summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-xWrappers/Python/ccpi/framework/BlockDataContainer.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py8
-rw-r--r--Wrappers/Python/wip/pdhg_TV_denoising_precond.py18
4 files changed, 16 insertions, 13 deletions
diff --git a/Wrappers/Python/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
index da6ee5b..21ef3f0 100755
--- a/Wrappers/Python/ccpi/framework/BlockDataContainer.py
+++ b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
@@ -57,7 +57,6 @@ class BlockDataContainer(object):
if type(self.containers[i])==type(self):
self = self.containers[i]
-
if isinstance(other, Number):
return True
elif isinstance(other, list):
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
index 084818c..d0e27ae 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -151,3 +151,5 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
return x, t_end - t, objective
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
index 0b5e85f..1b88cba 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SparseFiniteDiff.py
@@ -64,11 +64,15 @@ class SparseFiniteDiff():
def sum_abs_row(self):
- return ImageData(np.array(np.reshape(abs(self.matrix()).sum(axis=0), self.gm_domain.shape, 'F')))
+ res = np.array(np.reshape(abs(self.matrix()).sum(axis=0), self.gm_domain.shape, 'F'))
+ res[res==0]=1
+ return ImageData(res)
def sum_abs_col(self):
- return ImageData(np.array(np.reshape(abs(self.matrix()).sum(axis=1), self.gm_domain.shape, 'C')))
+ res = np.array(np.reshape(abs(self.matrix()).sum(axis=1), self.gm_domain.shape, 'C'))
+ res[res==0]=1
+ return ImageData(res)
if __name__ == '__main__':
diff --git a/Wrappers/Python/wip/pdhg_TV_denoising_precond.py b/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
index 6792f43..2e0b9f4 100644
--- a/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
+++ b/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
@@ -24,7 +24,7 @@ from skimage.util import random_noise
# ############################################################################
# Create phantom for TV denoising
-N = 500
+N = 100
data = np.zeros((N,N))
data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
@@ -78,16 +78,14 @@ diag_precon = False
if diag_precon:
- tmp_tau = 1/operator.sum_abs_row()
- tmp_sigma = 1/operator.sum_abs_col()
+ def tau_sigma_precond(operator):
+ tau = 1/operator.sum_abs_row()
+ sigma = 1/ operator.sum_abs_col()
- tmp_sigma[0][0].as_array()[tmp_sigma[0][0].as_array()==np.inf]=0
- tmp_sigma[0][1].as_array()[tmp_sigma[0][1].as_array()==np.inf]=0
- tmp_sigma[1].as_array()[tmp_sigma[1].as_array()==np.inf]=0
-
- tau = tmp_tau
- sigma = tmp_sigma
-
+ return tau, sigma
+
+ tau, sigma = tau_sigma_precond(operator)
+
else:
# Compute operator Norm
normK = operator.norm()