summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/framework.py85
-rwxr-xr-xWrappers/Python/ccpi/processors.py6
-rwxr-xr-xWrappers/Python/test/test_DataProcessor.py76
-rwxr-xr-xWrappers/Python/wip/demo_gradient_descent.py295
4 files changed, 446 insertions, 16 deletions
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 69a17dc..24f4ca6 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -1009,9 +1009,9 @@ class DataProcessor(object):
'''
raise NotImplementedError('Implement basic checks for input DataContainer')
- def get_output(self):
+ def get_output(self, out=None):
for k,v in self.__dict__.items():
- if v is None:
+ if v is None and k != 'output':
raise ValueError('Key {0} is None'.format(k))
shouldRun = False
if self.runTime == -1:
@@ -1022,10 +1022,18 @@ class DataProcessor(object):
# CHECK this
if self.store_output and shouldRun:
self.runTime = datetime.now()
- self.output = self.process()
- return self.output
+ try:
+ self.output = self.process(out=out)
+ return self.output
+ except TypeError as te:
+ self.output = self.process()
+ return self.output
self.runTime = datetime.now()
- return self.process()
+ try:
+ return self.process(out=out)
+ except TypeError as te:
+ return self.process()
+
def set_input_processor(self, processor):
if issubclass(type(processor), DataProcessor):
@@ -1046,7 +1054,7 @@ class DataProcessor(object):
dsi = self.input
return dsi
- def process(self):
+ def process(self, out=None):
raise NotImplementedError('process must be implemented')
@@ -1093,16 +1101,57 @@ class AX(DataProcessor):
def check_input(self, dataset):
return True
- def process(self):
+ def process(self, out=None):
dsi = self.get_input()
a = self.scalar
+ if out is None:
+ y = DataContainer( a * dsi.as_array() , True,
+ dimension_labels=dsi.dimension_labels )
+ #self.setParameter(output_dataset=y)
+ return y
+ else:
+ out.fill(a * dsi.as_array())
+
+
+###### Example of DataProcessors
+
+class CastDataContainer(DataProcessor):
+ '''Example DataProcessor
+ Cast a DataContainer array to a different type.
+
+ y := a*x
+ where:
+
+ a is a scalar
+
+ x a DataContainer.
+ '''
+
+ def __init__(self, dtype=None):
+ kwargs = {'dtype':dtype,
+ 'input':None,
+ }
- y = DataContainer( a * dsi.as_array() , True,
- dimension_labels=dsi.dimension_labels )
- #self.setParameter(output_dataset=y)
- return y
+ #DataProcessor.__init__(self, **kwargs)
+ super(CastDataContainer, self).__init__(**kwargs)
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ dsi = self.get_input()
+ dtype = self.dtype
+ if out is None:
+ y = numpy.asarray(dsi.as_array(), dtype=dtype)
+
+ return type(dsi)(numpy.asarray(dsi.as_array(), dtype=dtype),
+ dimension_labels=dsi.dimension_labels )
+ else:
+ out.fill(numpy.asarray(dsi.as_array(), dtype=dtype))
+
+
@@ -1126,7 +1175,7 @@ class PixelByPixelDataProcessor(DataProcessor):
def check_input(self, dataset):
return True
- def process(self):
+ def process(self, out=None):
pyfunc = self.pyfunc
dsi = self.get_input()
@@ -1185,12 +1234,22 @@ if __name__ == '__main__':
#ax.apply()
print ("ax in {0} out {1}".format(c.as_array().flatten(),
ax.get_output().as_array().flatten()))
+
+ cast = CastDataContainer(dtype=numpy.float32)
+ cast.set_input(c)
+ out = cast.get_output()
+ out *= 0
axm = AX()
axm.scalar = 0.5
- axm.set_input(c)
+ axm.set_input_processor(cast)
+ axm.get_output(out)
#axm.apply()
print ("axm in {0} out {1}".format(c.as_array(), axm.get_output().as_array()))
+ # check out in DataSetProcessor
+ #a = numpy.asarray([i for i in range( size )])
+
+
# create a PixelByPixelDataProcessor
#define a python function which will take only one input (the pixel value)
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py
index 6a9057a..3a3671a 100755
--- a/Wrappers/Python/ccpi/processors.py
+++ b/Wrappers/Python/ccpi/processors.py
@@ -102,7 +102,7 @@ class Normalizer(DataProcessor):
rel_norm_error = (b + a) / (b * a) * (df + dd)
return rel_norm_error
- def process(self):
+ def process(self, out=None):
projections = self.get_input()
dark = self.dark_field
@@ -400,7 +400,7 @@ class CenterOfRotationFinder(DataProcessor):
mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
return mask
- def process(self):
+ def process(self, out=None):
projections = self.get_input()
@@ -442,7 +442,7 @@ class AcquisitionDataPadder(DataProcessor):
raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
.format(dataset.number_of_dimensions))
- def process(self):
+ def process(self, out=None):
projections = self.get_input()
w = projections.get_dimension_size('horizontal')
delta = w - 2 * self.center_of_rotation
diff --git a/Wrappers/Python/test/test_DataProcessor.py b/Wrappers/Python/test/test_DataProcessor.py
new file mode 100755
index 0000000..1c1de3a
--- /dev/null
+++ b/Wrappers/Python/test/test_DataProcessor.py
@@ -0,0 +1,76 @@
+import sys
+import unittest
+import numpy
+from ccpi.framework import DataProcessor
+from ccpi.framework import DataContainer
+from ccpi.framework import ImageData
+from ccpi.framework import AcquisitionData
+from ccpi.framework import ImageGeometry
+from ccpi.framework import AcquisitionGeometry
+from timeit import default_timer as timer
+
+from ccpi.framework import AX, CastDataContainer, PixelByPixelDataProcessor
+
+class TestDataProcessor(unittest.TestCase):
+
+ def test_DataProcessorChaining(self):
+ shape = (2,3,4,5)
+ size = shape[0]
+ for i in range(1, len(shape)):
+ size = size * shape[i]
+ #print("a refcount " , sys.getrefcount(a))
+ a = numpy.asarray([i for i in range( size )])
+ a = numpy.reshape(a, shape)
+ ds = DataContainer(a, False, ['X', 'Y','Z' ,'W'])
+ c = ds.subset(['Z','W','X'])
+ arr = c.as_array()
+ #[ 0 60 1 61 2 62 3 63 4 64 5 65 6 66 7 67 8 68 9 69 10 70 11 71
+ # 12 72 13 73 14 74 15 75 16 76 17 77 18 78 19 79]
+
+ ax = AX()
+ ax.scalar = 2
+ ax.set_input(c)
+ #ax.apply()
+ print ("ax in {0} out {1}".format(c.as_array().flatten(),
+ ax.get_output().as_array().flatten()))
+ numpy.testing.assert_array_equal(ax.get_output().as_array(), arr*2)
+
+ cast = CastDataContainer(dtype=numpy.float32)
+ cast.set_input(c)
+ out = cast.get_output()
+ self.assertTrue(out.as_array().dtype == numpy.float32)
+ out *= 0
+ axm = AX()
+ axm.scalar = 0.5
+ axm.set_input(c)
+ axm.get_output(out)
+ numpy.testing.assert_array_equal(out.as_array(), arr*0.5)
+
+ # check out in DataSetProcessor
+ #a = numpy.asarray([i for i in range( size )])
+
+ # create a PixelByPixelDataProcessor
+
+ #define a python function which will take only one input (the pixel value)
+ pyfunc = lambda x: -x if x > 20 else x
+ clip = PixelByPixelDataProcessor()
+ clip.pyfunc = pyfunc
+ clip.set_input(c)
+ #clip.apply()
+ v = clip.get_output().as_array()
+
+ self.assertTrue(v.max() == 19)
+ self.assertTrue(v.min() == -79)
+
+ print ("clip in {0} out {1}".format(c.as_array(), clip.get_output().as_array()))
+
+ #dsp = DataProcessor()
+ #dsp.set_input(ds)
+ #dsp.input = a
+ # pipeline
+
+ chain = AX()
+ chain.scalar = 0.5
+ chain.set_input_processor(ax)
+ print ("chain in {0} out {1}".format(ax.get_output().as_array(), chain.get_output().as_array()))
+ numpy.testing.assert_array_equal(chain.get_output().as_array(), arr) \ No newline at end of file
diff --git a/Wrappers/Python/wip/demo_gradient_descent.py b/Wrappers/Python/wip/demo_gradient_descent.py
new file mode 100755
index 0000000..4d6647e
--- /dev/null
+++ b/Wrappers/Python/wip/demo_gradient_descent.py
@@ -0,0 +1,295 @@
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, DataContainer
+from ccpi.optimisation.algs import FISTA, FBPD, CGLS
+from ccpi.optimisation.funcs import Norm2sq, ZeroFun, Norm1, TV2D, Norm2
+
+from ccpi.optimisation.ops import LinearOperatorMatrix, TomoIdentity
+from ccpi.optimisation.ops import Identity
+from ccpi.optimisation.ops import FiniteDiff2D
+
+# Requires CVXPY, see http://www.cvxpy.org/
+# CVXPY can be installed in anaconda using
+# conda install -c cvxgrp cvxpy libgcc
+
+# Whether to use or omit CVXPY
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+class Algorithm(object):
+ def __init__(self, *args, **kwargs):
+ pass
+ def set_up(self, *args, **kwargs):
+ raise NotImplementedError()
+ def update(self):
+ raise NotImplementedError()
+
+ def should_stop(self):
+ raise NotImplementedError()
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self.should_stop():
+ raise StopIteration()
+ else:
+ self.update()
+
+class GradientDescent(Algorithm):
+ x = None
+ rate = 0
+ objective_function = None
+ regulariser = None
+ iteration = 0
+ stop_cryterion = 'max_iter'
+ __max_iteration = 0
+ __loss = []
+ def __init__(self, **kwargs):
+ args = ['x_init', 'objective_function', 'rate']
+ present = True
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(x_init=kwargs['x_init'],
+ objective_function=kwargs['objective_function'],
+ rate=kwargs['rate'])
+
+ def should_stop(self):
+ return self.iteration >= self.max_iteration
+
+ def set_up(self, x_init, objective_function, rate):
+ self.x = x_init.copy()
+ self.x_update = x_init.copy()
+ self.objective_function = objective_function
+ self.rate = rate
+ self.__loss.append(objective_function(x_init))
+
+ def update(self):
+
+ self.objective_function.gradient(self.x, out=self.x_update)
+ self.x_update *= -self.rate
+ self.x += self.x_update
+ self.__loss.append(self.objective_function(self.x))
+ self.iteration += 1
+
+ def get_output(self):
+ return self.x
+ def get_current_loss(self):
+ return self.__loss[-1]
+ @property
+ def loss(self):
+ return self.__loss
+ @property
+ def max_iteration(self):
+ return self.__max_iteration
+ @max_iteration.setter
+ def max_iteration(self, value):
+ assert isinstance(value, int)
+ self.__max_iteration = value
+
+
+
+
+
+# Problem data.
+m = 30
+n = 20
+np.random.seed(1)
+Amat = np.random.randn(m, n)
+A = LinearOperatorMatrix(Amat)
+bmat = np.random.randn(m)
+bmat.shape = (bmat.shape[0],1)
+
+# A = Identity()
+# Change n to equal to m.
+
+b = DataContainer(bmat)
+
+# Regularization parameter
+lam = 10
+opt = {'memopt':True}
+# Create object instances with the test data A and b.
+f = Norm2sq(A,b,c=0.5, memopt=True)
+g0 = ZeroFun()
+
+# Initial guess
+x_init = DataContainer(np.zeros((n,1)))
+
+f.grad(x_init)
+
+# Run FISTA for least squares plus zero function.
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0 , opt=opt)
+
+# Print solution and final objective/criterion value for comparison
+print("FISTA least squares plus zero function solution and objective value:")
+print(x_fista0.array)
+print(criter0[-1])
+
+gd = GradientDescent(x_init=x_init, objective_function=f, rate=0.001)
+gd.max_iteration = 5000
+
+for i,el in enumerate(gd):
+ if i%100 == 0:
+ print ("\rIteration {} Loss: {}".format(gd.iteration,
+ gd.get_current_loss()))
+
+
+#%%
+
+
+#
+#if use_cvxpy:
+# # Compare to CVXPY
+#
+# # Construct the problem.
+# x0 = Variable(n)
+# objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0]) )
+# prob0 = Problem(objective0)
+#
+# # The optimal objective is returned by prob.solve().
+# result0 = prob0.solve(verbose=False,solver=SCS,eps=1e-9)
+#
+# # The optimal solution for x is stored in x.value and optimal objective value
+# # is in result as well as in objective.value
+# print("CVXPY least squares plus zero function solution and objective value:")
+# print(x0.value)
+# print(objective0.value)
+#
+## Plot criterion curve to see FISTA converge to same value as CVX.
+#iternum = np.arange(1,1001)
+#plt.figure()
+#plt.loglog(iternum[[0,-1]],[objective0.value, objective0.value], label='CVX LS')
+#plt.loglog(iternum,criter0,label='FISTA LS')
+#plt.legend()
+#plt.show()
+#
+## Create 1-norm object instance
+#g1 = Norm1(lam)
+#
+#g1(x_init)
+#x_rand = DataContainer(np.reshape(np.random.rand(n),(n,1)))
+#x_rand2 = DataContainer(np.reshape(np.random.rand(n-1),(n-1,1)))
+#v = g1.prox(x_rand,0.02)
+##vv = g1.prox(x_rand2,0.02)
+#vv = v.copy()
+#vv *= 0
+#print (">>>>>>>>>>vv" , vv.as_array())
+#vv.fill(v)
+#print (">>>>>>>>>>fill" , vv.as_array())
+#g1.proximal(x_rand, 0.02, out=vv)
+#print (">>>>>>>>>>v" , v.as_array())
+#print (">>>>>>>>>>gradient" , vv.as_array())
+#
+#print (">>>>>>>>>>" , (v-vv).as_array())
+#import sys
+##sys.exit(0)
+## Combine with least squares and solve using generic FISTA implementation
+#x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g1,opt=opt)
+#
+## Print for comparison
+#print("FISTA least squares plus 1-norm solution and objective value:")
+#print(x_fista1)
+#print(criter1[-1])
+#
+#if use_cvxpy:
+# # Compare to CVXPY
+#
+# # Construct the problem.
+# x1 = Variable(n)
+# objective1 = Minimize(0.5*sum_squares(Amat*x1 - bmat.T[0]) + lam*norm(x1,1) )
+# prob1 = Problem(objective1)
+#
+# # The optimal objective is returned by prob.solve().
+# result1 = prob1.solve(verbose=False,solver=SCS,eps=1e-9)
+#
+# # The optimal solution for x is stored in x.value and optimal objective value
+# # is in result as well as in objective.value
+# print("CVXPY least squares plus 1-norm solution and objective value:")
+# print(x1.value)
+# print(objective1.value)
+#
+## Now try another algorithm FBPD for same problem:
+#x_fbpd1, itfbpd1, timingfbpd1, criterfbpd1 = FBPD(x_init,Identity(), None, f, g1)
+#print(x_fbpd1)
+#print(criterfbpd1[-1])
+#
+## Plot criterion curve to see both FISTA and FBPD converge to same value.
+## Note that FISTA is very efficient for 1-norm minimization so it beats
+## FBPD in this test by a lot. But FBPD can handle a larger class of problems
+## than FISTA can.
+#plt.figure()
+#plt.loglog(iternum[[0,-1]],[objective1.value, objective1.value], label='CVX LS+1')
+#plt.loglog(iternum,criter1,label='FISTA LS+1')
+#plt.legend()
+#plt.show()
+#
+#plt.figure()
+#plt.loglog(iternum[[0,-1]],[objective1.value, objective1.value], label='CVX LS+1')
+#plt.loglog(iternum,criter1,label='FISTA LS+1')
+#plt.loglog(iternum,criterfbpd1,label='FBPD LS+1')
+#plt.legend()
+#plt.show()
+
+# Now try 1-norm and TV denoising with FBPD, first 1-norm.
+
+# Set up phantom size NxN by creating ImageGeometry, initialising the
+# ImageData object with this geometry and empty array and finally put some
+# data into its array, and display as image.
+N = 64
+ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N)
+Phantom = ImageData(geometry=ig)
+
+x = Phantom.as_array()
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+plt.imshow(x)
+plt.title('Phantom image')
+plt.show()
+
+# Identity operator for denoising
+I = TomoIdentity(ig)
+
+# Data and add noise
+y = I.direct(Phantom)
+y.array = y.array + 0.1*np.random.randn(N, N)
+
+plt.imshow(y.array)
+plt.title('Noisy image')
+plt.show()
+
+
+###################
+# Data fidelity term
+f_denoise = Norm2sq(I,y,c=0.5,memopt=True)
+
+# 1-norm regulariser
+lam1_denoise = 1.0
+g1_denoise = Norm1(lam1_denoise)
+
+# Initial guess
+x_init_denoise = ImageData(np.zeros((N,N)))
+
+# Combine with least squares and solve using generic FISTA implementation
+x_fista1_denoise, it1_denoise, timing1_denoise, criter1_denoise = \
+ FISTA(x_init_denoise, f_denoise, g1_denoise, opt=opt)
+
+print(x_fista1_denoise)
+print(criter1_denoise[-1])
+
+f_2 =
+gd = GradientDescent(x_init=x_init_denoise,
+ objective_function=f, rate=0.001)
+gd.max_iteration = 5000
+
+for i,el in enumerate(gd):
+ if i%100 == 0:
+ print ("\rIteration {} Loss: {}".format(gd.iteration,
+ gd.get_current_loss()))
+
+plt.imshow(gd.get_output().as_array())
+plt.title('GD image')
+plt.show()
+