diff options
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/wip/pdhg_TV_tomography2D_time.py | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/pdhg_TV_tomography2D_time.py b/Wrappers/Python/wip/pdhg_TV_tomography2D_time.py new file mode 100644 index 0000000..7ac1566 --- /dev/null +++ b/Wrappers/Python/wip/pdhg_TV_tomography2D_time.py @@ -0,0 +1,137 @@ +# -*- coding: utf-8 -*- + +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Feb 22 14:53:03 2019 + +@author: evangelos +""" + +from ccpi.framework import ImageData, ImageGeometry, BlockDataContainer, AcquisitionGeometry, AcquisitionData + +import numpy as np +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFun, L2NormSquared, \ + MixedL21Norm, BlockFunction, ScaledFunction + +from ccpi.astra.ops import AstraProjectorSimple, AstraProjectorMC +from skimage.util import random_noise + + +#%%############################################################################### +# Create phantom for TV tomography + +import numpy as np +import matplotlib.pyplot as plt +import os +import tomophantom +from tomophantom import TomoP2D + +model = 102 # note that the selected model is temporal (2D + time) +N = 150 # set dimension of the phantom +# one can specify an exact path to the parameters file +# path_library2D = '../../../PhantomLibrary/models/Phantom2DLibrary.dat' +path = os.path.dirname(tomophantom.__file__) +path_library2D = os.path.join(path, "Phantom2DLibrary.dat") +#This will generate a N_size x N_size x Time frames phantom (2D + time) +phantom_2Dt = TomoP2D.ModelTemporal(model, N, path_library2D) + +plt.close('all') +plt.figure(1) +plt.rcParams.update({'font.size': 21}) +plt.title('{}''{}'.format('2D+t phantom using model no.',model)) +for sl in range(0,np.shape(phantom_2Dt)[0]): + im = phantom_2Dt[sl,:,:] + plt.imshow(im, vmin=0, vmax=1) + plt.pause(.1) + plt.draw + +#N = 150 +#x = np.zeros((N,N)) +#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +#%% +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, channels = np.shape(phantom_2Dt)[0]) +data = ImageData(phantom_2Dt, geometry=ig) + + + +detectors = 150 +angles = np.linspace(0,np.pi,100) + +ag = AcquisitionGeometry('parallel','2D',angles, detectors, channels = np.shape(phantom_2Dt)[0]) +Aop = AstraProjectorMC(ig, ag, 'cpu') +sin = Aop.direct(data) + +plt.imshow(sin.as_array()[10]) +plt.title('Sinogram') +plt.colorbar() +plt.show() + +# Add Gaussian noise to the sinogram data +np.random.seed(10) +n1 = np.random.random(sin.shape) + +noisy_data = sin + ImageData(5*n1) + +plt.imshow(noisy_data.as_array()[10]) +plt.title('Noisy Sinogram') +plt.colorbar() +plt.show() + + +#%% Works only with Composite Operator Structure of PDHG + +#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) + +# Create operators +op1 = Gradient(ig) +op2 = Aop + +# Form Composite Operator +operator = BlockOperator(op1, op2, shape=(2,1) ) + +alpha = 50 +f = BlockFunction( alpha * MixedL21Norm(), \ + 0.5 * L2NormSquared(b = noisy_data) ) +g = ZeroFun() + +# Compute operator Norm +normK = operator.norm() + +## Primal & dual stepsizes + +sigma = 10 +tau = 1/(sigma*normK**2) + +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) +pdhg.max_iteration = 5000 +pdhg.update_objective_interval = 20 + +pdhg.run(5000) + +#%% +sol = pdhg.get_output().as_array() +fig = plt.figure() +plt.subplot(1,2,1) +plt.imshow(noisy_data.as_array()) +#plt.colorbar() +plt.subplot(1,2,2) +plt.imshow(sol) +#plt.colorbar() +plt.show() + + +#%% +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), sol[int(N/2),:], label = 'Recon') +plt.legend() +plt.show() + + |