diff options
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py b/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py new file mode 100644 index 0000000..d1cbe20 --- /dev/null +++ b/Wrappers/Python/demos/CGLS_examples/CGLS_Tikhonov.py @@ -0,0 +1,106 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= + +""" +Compare solutions of PDHG & "Block CGLS" algorithms for + + +Problem: min_x alpha * ||\grad x ||^{2}_{2} + || A x - g ||_{2}^{2} + + + A: Projection operator + g: Sinogram + +""" + + +from ccpi.framework import AcquisitionGeometry, BlockDataContainer, AcquisitionData + +import numpy as np +import numpy +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import CGLS +from ccpi.optimisation.operators import BlockOperator, Gradient + +from ccpi.framework import TestData +import os, sys +from ccpi.astra.ops import AstraProjectorSimple + +# Load Data +loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi')) +N = 150 +M = 150 +data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,M), scale=(0,1)) + +ig = data.geometry + +detectors = N +angles = np.linspace(0, np.pi, N, dtype=np.float32) + +ag = AcquisitionGeometry('parallel','2D', angles, detectors) + +device = input('Available device: GPU==1 / CPU==0 ') +if device=='1': + dev = 'gpu' +else: + dev = 'cpu' + +Aop = AstraProjectorSimple(ig, ag, dev) +sin = Aop.direct(data) + +noisy_data = AcquisitionData( sin.as_array() + np.random.normal(0,3,ig.shape)) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(10,10)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +# Setup and run the CGLS algorithm +alpha = 50 +Grad = Gradient(ig) + +# Form Tikhonov as a Block CGLS structure +op_CGLS = BlockOperator( Aop, alpha * Grad, shape=(2,1)) +block_data = BlockDataContainer(noisy_data, Grad.range_geometry().allocate()) + +x_init = ig.allocate() +cgls = CGLS(x_init=x_init, operator=op_CGLS, data=block_data) +cgls.max_iteration = 1000 +cgls.update_objective_interval = 200 +cgls.run(1000,verbose=False) + +#%% +# Show results +plt.figure(figsize=(5,5)) +plt.imshow(cgls.get_output().as_array()) +plt.title('CGLS reconstruction') +plt.colorbar() +plt.show() + + |