def __init__(self, *args): + self.functions = args + self.length = len(self.functions) + + def get_item(self, ind): + return self.functions[ind] + + def __call__(self,x): + + t = 0 + for i in range(self.length): + for j in range(x.shape[0]): + t +=self.functions[i](x.get_item(j)) + return t + + def convex_conjugate(self, x): + + z = 0 + t = 0 + for i in range(x.shape[0]): + t += self.functions[z].convex_conjugate(x.get_item(i)) + z += 1 + + return t + + def proximal_conjugate(self, x, tau, out = None): + + if isinstance(tau, Number): + tau = CompositeDataContainer(tau) + out = [None]*self.length + for i in range(self.length): + out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(0)) + return CompositeDataContainer(*out) + + + def proximal_conjugate(self, x, tau, out = None): + + if isinstance(tau, Number): + tau = CompositeDataContainer(tau) + out = [None]*self.length + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(0)) + return CompositeDataContainer(*out) + + + + +if __name__ == '__main__': + + N = 3 + ig = (N,N) + ag = ig + op1 = Gradient(ig) + op2 = Identity(ig, ag) + + # Form Composite Operator + operator = CompositeOperator((2,1), op1, op2 ) + + # Create functions + alpha = 1 + noisy_data = ImageData(np.random.randint(10, size=ag)) + f = CompositeFunction(L1Norm(op1,alpha), \ + L2NormSq(op2, noisy_data, c = 0.5, memopt = False) ) + + u = ImageData(np.random.randint(10, size=ig)) + uComp = CompositeDataContainer(u) + + print(f(uComp)) # This is f(Kx) = f1(K1*u) + f2(K2*u) + + f1 = L1Norm(op1,alpha) + f2 = L2NormSq(op2, noisy_data, c = 0.5, memopt = False) + + print(f1(u) + f2(u)) + + + diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py new file mode 100644 index 0000000..ffeb32e --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 6 19:43:12 2019 + +@author: evangelos +""" + +import numpy as np +#from ccpi.optimisation.funcs import Function +from ccpi.optimisation.functions import Function +from ccpi.framework import DataContainer, ImageData, ImageGeometry + +############################ mixed_L1,2NORM FUNCTIONS ############################# +class mixed_L12Norm(Function): + + def __init__(self, alpha, **kwargs): + + super(mixed_L12Norm, self).__init__() + + self.alpha = alpha + self.b = kwargs.get('b',None) + self.sym_grad = kwargs.get('sym_grad',False) + + def __call__(self,x): + + if self.b is None: + tmp1 = x + else: + tmp1 = x - self.b +# + if self.sym_grad: + tmp = np.sqrt(tmp1.as_array()[0]**2 + tmp1.as_array()[1]**2 + 2*tmp1.as_array()[2]**2) + else: + tmp = ImageData(tmp1.power(2).sum(axis=0)).sqrt() + + return self.alpha*tmp.sum() + + def gradient(self,x): + return ValueError('Not Differentiable') + + def convex_conjugate(self,x): + return 0 + + def proximal(self, x, tau): + pass + + def proximal_conjugate(self, x, tau): + + if self.sym_grad: + tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha + res = x.divide(ImageData(tmp2).maximum(1.0)) + else: + res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0)) + + return res diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py new file mode 100644 index 0000000..ee8f609 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py @@ -0,0 +1,223 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 14 12:36:40 2019 + +@author: ofn77899 +""" +#from ccpi.optimisation.ops import Operator +import numpy +from numbers import Number +import functools +from ccpi.framework import AcquisitionData, ImageData, BlockDataContainer +from ccpi.optimisation.operators import Operator, LinearOperator +from ccpi.optimisation.operators.BlockScaledOperator import BlockScaledOperator +from ccpi.framework import BlockGeometry + +class BlockOperator(Operator): + '''A Block matrix containing Operators + + The Block Framework is a generic strategy to treat variational problems in the + following form: + + .. math:: + + min Regulariser + Fidelity + + + BlockOperators have a generic shape M x N, and when applied on an + Nx1 BlockDataContainer, will yield and Mx1 BlockDataContainer. + Notice: BlockDatacontainer are only allowed to have the shape of N x 1, with + N rows and 1 column. + + User may specify the shape of the block, by default is a row vector + + Operators in a Block are required to have the same domain column-wise and the + same range row-wise. + ''' + __array_priority__ = 1 + def __init__(self, *args, **kwargs): + ''' + Class creator + + Note: + Do not include the `self` parameter in the ``Args`` section. + + Args: + :param: vararg (Operator): Operators in the block. + :param: shape (:obj:`tuple`, optional): If shape is passed the Operators in + vararg are considered input in a row-by-row fashion. + Shape and number of Operators must match. + + Example: + BlockOperator(op0,op1) results in a row block + BlockOperator(op0,op1,shape=(1,2)) results in a column block + ''' + self.operators = args + shape = kwargs.get('shape', None) + if shape is None: + shape = (len(args),1) + self.shape = shape + n_elements = functools.reduce(lambda x,y: x*y, shape, 1) + if len(args) != n_elements: + raise ValueError( + 'Dimension and size do not match: expected {} got {}' + .format(n_elements,len(args))) + # test if operators are compatible + if not self.column_wise_compatible(): + raise ValueError('Operators in each column must have the same domain') + if not self.row_wise_compatible(): + raise ValueError('Operators in each row must have the same range') + + def column_wise_compatible(self): + '''Operators in a Block should have the same domain per column''' + rows, cols = self.shape + compatible = True + for col in range(cols): + column_compatible = True + for row in range(1,rows): + dg0 = self.get_item(row-1,col).domain_geometry() + dg1 = self.get_item(row,col).domain_geometry() + column_compatible = dg0.__dict__ == dg1.__dict__ and column_compatible + compatible = compatible and column_compatible + return compatible + + def row_wise_compatible(self): + '''Operators in a Block should have the same range per row''' + rows, cols = self.shape + compatible = True + for row in range(rows): + row_compatible = True + for col in range(1,cols): + dg0 = self.get_item(row,col-1).range_geometry() + dg1 = self.get_item(row,col).range_geometry() + row_compatible = dg0.__dict__ == dg1.__dict__ and row_compatible + compatible = compatible and row_compatible + return compatible + + def get_item(self, row, col): + '''returns the Operator at specified row and col''' + if row > self.shape[0]: + raise ValueError('Requested row {} > max {}'.format(row, self.shape[0])) + if col > self.shape[1]: + raise ValueError('Requested col {} > max {}'.format(col, self.shape[1])) + + index = row*self.shape[1]+col + return self.operators[index] + + def norm(self): + norm = [op.norm()**2 for op in self.operators] + return numpy.sqrt(sum(norm)) + + def direct(self, x, out=None): + '''Direct operation for the BlockOperator + + BlockOperator work on BlockDataContainer, but they will work on DataContainers + and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1) + ''' + if not isinstance (x, BlockDataContainer): + x_b = BlockDataContainer(x) + else: + x_b = x + shape = self.get_output_shape(x_b.shape) + res = [] + for row in range(self.shape[0]): + for col in range(self.shape[1]): + if col == 0: + prod = self.get_item(row,col).direct(x_b.get_item(col)) + else: + prod += self.get_item(row,col).direct(x_b.get_item(col)) + res.append(prod) + return BlockDataContainer(*res, shape=shape) + + def adjoint(self, x, out=None): + '''Adjoint operation for the BlockOperator + + BlockOperator may contain both LinearOperator and Operator + This method exists in BlockOperator as it is not known what type of + Operator it will contain. + + BlockOperator work on BlockDataContainer, but they will work on DataContainers + and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1) + + Raises: ValueError if the contained Operators are not linear + ''' + if not functools.reduce(lambda x, y: x and y.is_linear(), self.operators, True): + raise ValueError('Not all operators in Block are linear.') + if not isinstance (x, BlockDataContainer): + x_b = BlockDataContainer(x) + else: + x_b = x + shape = self.get_output_shape(x_b.shape, adjoint=True) + res = [] + for row in range(self.shape[1]): + for col in range(self.shape[0]): + if col == 0: + prod = self.get_item(row, col).adjoint(x_b.get_item(col)) + else: + prod += self.get_item(row, col).adjoint(x_b.get_item(col)) + res.append(prod) + if self.shape[1]==1: + return ImageData(*res) + else: + return BlockDataContainer(*res, shape=shape) + + def get_output_shape(self, xshape, adjoint=False): + sshape = self.shape[1] + oshape = self.shape[0] + if adjoint: + sshape = self.shape[0] + oshape = self.shape[1] + if sshape != xshape[0]: + raise ValueError('Incompatible shapes {} {}'.format(self.shape, xshape)) + return (oshape, xshape[-1]) + + def __rmul__(self, scalar): + '''Defines the left multiplication with a scalar + + Args: scalar (number or iterable containing numbers): + + Returns: a block operator with Scaled Operators inside''' + if isinstance (scalar, list) or isinstance(scalar, tuple) or \ + isinstance(scalar, numpy.ndarray): + if len(scalar) != len(self.operators): + raise ValueError('dimensions of scalars and operators do not match') + scalars = scalar + else: + scalars = [scalar for _ in self.operators] + # create a list of ScaledOperator-s + ops = [ v * op for v,op in zip(scalars, self.operators)] + #return BlockScaledOperator(self, scalars ,shape=self.shape) + return type(self)(*ops, shape=self.shape) + @property + def T(self): + '''Return the transposed of self + + input in a row-by-row''' + newshape = (self.shape[1], self.shape[0]) + oplist = [] + for col in range(newshape[1]): + for row in range(newshape[0]): + oplist.append(self.get_item(col,row)) + return type(self)(*oplist, shape=newshape) + + def domain_geometry(self): + '''returns the domain of the BlockOperator + + If the shape of the BlockOperator is (N,1) the domain is a ImageGeometry or AcquisitionGeometry. + Otherwise it is a BlockGeometry. + ''' + if self.shape[1] == 1: + # column BlockOperator + return self.get_item(0,0).domain_geometry() + else: + shape = (self.shape[0], 1) + return BlockGeometry(*[el.domain_geometry() for el in self.operators], + shape=shape) + + def range_geometry(self): + '''returns the range of the BlockOperator''' + shape = (self.shape[1], 1) + return BlockGeometry(*[el.range_geometry() for el in self.operators], + shape=shape) +if __name__ == '__main__': + pass diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py new file mode 100644 index 0000000..aeb6c53 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py @@ -0,0 +1,67 @@ +from numbers import Number +import numpy +from ccpi.optimisation.operators import ScaledOperator +import functools + +class BlockScaledOperator(ScaledOperator): + '''ScaledOperator + + A class to represent the scalar multiplication of an Operator with a scalar. + It holds an operator and a scalar. Basically it returns the multiplication + of the result of direct and adjoint of the operator with the scalar. + For the rest it behaves like the operator it holds. + + Args: + operator (Operator): a Operator or LinearOperator + scalar (Number): a scalar multiplier + Example: + The scaled operator behaves like the following: + sop = ScaledOperator(operator, scalar) + sop.direct(x) = scalar * operator.direct(x) + sop.adjoint(x) = scalar * operator.adjoint(x) + sop.norm() = operator.norm() + sop.range_geometry() = operator.range_geometry() + sop.domain_geometry() = operator.domain_geometry() + ''' + def __init__(self, operator, scalar, shape=None): + if shape is None: + shape = operator.shape + + if isinstance(scalar, (list, tuple, numpy.ndarray)): + size = functools.reduce(lambda x,y:x*y, shape, 1) + if len(scalar) != size: + raise ValueError('Scalar and operators size do not match: {}!={}' + .format(len(scalar), len(operator))) + self.scalar = scalar[:] + print ("BlockScaledOperator ", self.scalar) + elif isinstance (scalar, Number): + self.scalar = scalar + else: + raise TypeError('expected scalar to be a number of an iterable: got {}'.format(type(scalar))) + self.operator = operator + self.shape = shape + def direct(self, x, out=None): + print ("BlockScaledOperator self.scalar", self.scalar) + #print ("self.scalar", self.scalar[0]* x.get_item(0).as_array()) + return self.scalar * (self.operator.direct(x, out=out)) + def adjoint(self, x, out=None): + if self.operator.is_linear(): + return self.scalar * self.operator.adjoint(x, out=out) + else: + raise TypeError('Operator is not linear') + def norm(self): + return numpy.abs(self.scalar) * self.operator.norm() + def range_geometry(self): + return self.operator.range_geometry() + def domain_geometry(self): + return self.operator.domain_geometry() + @property + def T(self): + '''Return the transposed of self''' + #print ("transpose before" , self.shape) + #shape = (self.shape[1], self.shape[0]) + ##self.shape = shape + ##self.operator.shape = shape + #print ("transpose" , shape) + #return self + return type(self)(self.operator.T, self.scalar)
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py new file mode 100644 index 0000000..24c4e4b --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py @@ -0,0 +1,322 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 1 22:51:17 2019 + +@author: evangelos +""" + +from ccpi.optimisation.operators import Operator +from ccpi.optimisation.ops import PowerMethodNonsquare +from ccpi.framework import ImageData, BlockDataContainer +import numpy as np + +class FiniteDiff(Operator): + + # Works for Neum/Symmetric & periodic boundary conditions + # TODO add central differences??? + # TODO not very well optimised, too many conditions + # TODO add discretisation step, should get that from imageGeometry + + # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x'] + # Grad_order = ['channels', 'direction_y', 'direction_x'] + # Grad_order = ['direction_z', 'direction_y', 'direction_x'] + # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x'] + + def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'): + '''''' + super(FiniteDiff, self).__init__() + '''FIXME: domain and range should be geometries''' + self.gm_domain = gm_domain + self.gm_range = gm_range + self.direction = direction + self.bnd_cond = bnd_cond + + # Domain Geometry = Range Geometry if not stated + if self.gm_range is None: + self.gm_range = self.gm_domain + # check direction and "length" of geometry + if self.direction + 1 > len(self.gm_domain.shape): + raise ValueError('Gradient directions more than geometry domain') + + #self.voxel_size = kwargs.get('voxel_size',1) + # this wrongly assumes a homogeneous voxel size + self.voxel_size = self.gm_domain.voxel_size_x + + + def direct(self, x, out=None): + + x_asarr = x.as_array() + x_sz = len(x.shape) + + if out is None: + out = np.zeros(x.shape) + + fd_arr = out + + ######################## Direct for 2D ############################### + if x_sz == 2: + + if self.direction == 1: + + np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,0:-1] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,-1] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 0: + + np.subtract( x_asarr[1:], x_asarr[0:-1], out = fd_arr[0:-1,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[-1,:] ) + else: + raise ValueError('No valid boundary conditions') + + ######################## Direct for 3D ############################### + elif x_sz == 3: + + if self.direction == 0: + + np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[0:-1,:,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[-1,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 1: + + np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,0:-1,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,-1,:] ) + else: + raise ValueError('No valid boundary conditions') + + + if self.direction == 2: + + np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,0:-1] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,-1] ) + else: + raise ValueError('No valid boundary conditions') + + ######################## Direct for 4D ############################### + elif x_sz == 4: + + if self.direction == 0: + np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[0:-1,:,:,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[-1,:,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 1: + np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,0:-1,:,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,-1,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 2: + np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,0:-1,:] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,-1,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 3: + np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,0:-1] ) + + if self.bnd_cond == 'Neumann': + pass + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,-1] ) + else: + raise ValueError('No valid boundary conditions') + + else: + raise NotImplementedError + + res = out/self.voxel_size + return type(x)(res) + + def adjoint(self, x, out=None): + + x_asarr = x.as_array() + #x_asarr = x + x_sz = len(x.shape) + + if out is None: + out = np.zeros(x.shape) + + fd_arr = out + + ######################## Adjoint for 2D ############################### + if x_sz == 2: + + if self.direction == 1: + + np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,1:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,0], 0, out = fd_arr[:,0] ) + np.subtract( -x_asarr[:,-2], 0, out = fd_arr[:,-1] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,0] ) + + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 0: + + np.subtract( x_asarr[1:,:], x_asarr[0:-1,:], out = fd_arr[1:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[0,:], 0, out = fd_arr[0,:] ) + np.subtract( -x_asarr[-2,:], 0, out = fd_arr[-1,:] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[0,:] ) + + else: + raise ValueError('No valid boundary conditions') + + ######################## Adjoint for 3D ############################### + elif x_sz == 3: + + if self.direction == 0: + + np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[1:,:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[0,:,:], 0, out = fd_arr[0,:,:] ) + np.subtract( -x_asarr[-2,:,:], 0, out = fd_arr[-1,:,:] ) + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[0,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 1: + np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,1:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,0,:], 0, out = fd_arr[:,0,:] ) + np.subtract( -x_asarr[:,-2,:], 0, out = fd_arr[:,-1,:] ) + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,0,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 2: + np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,1:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,:,0], 0, out = fd_arr[:,:,0] ) + np.subtract( -x_asarr[:,:,-2], 0, out = fd_arr[:,:,-1] ) + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,0] ) + else: + raise ValueError('No valid boundary conditions') + + ######################## Adjoint for 4D ############################### + elif x_sz == 4: + + if self.direction == 0: + np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[1:,:,:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[0,:,:,:], 0, out = fd_arr[0,:,:,:] ) + np.subtract( -x_asarr[-2,:,:,:], 0, out = fd_arr[-1,:,:,:] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[0,:,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 1: + np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,1:,:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,0,:,:], 0, out = fd_arr[:,0,:,:] ) + np.subtract( -x_asarr[:,-2,:,:], 0, out = fd_arr[:,-1,:,:] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,0,:,:] ) + else: + raise ValueError('No valid boundary conditions') + + + if self.direction == 2: + np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,1:,:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,:,0,:], 0, out = fd_arr[:,:,0,:] ) + np.subtract( -x_asarr[:,:,-2,:], 0, out = fd_arr[:,:,-1,:] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,0,:] ) + else: + raise ValueError('No valid boundary conditions') + + if self.direction == 3: + np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,1:] ) + + if self.bnd_cond == 'Neumann': + np.subtract( x_asarr[:,:,:,0], 0, out = fd_arr[:,:,:,0] ) + np.subtract( -x_asarr[:,:,:,-2], 0, out = fd_arr[:,:,:,-1] ) + + elif self.bnd_cond == 'Periodic': + np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,0] ) + else: + raise ValueError('No valid boundary conditions') + + else: + raise NotImplementedError + + res = out/self.voxel_size + return type(x)(-res) + + def range_geometry(self): + '''Returns the range geometry''' + return self.gm_range + + def domain_geometry(self): + '''Returns the domain geometry''' + return self.gm_domain + + def norm(self): + x0 = self.gm_domain.allocate() + x0.fill( np.random.random_sample(x0.shape) ) + self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0) + return self.s1 + + + + +
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py new file mode 100644 index 0000000..ec14b8f --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py @@ -0,0 +1,78 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 1 22:50:04 2019 + +@author: evangelos +""" + +from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator +from ccpi.optimisation.ops import PowerMethodNonsquare +from ccpi.framework import ImageData, ImageGeometry, BlockGeometry +import numpy +from ccpi.optimisation.operators import FiniteDiff + +#%% + +class Gradient(LinearOperator): + + def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs): + + super(Gradient, self).__init__() + + self.gm_domain = gm_domain # Domain of Grad Operator + + self.correlation = kwargs.get('correlation','Space') + + if self.correlation=='Space': + if self.gm_domain.channels>1: + self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length-1)] ) + self.ind = numpy.arange(1,self.gm_domain.length) + else: + self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length) ] ) + self.ind = numpy.arange(self.gm_domain.length) + elif self.correlation=='SpaceChannels': + if self.gm_domain.channels>1: + self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length)]) + self.ind = range(self.gm_domain.length) + else: + raise ValueError('No channels to correlate') + + self.bnd_cond = bnd_cond + + + def direct(self, x, out=None): + + tmp = self.gm_range.allocate() + + + for i in range(tmp.shape[0]): + tmp.get_item(i).fill(FiniteDiff(self.gm_domain, direction = self.ind[i], bnd_cond = self.bnd_cond).direct(x)) + return tmp + + def adjoint(self, x, out=None): + + tmp = self.gm_domain.allocate() + for i in range(x.shape[0]): + tmp+=FiniteDiff(self.gm_domain, direction = self.ind[i], bnd_cond = self.bnd_cond).adjoint(x.get_item(i)) + return tmp + + + def domain_geometry(self): + return self.gm_domain + + def range_geometry(self): + return self.gm_range + + def norm(self): + + x0 = self.gm_domain.allocate('random') + self.s1, sall, svec = PowerMethodNonsquare(self, 10, x0) + return self.s1 + + def __rmul__(self, scalar): + return ScaledOperator(self, scalar) + +if __name__ == '__main__': + + pass diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py new file mode 100644 index 0000000..0f50e82 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py @@ -0,0 +1,42 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 6 19:30:51 2019 + +@author: evangelos +""" + +from ccpi.optimisation.operators import LinearOperator + + +class Identity(LinearOperator): + + def __init__(self, gm_domain, gm_range=None): + + self.gm_domain = gm_domain + self.gm_range = gm_range + if self.gm_range is None: + self.gm_range = self.gm_domain + + super(Identity, self).__init__() + + def direct(self,x,out=None): + if out is None: + return x.copy() + else: + out.fill(x) + + def adjoint(self,x, out=None): + if out is None: + return x.copy() + else: + out.fill(x) + + def norm(self): + return 1.0 + + def domain_geometry(self): + return self.gm_domain + + def range_geometry(self): + return self.gm_range
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py new file mode 100644 index 0000000..e19304f --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py @@ -0,0 +1,22 @@ +# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:57:52 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.operators import Operator
+
+
+class LinearOperator(Operator):
+ '''A Linear Operator that maps from a space X <-> Y'''
+ def __init__(self):
+ super(LinearOperator, self).__init__()
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return True
+ def adjoint(self,x, out=None):
+ '''returns the adjoint/inverse operation
+
+ only available to linear operators'''
+ raise NotImplementedError
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py new file mode 100644 index 0000000..2d2089b --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py @@ -0,0 +1,30 @@ +# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:55:56 2019
+
+@author: ofn77899
+"""
+from ccpi.optimisation.operators.ScaledOperator import ScaledOperator
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ '''Returns the application of the Operator on x'''
+ raise NotImplementedError
+ def norm(self):
+ '''Returns the norm of the Operator'''
+ raise NotImplementedError
+ def range_geometry(self):
+ '''Returns the range of the Operator: Y space'''
+ raise NotImplementedError
+ def domain_geometry(self):
+ '''Returns the domain of the Operator: X space'''
+ raise NotImplementedError
+ def __rmul__(self, scalar):
+ '''Defines the multiplication by a scalar on the left
+
+ returns a ScaledOperator'''
+ return ScaledOperator(self, scalar)
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py new file mode 100644 index 0000000..adcc6d9 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py @@ -0,0 +1,42 @@ +from numbers import Number +import numpy + +class ScaledOperator(object): + '''ScaledOperator + + A class to represent the scalar multiplication of an Operator with a scalar. + It holds an operator and a scalar. Basically it returns the multiplication + of the result of direct and adjoint of the operator with the scalar. + For the rest it behaves like the operator it holds. + + Args: + operator (Operator): a Operator or LinearOperator + scalar (Number): a scalar multiplier + Example: + The scaled operator behaves like the following: + sop = ScaledOperator(operator, scalar) + sop.direct(x) = scalar * operator.direct(x) + sop.adjoint(x) = scalar * operator.adjoint(x) + sop.norm() = operator.norm() + sop.range_geometry() = operator.range_geometry() + sop.domain_geometry() = operator.domain_geometry() + ''' + def __init__(self, operator, scalar): + super(ScaledOperator, self).__init__() + if not isinstance (scalar, Number): + raise TypeError('expected scalar: got {}'.format(type(scalar))) + self.scalar = scalar + self.operator = operator + def direct(self, x, out=None): + return self.scalar * self.operator.direct(x, out=out) + def adjoint(self, x, out=None): + if self.operator.is_linear(): + return self.scalar * self.operator.adjoint(x, out=out) + else: + raise TypeError('Operator is not linear') + def norm(self): + return numpy.abs(self.scalar) * self.operator.norm() + def range_geometry(self): + return self.operator.range_geometry() + def domain_geometry(self): + return self.operator.domain_geometry() diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py new file mode 100644 index 0000000..d908e49 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py @@ -0,0 +1,118 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 1 22:53:55 2019 + +@author: evangelos +""" + +from ccpi.optimisation.operators import Operator +from ccpi.optimisation.operators import FiniteDiff +from ccpi.optimisation.ops import PowerMethodNonsquare +from ccpi.framework import ImageData, DataContainer +import numpy as np + + +class SymmetrizedGradient(Operator): + + def __init__(self, gm_domain, gm_range, bnd_cond = 'Neumann', **kwargs): + + super(SymmetrizedGradient, self).__init__() + + self.gm_domain = gm_domain # Domain of Grad Operator + self.gm_range = gm_range # Range of Grad Operator + self.bnd_cond = bnd_cond # Boundary conditions of Finite Differences + + # Kwargs Default options + self.memopt = kwargs.get('memopt',False) + self.correlation = kwargs.get('correlation','Space') + + #TODO not tested yet, operator norm??? + self.voxel_size = kwargs.get('voxel_size',[1]*len(gm_domain)) + + + def direct(self, x, out=None): + + tmp = np.zeros(self.gm_range) + tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) + tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) + tmp[2] = 0.5 * (FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) + + FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) ) + + return type(x)(tmp) + + + def adjoint(self, x, out=None): + + tmp = np.zeros(self.gm_domain) + + tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[0]) + \ + FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) + + tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) + \ + FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[1]) + + return type(x)(tmp) + + def alloc_domain_dim(self): + return ImageData(np.zeros(self.gm_domain)) + + def alloc_range_dim(self): + return ImageData(np.zeros(self.range_dim)) + + def domain_dim(self): + return self.gm_domain + + def range_dim(self): + return self.gm_range + + def norm(self): +# return np.sqrt(4*len(self.domainDim())) + #TODO this takes time for big ImageData + # for 2D ||grad|| = sqrt(8), 3D ||grad|| = sqrt(12) + x0 = ImageData(np.random.random_sample(self.domain_dim())) + self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0) + return self.s1 + + + +if __name__ == '__main__': + + ########################################################################### + ## Symmetrized Gradient + + N, M = 2, 3 + ig = (N,M) + ig2 = (2,) + ig + ig3 = (3,) + ig + u1 = DataContainer(np.random.randint(10, size=ig2)) + w1 = DataContainer(np.random.randint(10, size=ig3)) + + E = SymmetrizedGradient(ig2,ig3) + + d1 = E.direct(u1) + d2 = E.adjoint(w1) + + LHS = (d1.as_array()[0]*w1.as_array()[0] + \ + d1.as_array()[1]*w1.as_array()[1] + \ + 2*d1.as_array()[2]*w1.as_array()[2]).sum() + + RHS = (u1.as_array()[0]*d2.as_array()[0] + \ + u1.as_array()[1]*d2.as_array()[1]).sum() + + + print(LHS, RHS, E.norm()) + + +# + + + + + + + + + + +
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py new file mode 100644 index 0000000..a7c5f09 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 6 19:25:53 2019 + +@author: evangelos +""" + +import numpy as np +from ccpi.framework import ImageData +from ccpi.optimisation.operators import Operator + +class ZeroOp(Operator): + + def __init__(self, gm_domain, gm_range): + self.gm_domain = gm_domain + self.gm_range = gm_range + super(ZeroOp, self).__init__() + + def direct(self,x,out=None): + if out is None: + return ImageData(np.zeros(self.gm_range)) + else: + return ImageData(np.zeros(self.gm_range)) + + def adjoint(self,x, out=None): + if out is None: + return ImageData(np.zeros(self.gm_domain)) + else: + return ImageData(np.zeros(self.gm_domain)) + + def norm(self): + return 0 + + def domain_dim(self): + return self.gm_domain + + def range_dim(self): + return self.gm_range
\ No newline at end of file diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py new file mode 100644 index 0000000..1c09faf --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py @@ -0,0 +1,19 @@ +# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:56:27 2019
+
+@author: ofn77899
+"""
+
+from .Operator import Operator
+from .LinearOperator import LinearOperator
+from .ScaledOperator import ScaledOperator
+from .BlockOperator import BlockOperator
+from .BlockScaledOperator import BlockScaledOperator
+
+
+from .FiniteDifferenceOperator import FiniteDiff
+from .GradientOperator import Gradient
+from .SymmetrizedGradientOperator import SymmetrizedGradient
+from .IdentityOperator import Identity
+from .ZeroOperator import ZeroOp
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/ops.py b/Wrappers/Python/build/lib/ccpi/optimisation/ops.py new file mode 100644 index 0000000..6afb97a --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/ops.py @@ -0,0 +1,294 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy +from scipy.sparse.linalg import svds +from ccpi.framework import DataContainer +from ccpi.framework import AcquisitionData +from ccpi.framework import ImageData +from ccpi.framework import ImageGeometry +from ccpi.framework import AcquisitionGeometry +from numbers import Number +# Maybe operators need to know what types they take as inputs/outputs +# to not just use generic DataContainer + + +class Operator(object): + '''Operator that maps from a space X -> Y''' + def __init__(self, **kwargs): + self.scalar = 1 + def is_linear(self): + '''Returns if the operator is linear''' + return False + def direct(self,x, out=None): + raise NotImplementedError + def size(self): + # To be defined for specific class + raise NotImplementedError + def norm(self): + raise NotImplementedError + def allocate_direct(self): + '''Allocates memory on the Y space''' + raise NotImplementedError + def allocate_adjoint(self): + '''Allocates memory on the X space''' + raise NotImplementedError + def range_geometry(self): + raise NotImplementedError + def domain_geometry(self): + raise NotImplementedError + def __rmul__(self, other): + '''reverse multiplication of Operator with number sets the variable scalar in the Operator''' + assert isinstance(other, Number) + self.scalar = other + return self + +class LinearOperator(Operator): + '''Operator that maps from a space X -> Y''' + def is_linear(self): + '''Returns if the operator is linear''' + return True + def adjoint(self,x, out=None): + raise NotImplementedError + +class Identity(Operator): + def __init__(self): + self.s1 = 1.0 + self.L = 1 + super(Identity, self).__init__() + + def direct(self,x,out=None): + if out is None: + return x.copy() + else: + out.fill(x) + + def adjoint(self,x, out=None): + if out is None: + return x.copy() + else: + out.fill(x) + + def size(self): + return NotImplemented + + def get_max_sing_val(self): + return self.s1 + +class TomoIdentity(Operator): + def __init__(self, geometry, **kwargs): + super(TomoIdentity, self).__init__() + self.s1 = 1.0 + self.geometry = geometry + + def is_linear(self): + return True + def direct(self,x,out=None): + + if out is None: + if self.scalar != 1: + return x * self.scalar + return x.copy() + else: + if self.scalar != 1: + out.fill(x * self.scalar) + return + out.fill(x) + return + + def adjoint(self,x, out=None): + return self.direct(x, out) + + def size(self): + return NotImplemented + + def get_max_sing_val(self): + return self.s1 + def allocate_direct(self): + if issubclass(type(self.geometry), ImageGeometry): + return ImageData(geometry=self.geometry) + elif issubclass(type(self.geometry), AcquisitionGeometry): + return AcquisitionData(geometry=self.geometry) + else: + raise ValueError("Wrong geometry type: expected ImageGeometry of AcquisitionGeometry, got ", type(self.geometry)) + def allocate_adjoint(self): + return self.allocate_direct() + def range_geometry(self): + return self.geometry + def domain_geometry(self): + return self.geometry + + + +class FiniteDiff2D(Operator): + def __init__(self): + self.s1 = 8.0 + super(FiniteDiff2D, self).__init__() + + def direct(self,x, out=None): + '''Forward differences with Neumann BC.''' + # FIXME this seems to be working only with numpy arrays + + d1 = numpy.zeros_like(x.as_array()) + d1[:,:-1] = x.as_array()[:,1:] - x.as_array()[:,:-1] + d2 = numpy.zeros_like(x.as_array()) + d2[:-1,:] = x.as_array()[1:,:] - x.as_array()[:-1,:] + d = numpy.stack((d1,d2),0) + #x.geometry.voxel_num_z = 2 + return type(x)(d,False,geometry=x.geometry) + + def adjoint(self,x, out=None): + '''Backward differences, Neumann BC.''' + Nrows = x.get_dimension_size('horizontal_x') + Ncols = x.get_dimension_size('horizontal_y') + Nchannels = 1 + if len(x.shape) == 4: + Nchannels = x.get_dimension_size('channel') + zer = numpy.zeros((Nrows,1)) + xxx = x.as_array()[0,:,:-1] + # + h = numpy.concatenate((zer,xxx), 1) + h -= numpy.concatenate((xxx,zer), 1) + + zer = numpy.zeros((1,Ncols)) + xxx = x.as_array()[1,:-1,:] + # + v = numpy.concatenate((zer,xxx), 0) + v -= numpy.concatenate((xxx,zer), 0) + return type(x)(h + v, False, geometry=x.geometry) + + def size(self): + return NotImplemented + + def get_max_sing_val(self): + return self.s1 + +def PowerMethodNonsquareOld(op,numiters): + # Initialise random + # Jakob's + #inputsize = op.size()[1] + #x0 = ImageContainer(numpy.random.randn(*inputsize) + # Edo's + #vg = ImageGeometry(voxel_num_x=inputsize[0], + # voxel_num_y=inputsize[1], + # voxel_num_z=inputsize[2]) + # + #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x']) + #print (x0) + #x0.fill(numpy.random.randn(*x0.shape)) + + x0 = op.create_image_data() + + s = numpy.zeros(numiters) + # Loop + for it in numpy.arange(numiters): + x1 = op.adjoint(op.direct(x0)) + x1norm = numpy.sqrt((x1**2).sum()) + #print ("x0 **********" ,x0) + #print ("x1 **********" ,x1) + s[it] = (x1*x0).sum() / (x0*x0).sum() + x0 = (1.0/x1norm)*x1 + return numpy.sqrt(s[-1]), numpy.sqrt(s), x0 + +#def PowerMethod(op,numiters): +# # Initialise random +# x0 = np.random.randn(400) +# s = np.zeros(numiters) +# # Loop +# for it in np.arange(numiters): +# x1 = np.dot(op.transpose(),np.dot(op,x0)) +# x1norm = np.sqrt(np.sum(np.dot(x1,x1))) +# s[it] = np.dot(x1,x0) / np.dot(x1,x0) +# x0 = (1.0/x1norm)*x1 +# return s, x0 + + +def PowerMethodNonsquare(op,numiters , x0=None): + # Initialise random + # Jakob's + # inputsize , outputsize = op.size() + #x0 = ImageContainer(numpy.random.randn(*inputsize) + # Edo's + #vg = ImageGeometry(voxel_num_x=inputsize[0], + # voxel_num_y=inputsize[1], + # voxel_num_z=inputsize[2]) + # + #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x']) + #print (x0) + #x0.fill(numpy.random.randn(*x0.shape)) + + if x0 is None: + #x0 = op.create_image_data() + x0 = op.allocate_direct() + x0.fill(numpy.random.randn(*x0.shape)) + + s = numpy.zeros(numiters) + # Loop + for it in numpy.arange(numiters): + x1 = op.adjoint(op.direct(x0)) + #x1norm = numpy.sqrt((x1*x1).sum()) + x1norm = x1.norm() + #print ("x0 **********" ,x0) + #print ("x1 **********" ,x1) + s[it] = (x1*x0).sum() / (x0.squared_norm()) + x0 = (1.0/x1norm)*x1 + return numpy.sqrt(s[-1]), numpy.sqrt(s), x0 + +class LinearOperatorMatrix(Operator): + def __init__(self,A): + self.A = A + self.s1 = None # Largest singular value, initially unknown + super(LinearOperatorMatrix, self).__init__() + + def direct(self,x, out=None): + if out is None: + return type(x)(numpy.dot(self.A,x.as_array())) + else: + numpy.dot(self.A, x.as_array(), out=out.as_array()) + + + def adjoint(self,x, out=None): + if out is None: + return type(x)(numpy.dot(self.A.transpose(),x.as_array())) + else: + numpy.dot(self.A.transpose(),x.as_array(), out=out.as_array()) + + + def size(self): + return self.A.shape + + def get_max_sing_val(self): + # If unknown, compute and store. If known, simply return it. + if self.s1 is None: + self.s1 = svds(self.A,1,return_singular_vectors=False)[0] + return self.s1 + else: + return self.s1 + def allocate_direct(self): + '''allocates the memory to hold the result of adjoint''' + #numpy.dot(self.A.transpose(),x.as_array()) + M_A, N_A = self.A.shape + out = numpy.zeros((N_A,1)) + return DataContainer(out) + def allocate_adjoint(self): + '''allocate the memory to hold the result of direct''' + #numpy.dot(self.A.transpose(),x.as_array()) + M_A, N_A = self.A.shape + out = numpy.zeros((M_A,1)) + return DataContainer(out) diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py b/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py new file mode 100644 index 0000000..263a7cd --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py @@ -0,0 +1,338 @@ +# Copyright 2018 Matthias Ehrhardt, Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import ImageData
+from ccpi.framework import AcquisitionData
+
+
+class spdhg():
+ """Computes a saddle point with a stochastic PDHG.
+
+ This means, a solution (x*, y*), y* = (y*_1, ..., y*_n) such that
+
+ (x*, y*) in arg min_x max_y sum_i=1^n <y_i, A_i> - f*[i](y_i) + g(x)
+
+ where g : X -> IR_infty and f[i] : Y[i] -> IR_infty are convex, l.s.c. and
+ proper functionals. For this algorithm, they all may be non-smooth and no
+ strong convexity is assumed.
+
+ Parameters
+ ----------
+ f : list of functions
+ Functionals Y[i] -> IR_infty that all have a convex conjugate with a
+ proximal operator, i.e.
+ f[i].convex_conj.prox(sigma[i]) : Y[i] -> Y[i].
+ g : function
+ Functional X -> IR_infty that has a proximal operator, i.e.
+ g.prox(tau) : X -> X.
+ A : list of functions
+ Operators A[i] : X -> Y[i] that possess adjoints: A[i].adjoint
+ x : primal variable, optional
+ By default equals 0.
+ y : dual variable, optional
+ Part of a product space. By default equals 0.
+ z : variable, optional
+ Adjoint of dual variable, z = A^* y. By default equals 0 if y = 0.
+ tau : scalar / vector / matrix, optional
+ Step size for primal variable. Note that the proximal operator of g
+ has to be well-defined for this input.
+ sigma : scalar, optional
+ Scalar / vector / matrix used as step size for dual variable. Note that
+ the proximal operator related to f (see above) has to be well-defined
+ for this input.
+ prob : list of scalars, optional
+ Probabilities prob[i] that a subset i is selected in each iteration.
+ If fun_select is not given, then the sum of all probabilities must
+ equal 1.
+ A_norms : list of scalars, optional
+ Norms of the operators in A. Can be used to determine the step sizes
+ tau and sigma and the probabilities prob.
+ fun_select : function, optional
+ Function that selects blocks at every iteration IN -> {1,...,n}. By
+ default this is serial sampling, fun_select(k) selects an index
+ i \in {1,...,n} with probability prob[i].
+
+ References
+ ----------
+ [CERS2018] A. Chambolle, M. J. Ehrhardt, P. Richtarik and C.-B. Schoenlieb,
+ *Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
+ and Imaging Applications*. SIAM Journal on Optimization, 28(4), 2783-2808
+ (2018) http://doi.org/10.1007/s10851-010-0251-1
+
+ [E+2017] M. J. Ehrhardt, P. J. Markiewicz, P. Richtarik, J. Schott,
+ A. Chambolle and C.-B. Schoenlieb, *Faster PET reconstruction with a
+ stochastic primal-dual hybrid gradient method*. Wavelets and Sparsity XVII,
+ 58 (2017) http://doi.org/10.1117/12.2272946.
+
+ [EMS2018] M. J. Ehrhardt, P. J. Markiewicz and C.-B. Schoenlieb, *Faster
+ PET Reconstruction with Non-Smooth Priors by Randomization and
+ Preconditioning*. (2018) ArXiv: http://arxiv.org/abs/1808.07150
+ """
+
+ def __init__(self, f, g, A, x=None, y=None, z=None, tau=None, sigma=None,
+ prob=None, A_norms=None, fun_select=None):
+ # fun_select is optional and by default performs serial sampling
+
+ if x is None:
+ x = A[0].allocate_direct(0)
+
+ if y is None:
+ if z is not None:
+ raise ValueError('y and z have to be defaulted together')
+
+ y = [Ai.allocate_adjoint(0) for Ai in A]
+ z = 0 * x.copy()
+
+ else:
+ if z is None:
+ raise ValueError('y and z have to be defaulted together')
+
+ if A_norms is not None:
+ if tau is not None or sigma is not None or prob is not None:
+ raise ValueError('Either A_norms or (tau, sigma, prob) must '
+ 'be given')
+
+ tau = 1 / sum(A_norms)
+ sigma = [1 / nA for nA in A_norms]
+ prob = [nA / sum(A_norms) for nA in A_norms]
+
+ #uniform prob, needs different sigma and tau
+ #n = len(A)
+ #prob = [1./n] * n
+
+ if fun_select is None:
+ if prob is None:
+ raise ValueError('prob was not determined')
+
+ def fun_select(k):
+ return [int(numpy.random.choice(len(A), 1, p=prob))]
+
+ self.iter = 0
+ self.x = x
+
+ self.y = y
+ self.z = z
+
+ self.f = f
+ self.g = g
+ self.A = A
+ self.tau = tau
+ self.sigma = sigma
+ self.prob = prob
+ self.fun_select = fun_select
+
+ # Initialize variables
+ self.z_relax = z.copy()
+ self.tmp = self.x.copy()
+
+ def update(self):
+ # select block
+ selected = self.fun_select(self.iter)
+
+ # update primal variable
+ #tmp = (self.x - self.tau * self.z_relax).as_array()
+ #self.x.fill(self.g.prox(tmp, self.tau))
+ self.tmp = - self.tau * self.z_relax
+ self.tmp += self.x
+ self.x = self.g.prox(self.tmp, self.tau)
+
+ # update dual variable and z, z_relax
+ self.z_relax = self.z.copy()
+ for i in selected:
+ # save old yi
+ y_old = self.y[i].copy()
+
+ # y[i]= prox(tmp)
+ tmp = y_old + self.sigma[i] * self.A[i].direct(self.x)
+ self.y[i] = self.f[i].convex_conj.prox(tmp, self.sigma[i])
+
+ # update adjoint of dual variable
+ dz = self.A[i].adjoint(self.y[i] - y_old)
+ self.z += dz
+
+ # compute extrapolation
+ self.z_relax += (1 + 1 / self.prob[i]) * dz
+
+ self.iter += 1
+
+
+## Functions
+
+class KullbackLeibler(Function):
+ def __init__(self, data, background):
+ self.data = data
+ self.background = background
+ self.__offset = None
+
+ def __call__(self, x):
+ """Return the KL-diveregnce in the point ``x``.
+
+ If any components of ``x`` is non-positive, the value is positive
+ infinity.
+
+ Needs one extra array of memory of the size of `prior`.
+ """
+
+ # define short variable names
+ y = self.data
+ r = self.background
+
+ # Compute
+ # sum(x + r - y + y * log(y / (x + r)))
+ # = sum(x - y * log(x + r)) + self.offset
+ # Assume that
+ # x + r > 0
+
+ # sum the result up
+ obj = numpy.sum(x - y * numpy.log(x + r)) + self.offset()
+
+ if numpy.isnan(obj):
+ # In this case, some element was less than or equal to zero
+ return numpy.inf
+ else:
+ return obj
+
+ @property
+ def convex_conj(self):
+ """The convex conjugate functional of the KL-functional."""
+ return KullbackLeiblerConvexConjugate(self.data, self.background)
+
+ def offset(self):
+ """The offset which is independent of the unknown."""
+
+ if self.__offset is None:
+ tmp = self.domain.element()
+
+ # define short variable names
+ y = self.data
+ r = self.background
+
+ tmp = self.domain.element(numpy.maximum(y, 1))
+ tmp = r - y + y * numpy.log(tmp)
+
+ # sum the result up
+ self.__offset = numpy.sum(tmp)
+
+ return self.__offset
+
+# def __repr__(self):
+# """to be added???"""
+# """Return ``repr(self)``."""
+ # return '{}({!r}, {!r}, {!r})'.format(self.__class__.__name__,
+ ## self.domain, self.data,
+ # self.background)
+
+
+class KullbackLeiblerConvexConjugate(Function):
+ """The convex conjugate of Kullback-Leibler divergence functional.
+
+ Notes
+ -----
+ The functional :math:`F^*` with prior :math:`g>0` is given by:
+
+ .. math::
+ F^*(x)
+ =
+ \\begin{cases}
+ \\sum_{i} \left( -g_i \ln(1 - x_i) \\right)
+ & \\text{if } x_i < 1 \\forall i
+ \\\\
+ +\\infty & \\text{else}
+ \\end{cases}
+
+ See Also
+ --------
+ KullbackLeibler : convex conjugate functional
+ """
+
+ def __init__(self, data, background):
+ self.data = data
+ self.background = background
+
+ def __call__(self, x):
+ y = self.data
+ r = self.background
+
+ tmp = numpy.sum(- x * r - y * numpy.log(1 - x))
+
+ if numpy.isnan(tmp):
+ # In this case, some element was larger than or equal to one
+ return numpy.inf
+ else:
+ return tmp
+
+
+ def prox(self, x, tau, out=None):
+ # Let y = data, r = background, z = x + tau * r
+ # Compute 0.5 * (z + 1 - sqrt((z - 1)**2 + 4 * tau * y))
+ # Currently it needs 3 extra copies of memory.
+
+ if out is None:
+ out = x.copy()
+
+ # define short variable names
+ try: # this should be standard SIRF/CIL mode
+ y = self.data.as_array()
+ r = self.background.as_array()
+ x = x.as_array()
+
+ try:
+ taua = tau.as_array()
+ except:
+ taua = tau
+
+ z = x + tau * r
+
+ out.fill(0.5 * (z + 1 - numpy.sqrt((z - 1) ** 2 + 4 * taua * y)))
+
+ return out
+
+ except: # e.g. for NumPy
+ y = self.data
+ r = self.background
+
+ try:
+ taua = tau.as_array()
+ except:
+ taua = tau
+
+ z = x + tau * r
+
+ out[:] = 0.5 * (z + 1 - numpy.sqrt((z - 1) ** 2 + 4 * taua * y))
+
+ return out
+
+ @property
+ def convex_conj(self):
+ return KullbackLeibler(self.data, self.background)
+
+
+def mult(x, y):
+ try:
+ xa = x.as_array()
+ except:
+ xa = x
+
+ out = y.clone()
+ out.fill(xa * y.as_array())
+
+ return out
diff --git a/Wrappers/Python/build/lib/ccpi/processors.py b/Wrappers/Python/build/lib/ccpi/processors.py new file mode 100644 index 0000000..ccef410 --- /dev/null +++ b/Wrappers/Python/build/lib/ccpi/processors.py @@ -0,0 +1,514 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License + +from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\ + AcquisitionGeometry, ImageGeometry, ImageData +from ccpi.reconstruction.parallelbeam import alg as pbalg +import numpy +from scipy import ndimage + +import matplotlib.pyplot as plt + + +class Normalizer(DataProcessor): + '''Normalization based on flat and dark + + This processor read in a AcquisitionData and normalises it based on + the instrument reading with and without incident photons or neutrons. + + Input: AcquisitionData + Parameter: 2D projection with flat field (or stack) + 2D projection with dark field (or stack) + Output: AcquisitionDataSetn + ''' + + def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5): + kwargs = { + 'flat_field' : flat_field, + 'dark_field' : dark_field, + # very small number. Used when there is a division by zero + 'tolerance' : tolerance + } + + #DataProcessor.__init__(self, **kwargs) + super(Normalizer, self).__init__(**kwargs) + if not flat_field is None: + self.set_flat_field(flat_field) + if not dark_field is None: + self.set_dark_field(dark_field) + + def check_input(self, dataset): + if dataset.number_of_dimensions == 3 or\ + dataset.number_of_dimensions == 2: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + def set_dark_field(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Dark Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.dark_field = df + elif issubclass(type(df), DataContainer): + self.dark_field = self.set_dark_field(df.as_array()) + + def set_flat_field(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Flat Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.flat_field = df + elif issubclass(type(df), DataContainer): + self.flat_field = self.set_flat_field(df.as_array()) + + @staticmethod + def normalize_projection(projection, flat, dark, tolerance): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0 + return c + + @staticmethod + def estimate_normalised_error(projection, flat, dark, delta_flat, delta_dark): + '''returns the estimated relative error of the normalised projection + + n = (projection - dark) / (flat - dark) + Dn/n = (flat-dark + projection-dark)/((flat-dark)*(projection-dark))*(Df/f + Dd/d) + ''' + a = (projection - dark) + b = (flat-dark) + df = delta_flat / flat + dd = delta_dark / dark + rel_norm_error = (b + a) / (b * a) * (df + dd) + return rel_norm_error + + def process(self, out=None): + + projections = self.get_input() + dark = self.dark_field + flat = self.flat_field + + if projections.number_of_dimensions == 3: + if not (projections.shape[1:] == dark.shape and \ + projections.shape[1:] == flat.shape): + raise ValueError('Flats/Dark and projections size do not match.') + + + a = numpy.asarray( + [ Normalizer.normalize_projection( + projection, flat, dark, self.tolerance) \ + for projection in projections.as_array() ] + ) + elif projections.number_of_dimensions == 2: + a = Normalizer.normalize_projection(projections.as_array(), + flat, dark, self.tolerance) + y = type(projections)( a , True, + dimension_labels=projections.dimension_labels, + geometry=projections.geometry) + return y + + +class CenterOfRotationFinder(DataProcessor): + '''Processor to find the center of rotation in a parallel beam experiment + + This processor read in a AcquisitionDataSet and finds the center of rotation + based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078 + + Input: AcquisitionDataSet + + Output: float. center of rotation in pixel coordinate + ''' + + def __init__(self): + kwargs = { + + } + + #DataProcessor.__init__(self, **kwargs) + super(CenterOfRotationFinder, self).__init__(**kwargs) + + def check_input(self, dataset): + if dataset.number_of_dimensions == 3: + if dataset.geometry.geom_type == 'parallel': + return True + else: + raise ValueError('{0} is suitable only for parallel beam geometry'\ + .format(self.__class__.__name__)) + else: + raise ValueError("Expected input dimensions is 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + + # ######################################################################### + # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. # + # # + # Copyright 2015. UChicago Argonne, LLC. This software was produced # + # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # + # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # + # U.S. Department of Energy. The U.S. Government has rights to use, # + # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # + # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # + # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # + # modified to produce derivative works, such modified software should # + # be clearly marked, so as not to confuse it with the version available # + # from ANL. # + # # + # Additionally, redistribution and use in source and binary forms, with # + # or without modification, are permitted provided that the following # + # conditions are met: # + # # + # * Redistributions of source code must retain the above copyright # + # notice, this list of conditions and the following disclaimer. # + # # + # * Redistributions in binary form must reproduce the above copyright # + # notice, this list of conditions and the following disclaimer in # + # the documentation and/or other materials provided with the # + # distribution. # + # # + # * Neither the name of UChicago Argonne, LLC, Argonne National # + # Laboratory, ANL, the U.S. Government, nor the names of its # + # contributors may be used to endorse or promote products derived # + # from this software without specific prior written permission. # + # # + # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # + # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # + # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # + # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # + # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # + # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # + # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # + # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # + # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # + # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # + # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # + # POSSIBILITY OF SUCH DAMAGE. # + # ######################################################################### + + @staticmethod + def as_ndarray(arr, dtype=None, copy=False): + if not isinstance(arr, numpy.ndarray): + arr = numpy.array(arr, dtype=dtype, copy=copy) + return arr + + @staticmethod + def as_dtype(arr, dtype, copy=False): + if not arr.dtype == dtype: + arr = numpy.array(arr, dtype=dtype, copy=copy) + return arr + + @staticmethod + def as_float32(arr): + arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32) + return CenterOfRotationFinder.as_dtype(arr, numpy.float32) + + + + + @staticmethod + def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5, + ratio=2., drop=20): + """ + Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`. + + Parameters + ---------- + tomo : ndarray + 3D tomographic data. + ind : int, optional + Index of the slice to be used for reconstruction. + smin, smax : int, optional + Reference to the horizontal center of the sinogram. + srad : float, optional + Fine search radius. + step : float, optional + Step of fine searching. + ratio : float, optional + The ratio between the FOV of the camera and the size of object. + It's used to generate the mask. + drop : int, optional + Drop lines around vertical center of the mask. + + Returns + ------- + float + Rotation axis location. + + Notes + ----- + The function may not yield a correct estimate, if: + + - the sample size is bigger than the field of view of the camera. + In this case the ``ratio`` argument need to be set larger + than the default of 2.0. + + - there is distortion in the imaging hardware. If there's + no correction applied, the center of the projection image may + yield a better estimate. + + - the sample contrast is weak. Paganin's filter need to be applied + to overcome this. + + - the sample was changed during the scan. + """ + tomo = CenterOfRotationFinder.as_float32(tomo) + + if ind is None: + ind = tomo.shape[1] // 2 + _tomo = tomo[:, ind, :] + + + + # Reduce noise by smooth filters. Use different filters for coarse and fine search + _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1)) + _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2)) + + # Coarse and fine searches for finding the rotation center. + if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k) + #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :] + #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop) + #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop) + init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin, + smax, ratio, drop) + fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, + step, init_cen, + ratio, drop) + else: + init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, + smin, smax, + ratio, drop) + fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, + step, init_cen, + ratio, drop) + + #logger.debug('Rotation center search finished: %i', fine_cen) + return fine_cen + + + @staticmethod + def _search_coarse(sino, smin, smax, ratio, drop): + """ + Coarse search for finding the rotation center. + """ + (Nrow, Ncol) = sino.shape + centerfliplr = (Ncol - 1.0) / 2.0 + + # Copy the sinogram and flip left right, the purpose is to + # make a full [0;2Pi] sinogram + _copy_sino = numpy.fliplr(sino[1:]) + + # This image is used for compensating the shift of sinogram 2 + temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32') + temp_img[:] = sino[-1] + + # Start coarse search in which the shift step is 1 + listshift = numpy.arange(smin, smax + 1) + listmetric = numpy.zeros(len(listshift), dtype='float32') + mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol, + 0.5 * ratio * Ncol, drop) + for i in listshift: + _sino = numpy.roll(_copy_sino, i, axis=1) + if i >= 0: + _sino[:, 0:i] = temp_img[:, 0:i] + else: + _sino[:, i:] = temp_img[:, i:] + listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift( + #pyfftw.interfaces.numpy_fft.fft2( + # numpy.vstack((sino, _sino))) + numpy.fft.fft2(numpy.vstack((sino, _sino))) + )) * mask) + minpos = numpy.argmin(listmetric) + return centerfliplr + listshift[minpos] / 2.0 + + @staticmethod + def _search_fine(sino, srad, step, init_cen, ratio, drop): + """ + Fine search for finding the rotation center. + """ + Nrow, Ncol = sino.shape + centerfliplr = (Ncol + 1.0) / 2.0 - 1.0 + # Use to shift the sinogram 2 to the raw CoR. + shiftsino = numpy.int16(2 * (init_cen - centerfliplr)) + _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1) + if init_cen <= centerfliplr: + lefttake = numpy.int16(numpy.ceil(srad + 1)) + righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1)) + else: + lefttake = numpy.int16(numpy.ceil( + init_cen - (Ncol - 1 - init_cen) + srad + 1)) + righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1)) + Ncol1 = righttake - lefttake + 1 + mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1, + 0.5 * ratio * Ncol, drop) + numshift = numpy.int16((2 * srad) / step) + 1 + listshift = numpy.linspace(-srad, srad, num=numshift) + listmetric = numpy.zeros(len(listshift), dtype='float32') + factor1 = numpy.mean(sino[-1, lefttake:righttake]) + num1 = 0 + for i in listshift: + _sino = ndimage.interpolation.shift( + _copy_sino, (0, i), prefilter=False) + factor2 = numpy.mean(_sino[0,lefttake:righttake]) + _sino = _sino * factor1 / factor2 + sinojoin = numpy.vstack((sino, _sino)) + listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift( + #pyfftw.interfaces.numpy_fft.fft2( + # sinojoin[:, lefttake:righttake + 1]) + numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1]) + )) * mask) + num1 = num1 + 1 + minpos = numpy.argmin(listmetric) + return init_cen + listshift[minpos] / 2.0 + + @staticmethod + def _create_mask(nrow, ncol, radius, drop): + du = 1.0 / ncol + dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi) + centerrow = numpy.ceil(nrow / 2) - 1 + centercol = numpy.ceil(ncol / 2) - 1 + # added by Edoardo Pasca + centerrow = int(centerrow) + centercol = int(centercol) + mask = numpy.zeros((nrow, ncol), dtype='float32') + for i in range(nrow): + num1 = numpy.round(((i - centerrow) * dv / radius) / du) + (p1, p2) = numpy.int16(numpy.clip(numpy.sort( + (-num1 + centercol, num1 + centercol)), 0, ncol - 1)) + mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32') + if drop < centerrow: + mask[centerrow - drop:centerrow + drop + 1, + :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32') + mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32') + return mask + + def process(self, out=None): + + projections = self.get_input() + + cor = CenterOfRotationFinder.find_center_vo(projections.as_array()) + + return cor + + +class AcquisitionDataPadder(DataProcessor): + '''Normalization based on flat and dark + + This processor read in a AcquisitionData and normalises it based on + the instrument reading with and without incident photons or neutrons. + + Input: AcquisitionData + Parameter: 2D projection with flat field (or stack) + 2D projection with dark field (or stack) + Output: AcquisitionDataSetn + ''' + + def __init__(self, + center_of_rotation = None, + acquisition_geometry = None, + pad_value = 1e-5): + kwargs = { + 'acquisition_geometry' : acquisition_geometry, + 'center_of_rotation' : center_of_rotation, + 'pad_value' : pad_value + } + + super(AcquisitionDataPadder, self).__init__(**kwargs) + + def check_input(self, dataset): + if self.acquisition_geometry is None: + self.acquisition_geometry = dataset.geometry + if dataset.number_of_dimensions == 3: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + def process(self, out=None): + projections = self.get_input() + w = projections.get_dimension_size('horizontal') + delta = w - 2 * self.center_of_rotation + + padded_width = int ( + numpy.ceil(abs(delta)) + w + ) + delta_pix = padded_width - w + + voxel_per_pixel = 1 + geom = pbalg.pb_setup_geometry_from_acquisition(projections.as_array(), + self.acquisition_geometry.angles, + self.center_of_rotation, + voxel_per_pixel ) + + padded_geometry = self.acquisition_geometry.clone() + + padded_geometry.pixel_num_h = geom['n_h'] + padded_geometry.pixel_num_v = geom['n_v'] + + delta_pix_h = padded_geometry.pixel_num_h - self.acquisition_geometry.pixel_num_h + delta_pix_v = padded_geometry.pixel_num_v - self.acquisition_geometry.pixel_num_v + + if delta_pix_h == 0: + delta_pix_h = delta_pix + padded_geometry.pixel_num_h = padded_width + #initialize a new AcquisitionData with values close to 0 + out = AcquisitionData(geometry=padded_geometry) + out = out + self.pad_value + + + #pad in the horizontal-vertical plane -> slice on angles + if delta > 0: + #pad left of middle + command = "out.array[" + for i in range(out.number_of_dimensions): + if out.dimension_labels[i] == 'horizontal': + value = '{0}:{1}'.format(delta_pix_h, delta_pix_h+w) + command = command + str(value) + else: + if out.dimension_labels[i] == 'vertical' : + value = '{0}:'.format(delta_pix_v) + command = command + str(value) + else: + command = command + ":" + if i < out.number_of_dimensions -1: + command = command + ',' + command = command + '] = projections.array' + #print (command) + else: + #pad right of middle + command = "out.array[" + for i in range(out.number_of_dimensions): + if out.dimension_labels[i] == 'horizontal': + value = '{0}:{1}'.format(0, w) + command = command + str(value) + else: + if out.dimension_labels[i] == 'vertical' : + value = '{0}:'.format(delta_pix_v) + command = command + str(value) + else: + command = command + ":" + if i < out.number_of_dimensions -1: + command = command + ',' + command = command + '] = projections.array' + #print (command) + #cleaned = eval(command) + exec(command) + return out
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/optimisation/functions/Function.py b/Wrappers/Python/ccpi/optimisation/functions/Function.py index 82f24a6..ba33666 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/Function.py +++ b/Wrappers/Python/ccpi/optimisation/functions/Function.py @@ -59,7 +59,7 @@ class Function(object): '''Alias of proximal(x, tau, None)''' warnings.warn('''This method will disappear in following versions of the CIL. Use proximal instead''', DeprecationWarning) - return self.proximal(x, out=None) + return self.proximal(x, tau, out=None) def __rmul__(self, scalar): '''Defines the multiplication by a scalar on the left diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py index 5489d92..597d4d8 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py +++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py @@ -1,12 +1,21 @@ # -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 7 13:10:56 2019 +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 -@author: evangelos -""" +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import numpy from ccpi.optimisation.functions import Function @@ -75,10 +84,10 @@ class L2NormSquared(Function): if out is None: # FIXME: this is a number - return (1/4) * x.squared_norm() + tmp + return (1./4.) * x.squared_norm() + tmp else: # FIXME: this is a DataContainer - out.fill((1/4) * x.squared_norm() + tmp) + out.fill((1./4.) * x.squared_norm() + tmp) def proximal(self, x, tau, out = None): diff --git a/Wrappers/Python/ccpi/optimisation/ops.py b/Wrappers/Python/ccpi/optimisation/ops.py index 6afb97a..fcd0d9e 100755 --- a/Wrappers/Python/ccpi/optimisation/ops.py +++ b/Wrappers/Python/ccpi/optimisation/ops.py @@ -115,8 +115,8 @@ class TomoIdentity(Operator): def adjoint(self,x, out=None): return self.direct(x, out) - def size(self): - return NotImplemented + def norm(self): + return self.s1 def get_max_sing_val(self): return self.s1 diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py index b5959b5..a35ffc1 100755 --- a/Wrappers/Python/test/test_algorithms.py +++ b/Wrappers/Python/test/test_algorithms.py @@ -86,6 +86,7 @@ class TestAlgorithms(unittest.TestCase): identity = TomoIdentity(geometry=ig) norm2sq = Norm2sq(identity, b) + norm2sq.L = 2 * norm2sq.c * identity.norm()**2 opt = {'tol': 1e-4, 'memopt':False} alg = FISTA(x_init=x_init, f=norm2sq, g=None, opt=opt) alg.max_iteration = 2 diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py index 3e5f26f..54dfa57 100644 --- a/Wrappers/Python/test/test_functions.py +++ b/Wrappers/Python/test/test_functions.py @@ -62,7 +62,7 @@ class TestFunction(unittest.TestCase): self.assertEqual(a2, g(d)) # Compare convex conjugate of g - a3 = 0.5 * d.power(2).sum() + (d*noisy_data).sum() + a3 = 0.5 * d.squared_norm() + d.dot(noisy_data) self.assertEqual(a3, g.convex_conjugate(d)) #print( a3, g.convex_conjugate(d)) @@ -91,12 +91,12 @@ class TestFunction(unittest.TestCase): #check convex conjuagate no data c1 = f.convex_conjugate(u) - c2 = 1/4 * u.squared_norm() + c2 = 1/4. * u.squared_norm() numpy.testing.assert_equal(c1, c2) #check convex conjuagate with data d1 = f1.convex_conjugate(u) - d2 = (1/4) * u.squared_norm() + (u*b).sum() + d2 = (1./4.) * u.squared_norm() + (u*b).sum() numpy.testing.assert_equal(d1, d2) # check proximal no data diff --git a/Wrappers/Python/test/test_run_test.py b/Wrappers/Python/test/test_run_test.py index 3c7d9ab..8cef925 100755 --- a/Wrappers/Python/test/test_run_test.py +++ b/Wrappers/Python/test/test_run_test.py @@ -9,7 +9,7 @@ from ccpi.framework import AcquisitionGeometry from ccpi.optimisation.algs import FISTA from ccpi.optimisation.algs import FBPD from ccpi.optimisation.funcs import Norm2sq -from ccpi.optimisation.funcs import ZeroFun +from ccpi.optimisation.functions import ZeroFun from ccpi.optimisation.funcs import Norm1 from ccpi.optimisation.funcs import TV2D from ccpi.optimisation.funcs import Norm2 |