summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Wrappers/Python/build/lib/ccpi/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/contrib/__init__.py0
-rw-r--r--Wrappers/Python/build/lib/ccpi/data/__init__.py67
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/__init__.py26
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/framework.py1437
-rw-r--r--Wrappers/Python/build/lib/ccpi/io/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/io/reader.py511
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py44
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py87
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py86
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py76
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py188
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/SIRT.py74
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py33
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algs.py307
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py69
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py65
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/KullbackLeibler.py53
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py234
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py27
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py98
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py13
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py67
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator_old.py374
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py4
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py79
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py30
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py51
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/ShrinkageOperator.py19
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/SparseFiniteDiff.py144
-rw-r--r--Wrappers/Python/build/lib/ccpi/processors/CenterOfRotationFinder.py408
-rw-r--r--Wrappers/Python/build/lib/ccpi/processors/Normalizer.py124
-rw-r--r--Wrappers/Python/build/lib/ccpi/processors/__init__.py9
-rw-r--r--Wrappers/Python/ccpi/data/__init__.py66
-rw-r--r--Wrappers/Python/ccpi/data/boat.tiffbin0 -> 262278 bytes
-rw-r--r--Wrappers/Python/ccpi/data/camera.pngbin0 -> 114228 bytes
-rw-r--r--Wrappers/Python/ccpi/data/peppers.tiffbin0 -> 786572 bytes
-rw-r--r--Wrappers/Python/ccpi/data/test_show_data.py30
-rw-r--r--Wrappers/Python/ccpi/optimisation/__pycache__/__init__.cpython-36.pycbin0 -> 193 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/Algorithm.cpython-36.pycbin0 -> 6306 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/CGLS.cpython-36.pycbin0 -> 1800 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FBPD.cpython-36.pycbin0 -> 1698 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FISTA.cpython-36.pycbin0 -> 2808 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/GradientDescent.cpython-36.pycbin0 -> 2193 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/PDHG.cpython-36.pycbin0 -> 3820 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/SIRT.cpython-36.pycbin0 -> 2009 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/__init__.cpython-36.pycbin0 -> 514 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pycbin0 -> 4382 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/Function.cpython-36.pycbin0 -> 2591 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pycbin0 -> 1982 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/IndicatorBox.cpython-36.pycbin0 -> 1813 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/KullbackLeibler.cpython-36.pycbin0 -> 3347 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pycbin0 -> 3138 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pycbin0 -> 5327 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/MixedL21Norm.cpython-36.pycbin0 -> 3888 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/Norm2Sq.cpython-36.pycbin0 -> 2013 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/ScaledFunction.cpython-36.pycbin0 -> 3993 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFunction.cpython-36.pycbin0 -> 1547 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pycbin0 -> 604 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockOperator.cpython-36.pycbin0 -> 11183 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockScaledOperator.cpython-36.pycbin0 -> 3177 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/FiniteDifferenceOperator.cpython-36.pycbin0 -> 8321 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/GradientOperator.cpython-36.pycbin0 -> 5532 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/IdentityOperator.cpython-36.pycbin0 -> 2266 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperator.cpython-36.pycbin0 -> 2403 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperatorMatrix.cpython-36.pycbin0 -> 2364 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/Operator.cpython-36.pycbin0 -> 1632 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/ScaledOperator.cpython-36.pycbin0 -> 2629 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/ShrinkageOperator.cpython-36.pycbin0 -> 807 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/SparseFiniteDiff.cpython-36.pycbin0 -> 4126 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/SymmetrizedGradientOperator.cpython-36.pycbin0 -> 4810 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/ZeroOperator.cpython-36.pycbin0 -> 1580 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/__pycache__/__init__.cpython-36.pycbin0 -> 844 bytes
-rw-r--r--Wrappers/Python/demos/PDHG_TGV_Denoising_SaltPepper.py194
-rw-r--r--Wrappers/Python/demos/PDHG_TGV_Tomo2D.py124
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian.py211
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian_3D.py155
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py207
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Denoising_SaltPepper.py198
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Tomo2D.py245
-rw-r--r--Wrappers/Python/demos/PDHG_TV_Tomo2D_time.py169
-rw-r--r--Wrappers/Python/demos/PDHG_Tikhonov_Denoising.py176
-rw-r--r--Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py108
-rw-r--r--Wrappers/Python/environment.yml11
-rw-r--r--Wrappers/Python/wip/.DS_Storebin0 -> 12292 bytes
-rw-r--r--Wrappers/Python/wip/Compare_Algs/LeastSq_CGLS_FISTA_PDHG.py1
-rw-r--r--Wrappers/Python/wip/Demos/.DS_Storebin0 -> 6148 bytes
-rw-r--r--Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py102
-rw-r--r--Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py4
90 files changed, 6594 insertions, 265 deletions
diff --git a/Wrappers/Python/build/lib/ccpi/__init__.py b/Wrappers/Python/build/lib/ccpi/__init__.py
new file mode 100644
index 0000000..cf2d93d
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/contrib/__init__.py b/Wrappers/Python/build/lib/ccpi/contrib/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/contrib/__init__.py
diff --git a/Wrappers/Python/build/lib/ccpi/data/__init__.py b/Wrappers/Python/build/lib/ccpi/data/__init__.py
new file mode 100644
index 0000000..af10536
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/data/__init__.py
@@ -0,0 +1,67 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from ccpi.framework import ImageData
+import numpy
+from PIL import Image
+import os
+import os.path
+
+data_dir = os.path.abspath(os.path.dirname(__file__))
+
+
+def camera(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'camera.png'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
+
+def boat(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'boat.tiff'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
+
+def peppers(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'peppers.tiff'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
diff --git a/Wrappers/Python/build/lib/ccpi/framework/__init__.py b/Wrappers/Python/build/lib/ccpi/framework/__init__.py
new file mode 100644
index 0000000..229edb5
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/__init__.py
@@ -0,0 +1,26 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:00:18 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+
+
+from .framework import DataContainer
+from .framework import ImageData, AcquisitionData
+from .framework import ImageGeometry, AcquisitionGeometry
+from .framework import find_key, message
+from .framework import DataProcessor
+from .framework import AX, PixelByPixelDataProcessor, CastDataContainer
+from .BlockDataContainer import BlockDataContainer
+from .BlockGeometry import BlockGeometry
diff --git a/Wrappers/Python/build/lib/ccpi/framework/framework.py b/Wrappers/Python/build/lib/ccpi/framework/framework.py
new file mode 100644
index 0000000..dbe7d0a
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/framework.py
@@ -0,0 +1,1437 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+from numbers import Number
+
+
+def find_key(dic, val):
+ """return the key of dictionary dic given the value"""
+ return [k for k, v in dic.items() if v == val][0]
+
+def message(cls, msg, *args):
+ msg = "{0}: " + msg
+ for i in range(len(args)):
+ msg += " {%d}" %(i+1)
+ args = list(args)
+ args.insert(0, cls.__name__ )
+
+ return msg.format(*args )
+
+
+class ImageGeometry(object):
+ RANDOM = 'random'
+ RANDOM_INT = 'random_int'
+ CHANNEL = 'channel'
+ ANGLE = 'angle'
+ VERTICAL = 'vertical'
+ HORIZONTAL_X = 'horizontal_x'
+ HORIZONTAL_Y = 'horizontal_y'
+
+ def __init__(self,
+ voxel_num_x=0,
+ voxel_num_y=0,
+ voxel_num_z=0,
+ voxel_size_x=1,
+ voxel_size_y=1,
+ voxel_size_z=1,
+ center_x=0,
+ center_y=0,
+ center_z=0,
+ channels=1):
+
+ self.voxel_num_x = voxel_num_x
+ self.voxel_num_y = voxel_num_y
+ self.voxel_num_z = voxel_num_z
+ self.voxel_size_x = voxel_size_x
+ self.voxel_size_y = voxel_size_y
+ self.voxel_size_z = voxel_size_z
+ self.center_x = center_x
+ self.center_y = center_y
+ self.center_z = center_z
+ self.channels = channels
+
+ # this is some code repetition
+ if self.channels > 1:
+ if self.voxel_num_z>1:
+ self.length = 4
+ self.shape = (self.channels, self.voxel_num_z, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+ else:
+ self.length = 3
+ self.shape = (self.channels, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+ else:
+ if self.voxel_num_z>1:
+ self.length = 3
+ self.shape = (self.voxel_num_z, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.VERTICAL, ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ self.length = 2
+ self.shape = (self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+
+ self.dimension_labels = dim_labels
+
+ def get_min_x(self):
+ return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x
+
+ def get_max_x(self):
+ return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x
+
+ def get_min_y(self):
+ return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y
+
+ def get_max_y(self):
+ return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y
+
+ def get_min_z(self):
+ if not self.voxel_num_z == 0:
+ return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
+
+ def get_max_z(self):
+ if not self.voxel_num_z == 0:
+ return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
+
+ def clone(self):
+ '''returns a copy of ImageGeometry'''
+ return ImageGeometry(
+ self.voxel_num_x,
+ self.voxel_num_y,
+ self.voxel_num_z,
+ self.voxel_size_x,
+ self.voxel_size_y,
+ self.voxel_size_z,
+ self.center_x,
+ self.center_y,
+ self.center_z,
+ self.channels)
+ def __str__ (self):
+ repres = ""
+ repres += "Number of channels: {0}\n".format(self.channels)
+ repres += "voxel_num : x{0},y{1},z{2}\n".format(self.voxel_num_x, self.voxel_num_y, self.voxel_num_z)
+ repres += "voxel_size : x{0},y{1},z{2}\n".format(self.voxel_size_x, self.voxel_size_y, self.voxel_size_z)
+ repres += "center : x{0},y{1},z{2}\n".format(self.center_x, self.center_y, self.center_z)
+ return repres
+ def allocate(self, value=0, dimension_labels=None, **kwargs):
+ '''allocates an ImageData according to the size expressed in the instance'''
+ out = ImageData(geometry=self)
+ if isinstance(value, Number):
+ if value != 0:
+ out += value
+ else:
+ if value == ImageGeometry.RANDOM:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ out.fill(numpy.random.random_sample(self.shape))
+ elif value == ImageGeometry.RANDOM_INT:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ max_value = kwargs.get('max_value', 100)
+ out.fill(numpy.random.randint(max_value,size=self.shape))
+ else:
+ raise ValueError('Value {} unknown'.format(value))
+ if dimension_labels is not None:
+ if dimension_labels != self.dimension_labels:
+ return out.subset(dimensions=dimension_labels)
+ return out
+ # The following methods return 2 members of the class, therefore I
+ # don't think we need to implement them.
+ # Additionally using __len__ is confusing as one would think this is
+ # an iterable.
+ #def __len__(self):
+ # '''returns the length of the geometry'''
+ # return self.length
+ #def shape(self):
+ # '''Returns the shape of the array of the ImageData it describes'''
+ # return self.shape
+
+class AcquisitionGeometry(object):
+ RANDOM = 'random'
+ RANDOM_INT = 'random_int'
+ ANGLE_UNIT = 'angle_unit'
+ DEGREE = 'degree'
+ RADIAN = 'radian'
+ CHANNEL = 'channel'
+ ANGLE = 'angle'
+ VERTICAL = 'vertical'
+ HORIZONTAL = 'horizontal'
+ def __init__(self,
+ geom_type,
+ dimension,
+ angles,
+ pixel_num_h=0,
+ pixel_size_h=1,
+ pixel_num_v=0,
+ pixel_size_v=1,
+ dist_source_center=None,
+ dist_center_detector=None,
+ channels=1,
+ **kwargs
+ ):
+ """
+ General inputs for standard type projection geometries
+ detectorDomain or detectorpixelSize:
+ If 2D
+ If scalar: Width of detector or single detector pixel
+ If 2-vec: Error
+ If 3D
+ If scalar: Width in both dimensions
+ If 2-vec: Vertical then horizontal size
+ grid
+ If 2D
+ If scalar: number of detectors
+ If 2-vec: error
+ If 3D
+ If scalar: Square grid that size
+ If 2-vec vertical then horizontal size
+ cone or parallel
+ 2D or 3D
+ parallel_parameters: ?
+ cone_parameters:
+ source_to_center_dist (if parallel: NaN)
+ center_to_detector_dist (if parallel: NaN)
+ standard or nonstandard (vec) geometry
+ angles
+ angles_format radians or degrees
+ """
+ self.geom_type = geom_type # 'parallel' or 'cone'
+ self.dimension = dimension # 2D or 3D
+ self.angles = angles
+ num_of_angles = len (angles)
+
+ self.dist_source_center = dist_source_center
+ self.dist_center_detector = dist_center_detector
+
+ self.pixel_num_h = pixel_num_h
+ self.pixel_size_h = pixel_size_h
+ self.pixel_num_v = pixel_num_v
+ self.pixel_size_v = pixel_size_v
+
+ self.channels = channels
+ self.angle_unit=kwargs.get(AcquisitionGeometry.ANGLE_UNIT,
+ AcquisitionGeometry.DEGREE)
+ if channels > 1:
+ if pixel_num_v > 1:
+ shape = (channels, num_of_angles , pixel_num_v, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.CHANNEL ,
+ AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL ,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (channels , num_of_angles, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.CHANNEL ,
+ AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL]
+ else:
+ if pixel_num_v > 1:
+ shape = (num_of_angles, pixel_num_v, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL ,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (num_of_angles, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL]
+ self.shape = shape
+
+ self.dimension_labels = dim_labels
+
+ def clone(self):
+ '''returns a copy of the AcquisitionGeometry'''
+ return AcquisitionGeometry(self.geom_type,
+ self.dimension,
+ self.angles,
+ self.pixel_num_h,
+ self.pixel_size_h,
+ self.pixel_num_v,
+ self.pixel_size_v,
+ self.dist_source_center,
+ self.dist_center_detector,
+ self.channels)
+
+ def __str__ (self):
+ repres = ""
+ repres += "Number of dimensions: {0}\n".format(self.dimension)
+ repres += "angles: {0}\n".format(self.angles)
+ repres += "voxel_num : h{0},v{1}\n".format(self.pixel_num_h, self.pixel_num_v)
+ repres += "voxel size: h{0},v{1}\n".format(self.pixel_size_h, self.pixel_size_v)
+ repres += "geometry type: {0}\n".format(self.geom_type)
+ repres += "distance source-detector: {0}\n".format(self.dist_source_center)
+ repres += "distance center-detector: {0}\n".format(self.dist_source_center)
+ repres += "number of channels: {0}\n".format(self.channels)
+ return repres
+ def allocate(self, value=0, dimension_labels=None):
+ '''allocates an AcquisitionData according to the size expressed in the instance'''
+ out = AcquisitionData(geometry=self)
+ if isinstance(value, Number):
+ if value != 0:
+ out += value
+ else:
+ if value == AcquisitionData.RANDOM:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ out.fill(numpy.random.random_sample(self.shape))
+ elif value == AcquisitionData.RANDOM_INT:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ max_value = kwargs.get('max_value', 100)
+ out.fill(numpy.random.randint(max_value,size=self.shape))
+ else:
+ raise ValueError('Value {} unknown'.format(value))
+ if dimension_labels is not None:
+ if dimension_labels != self.dimension_labels:
+ return out.subset(dimensions=dimension_labels)
+ return out
+
+class DataContainer(object):
+ '''Generic class to hold data
+
+ Data is currently held in a numpy arrays'''
+
+ __container_priority__ = 1
+ def __init__ (self, array, deep_copy=True, dimension_labels=None,
+ **kwargs):
+ '''Holds the data'''
+
+ self.shape = numpy.shape(array)
+ self.number_of_dimensions = len (self.shape)
+ self.dimension_labels = {}
+ self.geometry = None # Only relevant for AcquisitionData and ImageData
+
+ if dimension_labels is not None and \
+ len (dimension_labels) == self.number_of_dimensions:
+ for i in range(self.number_of_dimensions):
+ self.dimension_labels[i] = dimension_labels[i]
+ else:
+ for i in range(self.number_of_dimensions):
+ self.dimension_labels[i] = 'dimension_{0:02}'.format(i)
+
+ if type(array) == numpy.ndarray:
+ if deep_copy:
+ self.array = array.copy()
+ else:
+ self.array = array
+ else:
+ raise TypeError('Array must be NumpyArray, passed {0}'\
+ .format(type(array)))
+
+ # finally copy the geometry
+ if 'geometry' in kwargs.keys():
+ self.geometry = kwargs['geometry']
+ else:
+ # assume it is parallel beam
+ pass
+
+ def get_dimension_size(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ acq_size = -1
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ acq_size = self.shape[k]
+ return acq_size
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels))
+ def get_dimension_axis(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ return k
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels.values()))
+
+
+ def as_array(self, dimensions=None):
+ '''Returns the DataContainer as Numpy Array
+
+ Returns the pointer to the array if dimensions is not set.
+ If dimensions is set, it first creates a new DataContainer with the subset
+ and then it returns the pointer to the array'''
+ if dimensions is not None:
+ return self.subset(dimensions).as_array()
+ return self.array
+
+
+ def subset(self, dimensions=None, **kw):
+ '''Creates a DataContainer containing a subset of self according to the
+ labels in dimensions'''
+ if dimensions is None:
+ if kw == {}:
+ return self.array.copy()
+ else:
+ reduced_dims = [v for k,v in self.dimension_labels.items()]
+ for dim_l, dim_v in kw.items():
+ for k,v in self.dimension_labels.items():
+ if v == dim_l:
+ reduced_dims.pop(k)
+ return self.subset(dimensions=reduced_dims, **kw)
+ else:
+ # check that all the requested dimensions are in the array
+ # this is done by checking the dimension_labels
+ proceed = True
+ unknown_key = ''
+ # axis_order contains the order of the axis that the user wants
+ # in the output DataContainer
+ axis_order = []
+ if type(dimensions) == list:
+ for dl in dimensions:
+ if dl not in self.dimension_labels.values():
+ proceed = False
+ unknown_key = dl
+ break
+ else:
+ axis_order.append(find_key(self.dimension_labels, dl))
+ if not proceed:
+ raise KeyError('Subset error: Unknown key specified {0}'.format(dl))
+
+ # slice away the unwanted data from the array
+ unwanted_dimensions = self.dimension_labels.copy()
+ left_dimensions = []
+ for ax in sorted(axis_order):
+ this_dimension = unwanted_dimensions.pop(ax)
+ left_dimensions.append(this_dimension)
+ #print ("unwanted_dimensions {0}".format(unwanted_dimensions))
+ #print ("left_dimensions {0}".format(left_dimensions))
+ #new_shape = [self.shape[ax] for ax in axis_order]
+ #print ("new_shape {0}".format(new_shape))
+ command = "self.array["
+ for i in range(self.number_of_dimensions):
+ if self.dimension_labels[i] in unwanted_dimensions.values():
+ value = 0
+ for k,v in kw.items():
+ if k == self.dimension_labels[i]:
+ value = v
+
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ command = command + ']'
+
+ cleaned = eval(command)
+ # cleaned has collapsed dimensions in the same order of
+ # self.array, but we want it in the order stated in the
+ # "dimensions".
+ # create axes order for numpy.transpose
+ axes = []
+ for key in dimensions:
+ #print ("key {0}".format( key))
+ for i in range(len( left_dimensions )):
+ ld = left_dimensions[i]
+ #print ("ld {0}".format( ld))
+ if ld == key:
+ axes.append(i)
+ #print ("axes {0}".format(axes))
+
+ cleaned = numpy.transpose(cleaned, axes).copy()
+
+ return type(self)(cleaned , True, dimensions)
+
+ def fill(self, array, **dimension):
+ '''fills the internal numpy array with the one provided'''
+ if dimension == {}:
+ if issubclass(type(array), DataContainer) or\
+ issubclass(type(array), numpy.ndarray):
+ if array.shape != self.shape:
+ raise ValueError('Cannot fill with the provided array.' + \
+ 'Expecting {0} got {1}'.format(
+ self.shape,array.shape))
+ if issubclass(type(array), DataContainer):
+ numpy.copyto(self.array, array.array)
+ else:
+ #self.array[:] = array
+ numpy.copyto(self.array, array)
+ else:
+
+ command = 'self.array['
+ i = 0
+ for k,v in self.dimension_labels.items():
+ for dim_label, dim_value in dimension.items():
+ if dim_label == v:
+ command = command + str(dim_value)
+ else:
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ i += 1
+ command = command + "] = array[:]"
+ exec(command)
+
+
+ def check_dimensions(self, other):
+ return self.shape == other.shape
+
+ ## algebra
+
+ def __add__(self, other):
+ return self.add(other)
+ def __mul__(self, other):
+ return self.multiply(other)
+ def __sub__(self, other):
+ return self.subtract(other)
+ def __div__(self, other):
+ return self.divide(other)
+ def __truediv__(self, other):
+ return self.divide(other)
+ def __pow__(self, other):
+ return self.power(other)
+
+
+
+ # reverse operand
+ def __radd__(self, other):
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ print ("call __rdiv__")
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ if isinstance(other, (int, float)) :
+ fother = numpy.ones(numpy.shape(self.array)) * other
+ return type(self)(fother ** self.array ,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ return type(self)(other.as_array() ** self.array ,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('Dimensions do not match')
+ # __rpow__
+
+ # in-place arithmetic operators:
+ # (+=, -=, *=, /= , //=,
+ # must return self
+
+ def __iadd__(self, other):
+ kw = {'out':self}
+ return self.add(other, **kw)
+
+ def __imul__(self, other):
+ kw = {'out':self}
+ return self.multiply(other, **kw)
+
+ def __isub__(self, other):
+ kw = {'out':self}
+ return self.subtract(other, **kw)
+
+ def __idiv__(self, other):
+ kw = {'out':self}
+ return self.divide(other, **kw)
+
+ def __itruediv__(self, other):
+ kw = {'out':self}
+ return self.divide(other, **kw)
+
+
+
+ def __str__ (self, representation=False):
+ repres = ""
+ repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions)
+ repres += "Shape: {0}\n".format(self.shape)
+ repres += "Axis labels: {0}\n".format(self.dimension_labels)
+ if representation:
+ repres += "Representation: \n{0}\n".format(self.array)
+ return repres
+
+ def clone(self):
+ '''returns a copy of itself'''
+
+ return type(self)(self.array,
+ dimension_labels=self.dimension_labels,
+ deep_copy=True,
+ geometry=self.geometry )
+
+ def get_data_axes_order(self,new_order=None):
+ '''returns the axes label of self as a list
+
+ if new_order is None returns the labels of the axes as a sorted-by-key list
+ if new_order is a list of length number_of_dimensions, returns a list
+ with the indices of the axes in new_order with respect to those in
+ self.dimension_labels: i.e.
+ self.dimension_labels = {0:'horizontal',1:'vertical'}
+ new_order = ['vertical','horizontal']
+ returns [1,0]
+ '''
+ if new_order is None:
+
+ axes_order = [i for i in range(len(self.shape))]
+ for k,v in self.dimension_labels.items():
+ axes_order[k] = v
+ return axes_order
+ else:
+ if len(new_order) == self.number_of_dimensions:
+ axes_order = [i for i in range(self.number_of_dimensions)]
+
+ for i in range(len(self.shape)):
+ found = False
+ for k,v in self.dimension_labels.items():
+ if new_order[i] == v:
+ axes_order[i] = k
+ found = True
+ if not found:
+ raise ValueError('Axis label {0} not found.'.format(new_order[i]))
+ return axes_order
+ else:
+ raise ValueError('Expecting {0} axes, got {2}'\
+ .format(len(self.shape),len(new_order)))
+
+
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+
+ ## binary operations
+
+ def pixel_wise_binary(self, pwop, x2, *args, **kwargs):
+ out = kwargs.get('out', None)
+ if out is None:
+ if isinstance(x2, (int, float, complex)):
+ out = pwop(self.as_array() , x2 , *args, **kwargs )
+ elif isinstance(x2, (numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ out = pwop(self.as_array() , x2 , *args, **kwargs )
+ elif issubclass(type(x2) , DataContainer):
+ out = pwop(self.as_array() , x2.as_array() , *args, **kwargs )
+ return type(self)(out,
+ deep_copy=False,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+
+
+ elif issubclass(type(out), DataContainer) and issubclass(type(x2), DataContainer):
+ if self.check_dimensions(out) and self.check_dimensions(x2):
+ kwargs['out'] = out.as_array()
+ pwop(self.as_array(), x2.as_array(), *args, **kwargs )
+ #return type(self)(out.as_array(),
+ # deep_copy=False,
+ # dimension_labels=self.dimension_labels,
+ # geometry=self.geometry)
+ return out
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), DataContainer) and isinstance(x2, (int,float,complex)):
+ if self.check_dimensions(out):
+ kwargs['out']=out.as_array()
+ pwop(self.as_array(), x2, *args, **kwargs )
+ return out
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), numpy.ndarray):
+ if self.array.shape == out.shape and self.array.dtype == out.dtype:
+ kwargs['out'] = out
+ pwop(self.as_array(), x2, *args, **kwargs)
+ #return type(self)(out,
+ # deep_copy=False,
+ # dimension_labels=self.dimension_labels,
+ # geometry=self.geometry)
+ else:
+ raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out)))
+
+ def add(self, other, *args, **kwargs):
+ if hasattr(other, '__container_priority__') and \
+ self.__class__.__container_priority__ < other.__class__.__container_priority__:
+ return other.add(self, *args, **kwargs)
+ return self.pixel_wise_binary(numpy.add, other, *args, **kwargs)
+
+ def subtract(self, other, *args, **kwargs):
+ if hasattr(other, '__container_priority__') and \
+ self.__class__.__container_priority__ < other.__class__.__container_priority__:
+ return other.subtract(self, *args, **kwargs)
+ return self.pixel_wise_binary(numpy.subtract, other, *args, **kwargs)
+
+ def multiply(self, other, *args, **kwargs):
+ if hasattr(other, '__container_priority__') and \
+ self.__class__.__container_priority__ < other.__class__.__container_priority__:
+ return other.multiply(self, *args, **kwargs)
+ return self.pixel_wise_binary(numpy.multiply, other, *args, **kwargs)
+
+ def divide(self, other, *args, **kwargs):
+ if hasattr(other, '__container_priority__') and \
+ self.__class__.__container_priority__ < other.__class__.__container_priority__:
+ return other.divide(self, *args, **kwargs)
+ return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs)
+
+ def power(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.power, other, *args, **kwargs)
+
+ def maximum(self, x2, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs)
+
+ def minimum(self,x2, out=None, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.minimum, x2=x2, out=out, *args, **kwargs)
+
+
+ ## unary operations
+ def pixel_wise_unary(self, pwop, *args, **kwargs):
+ out = kwargs.get('out', None)
+ if out is None:
+ out = pwop(self.as_array() , *args, **kwargs )
+ return type(self)(out,
+ deep_copy=False,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ elif issubclass(type(out), DataContainer):
+ if self.check_dimensions(out):
+ kwargs['out'] = out.as_array()
+ pwop(self.as_array(), *args, **kwargs )
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), numpy.ndarray):
+ if self.array.shape == out.shape and self.array.dtype == out.dtype:
+ kwargs['out'] = out
+ pwop(self.as_array(), *args, **kwargs)
+ else:
+ raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out)))
+
+ def abs(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.abs, *args, **kwargs)
+
+ def sign(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.sign, *args, **kwargs)
+
+ def sqrt(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.sqrt, *args, **kwargs)
+
+ def conjugate(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.conjugate, *args, **kwargs)
+ #def __abs__(self):
+ # operation = FM.OPERATION.ABS
+ # return self.callFieldMath(operation, None, self.mask, self.maskOnValue)
+ # __abs__
+
+ ## reductions
+ def sum(self, *args, **kwargs):
+ return self.as_array().sum(*args, **kwargs)
+ def squared_norm(self):
+ '''return the squared euclidean norm of the DataContainer viewed as a vector'''
+ #shape = self.shape
+ #size = reduce(lambda x,y:x*y, shape, 1)
+ #y = numpy.reshape(self.as_array(), (size, ))
+ return self.dot(self.conjugate())
+ #return self.dot(self)
+ def norm(self):
+ '''return the euclidean norm of the DataContainer viewed as a vector'''
+ return numpy.sqrt(self.squared_norm())
+
+
+ def dot(self, other, *args, **kwargs):
+ '''return the inner product of 2 DataContainers viewed as vectors'''
+ method = kwargs.get('method', 'reduce')
+
+ if method not in ['numpy','reduce']:
+ raise ValueError('dot: specified method not valid. Expecting numpy or reduce got {} '.format(
+ method))
+
+ if self.shape == other.shape:
+ # return (self*other).sum()
+ if method == 'numpy':
+ return numpy.dot(self.as_array().ravel(), other.as_array())
+ elif method == 'reduce':
+ # see https://github.com/vais-ral/CCPi-Framework/pull/273
+ # notice that Python seems to be smart enough to use
+ # the appropriate type to hold the result of the reduction
+ sf = reduce(lambda x,y: x + y[0]*y[1],
+ zip(self.as_array().ravel(),
+ other.as_array().ravel()),
+ 0)
+ return sf
+ else:
+ raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape))
+
+
+
+
+
+class ImageData(DataContainer):
+ '''DataContainer for holding 2D or 3D DataContainer'''
+ __container_priority__ = 1
+
+
+ def __init__(self,
+ array = None,
+ deep_copy=False,
+ dimension_labels=None,
+ **kwargs):
+
+ self.geometry = kwargs.get('geometry', None)
+ if array is None:
+ if self.geometry is not None:
+ shape, dimension_labels = self.get_shape_labels(self.geometry)
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(ImageData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+ else:
+ raise ValueError('Please pass either a DataContainer, ' +\
+ 'a numpy array or a geometry')
+ else:
+ if self.geometry is not None:
+ shape, labels = self.get_shape_labels(self.geometry, dimension_labels)
+ if array.shape != shape:
+ raise ValueError('Shape mismatch {} {}'.format(shape, array.shape))
+
+ if issubclass(type(array) , DataContainer):
+ # if the array is a DataContainer get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataContainer.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(ImageData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif issubclass(type(array) , numpy.ndarray):
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ elif array.ndim == 3:
+ dimension_labels = [ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ dimension_labels = [ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+
+ #DataContainer.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ super(ImageData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+ # load metadata from kwargs if present
+ for key, value in kwargs.items():
+ if (type(value) == list or type(value) == tuple) and \
+ ( len (value) == 3 and len (value) == 2) :
+ if key == 'origin' :
+ self.origin = value
+ if key == 'spacing' :
+ self.spacing = value
+
+ def subset(self, dimensions=None, **kw):
+ # FIXME: this is clearly not rigth
+ # it should be something like
+ # out = DataContainer.subset(self, dimensions, **kw)
+ # followed by regeneration of the proper geometry.
+ out = super(ImageData, self).subset(dimensions, **kw)
+ #out.geometry = self.recalculate_geometry(dimensions , **kw)
+ out.geometry = self.geometry
+ return out
+
+ def get_shape_labels(self, geometry, dimension_labels=None):
+ channels = geometry.channels
+ horiz_x = geometry.voxel_num_x
+ horiz_y = geometry.voxel_num_y
+ vert = 1 if geometry.voxel_num_z is None\
+ else geometry.voxel_num_z # this should be 1 for 2D
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, vert, horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ shape = (channels , horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ if vert > 1:
+ shape = (vert, horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ shape = (horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ dimension_labels = dim_labels
+ else:
+ shape = []
+ for i in range(len(dimension_labels)):
+ dim = dimension_labels[i]
+ if dim == ImageGeometry.CHANNEL:
+ shape.append(channels)
+ elif dim == ImageGeometry.HORIZONTAL_Y:
+ shape.append(horiz_y)
+ elif dim == ImageGeometry.VERTICAL:
+ shape.append(vert)
+ elif dim == ImageGeometry.HORIZONTAL_X:
+ shape.append(horiz_x)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes {1} shape {2}'.format(
+ len(dimension_labels) - len(shape), dimension_labels, shape))
+ shape = tuple(shape)
+
+ return (shape, dimension_labels)
+
+
+class AcquisitionData(DataContainer):
+ '''DataContainer for holding 2D or 3D sinogram'''
+ __container_priority__ = 1
+
+
+ def __init__(self,
+ array = None,
+ deep_copy=True,
+ dimension_labels=None,
+ **kwargs):
+ self.geometry = kwargs.get('geometry', None)
+ if array is None:
+ if 'geometry' in kwargs.keys():
+ geometry = kwargs['geometry']
+ self.geometry = geometry
+
+ shape, dimension_labels = self.get_shape_labels(geometry, dimension_labels)
+
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(AcquisitionData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+ else:
+ if self.geometry is not None:
+ shape, labels = self.get_shape_labels(self.geometry, dimension_labels)
+ if array.shape != shape:
+ raise ValueError('Shape mismatch {} {}'.format(shape, array.shape))
+
+ if issubclass(type(array) ,DataContainer):
+ # if the array is a DataContainer get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataContainer.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(AcquisitionData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif issubclass(type(array) ,numpy.ndarray):
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = [AcquisitionGeometry.CHANNEL,
+ AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL]
+ elif array.ndim == 3:
+ dimension_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ dimension_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.HORIZONTAL]
+
+ super(AcquisitionData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+ def get_shape_labels(self, geometry, dimension_labels=None):
+ channels = geometry.channels
+ horiz = geometry.pixel_num_h
+ vert = geometry.pixel_num_v
+ angles = geometry.angles
+ num_of_angles = numpy.shape(angles)[0]
+
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, num_of_angles , vert, horiz)
+ dim_labels = [AcquisitionGeometry.CHANNEL,
+ AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (channels , num_of_angles, horiz)
+ dim_labels = [AcquisitionGeometry.CHANNEL,
+ AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ if vert > 1:
+ shape = (num_of_angles, vert, horiz)
+ dim_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL
+ ]
+ else:
+ shape = (num_of_angles, horiz)
+ dim_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.HORIZONTAL
+ ]
+
+ dimension_labels = dim_labels
+ else:
+ shape = []
+ for i in range(len(dimension_labels)):
+ dim = dimension_labels[i]
+
+ if dim == AcquisitionGeometry.CHANNEL:
+ shape.append(channels)
+ elif dim == AcquisitionGeometry.ANGLE:
+ shape.append(num_of_angles)
+ elif dim == AcquisitionGeometry.VERTICAL:
+ shape.append(vert)
+ elif dim == AcquisitionGeometry.HORIZONTAL:
+ shape.append(horiz)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes.\nExpected{1} got {2}'\
+ .format(
+ len(dimension_labels) - len(shape),
+ dimension_labels, shape)
+ )
+ shape = tuple(shape)
+ return (shape, dimension_labels)
+
+
+
+class DataProcessor(object):
+
+ '''Defines a generic DataContainer processor
+
+ accepts DataContainer as inputs and
+ outputs DataContainer
+ additional attributes can be defined with __setattr__
+ '''
+
+ def __init__(self, **attributes):
+ if not 'store_output' in attributes.keys():
+ attributes['store_output'] = True
+ attributes['output'] = False
+ attributes['runTime'] = -1
+ attributes['mTime'] = datetime.now()
+ attributes['input'] = None
+ for key, value in attributes.items():
+ self.__dict__[key] = value
+
+
+ def __setattr__(self, name, value):
+ if name == 'input':
+ self.set_input(value)
+ elif name in self.__dict__.keys():
+ self.__dict__[name] = value
+ self.__dict__['mTime'] = datetime.now()
+ else:
+ raise KeyError('Attribute {0} not found'.format(name))
+ #pass
+
+ def set_input(self, dataset):
+ if issubclass(type(dataset), DataContainer):
+ if self.check_input(dataset):
+ self.__dict__['input'] = dataset
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(dataset), DataContainer))
+
+ def check_input(self, dataset):
+ '''Checks parameters of the input DataContainer
+
+ Should raise an Error if the DataContainer does not match expectation, e.g.
+ if the expected input DataContainer is 3D and the Processor expects 2D.
+ '''
+ raise NotImplementedError('Implement basic checks for input DataContainer')
+
+ def get_output(self, out=None):
+
+ for k,v in self.__dict__.items():
+ if v is None and k != 'output':
+ raise ValueError('Key {0} is None'.format(k))
+ shouldRun = False
+ if self.runTime == -1:
+ shouldRun = True
+ elif self.mTime > self.runTime:
+ shouldRun = True
+
+ # CHECK this
+ if self.store_output and shouldRun:
+ self.runTime = datetime.now()
+ try:
+ self.output = self.process(out=out)
+ return self.output
+ except TypeError as te:
+ self.output = self.process()
+ return self.output
+ self.runTime = datetime.now()
+ try:
+ return self.process(out=out)
+ except TypeError as te:
+ return self.process()
+
+
+ def set_input_processor(self, processor):
+ if issubclass(type(processor), DataProcessor):
+ self.__dict__['input'] = processor
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(processor), DataProcessor))
+
+ def get_input(self):
+ '''returns the input DataContainer
+
+ It is useful in the case the user has provided a DataProcessor as
+ input
+ '''
+ if issubclass(type(self.input), DataProcessor):
+ dsi = self.input.get_output()
+ else:
+ dsi = self.input
+ return dsi
+
+ def process(self, out=None):
+ raise NotImplementedError('process must be implemented')
+
+
+
+
+class DataProcessor23D(DataProcessor):
+ '''Regularizers DataProcessor
+ '''
+
+ def check_input(self, dataset):
+ '''Checks number of dimensions input DataContainer
+
+ Expected input is 2D or 3D
+ '''
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+###### Example of DataProcessors
+
+class AX(DataProcessor):
+ '''Example DataProcessor
+ The AXPY routines perform a vector multiplication operation defined as
+
+ y := a*x
+ where:
+
+ a is a scalar
+
+ x a DataContainer.
+ '''
+
+ def __init__(self):
+ kwargs = {'scalar':None,
+ 'input':None,
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(AX, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ dsi = self.get_input()
+ a = self.scalar
+ if out is None:
+ y = DataContainer( a * dsi.as_array() , True,
+ dimension_labels=dsi.dimension_labels )
+ #self.setParameter(output_dataset=y)
+ return y
+ else:
+ out.fill(a * dsi.as_array())
+
+
+###### Example of DataProcessors
+
+class CastDataContainer(DataProcessor):
+ '''Example DataProcessor
+ Cast a DataContainer array to a different type.
+
+ y := a*x
+ where:
+
+ a is a scalar
+
+ x a DataContainer.
+ '''
+
+ def __init__(self, dtype=None):
+ kwargs = {'dtype':dtype,
+ 'input':None,
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(CastDataContainer, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ dsi = self.get_input()
+ dtype = self.dtype
+ if out is None:
+ y = numpy.asarray(dsi.as_array(), dtype=dtype)
+
+ return type(dsi)(numpy.asarray(dsi.as_array(), dtype=dtype),
+ dimension_labels=dsi.dimension_labels )
+ else:
+ out.fill(numpy.asarray(dsi.as_array(), dtype=dtype))
+
+
+
+
+
+class PixelByPixelDataProcessor(DataProcessor):
+ '''Example DataProcessor
+
+ This processor applies a python function to each pixel of the DataContainer
+
+ f is a python function
+
+ x a DataSet.
+ '''
+
+ def __init__(self):
+ kwargs = {'pyfunc':None,
+ 'input':None,
+ }
+ #DataProcessor.__init__(self, **kwargs)
+ super(PixelByPixelDataProcessor, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ pyfunc = self.pyfunc
+ dsi = self.get_input()
+
+ eval_func = numpy.frompyfunc(pyfunc,1,1)
+
+
+ y = DataContainer( eval_func( dsi.as_array() ) , True,
+ dimension_labels=dsi.dimension_labels )
+ return y
+
+
+
+
+if __name__ == '__main__':
+ shape = (2,3,4,5)
+ size = shape[0]
+ for i in range(1, len(shape)):
+ size = size * shape[i]
+ #print("a refcount " , sys.getrefcount(a))
+ a = numpy.asarray([i for i in range( size )])
+ print("a refcount " , sys.getrefcount(a))
+ a = numpy.reshape(a, shape)
+ print("a refcount " , sys.getrefcount(a))
+ ds = DataContainer(a, False, ['X', 'Y','Z' ,'W'])
+ print("a refcount " , sys.getrefcount(a))
+ print ("ds label {0}".format(ds.dimension_labels))
+ subset = ['W' ,'X']
+ b = ds.subset( subset )
+ print("a refcount " , sys.getrefcount(a))
+ print ("b label {0} shape {1}".format(b.dimension_labels,
+ numpy.shape(b.as_array())))
+ c = ds.subset(['Z','W','X'])
+ print("a refcount " , sys.getrefcount(a))
+
+ # Create a ImageData sharing the array with c
+ volume0 = ImageData(c.as_array(), False, dimensions = c.dimension_labels)
+ volume1 = ImageData(c, False)
+
+ print ("volume0 {0} volume1 {1}".format(id(volume0.array),
+ id(volume1.array)))
+
+ # Create a ImageData copying the array from c
+ volume2 = ImageData(c.as_array(), dimensions = c.dimension_labels)
+ volume3 = ImageData(c)
+
+ print ("volume2 {0} volume3 {1}".format(id(volume2.array),
+ id(volume3.array)))
+
+ # single number DataSet
+ sn = DataContainer(numpy.asarray([1]))
+
+ ax = AX()
+ ax.scalar = 2
+ ax.set_input(c)
+ #ax.apply()
+ print ("ax in {0} out {1}".format(c.as_array().flatten(),
+ ax.get_output().as_array().flatten()))
+
+ cast = CastDataContainer(dtype=numpy.float32)
+ cast.set_input(c)
+ out = cast.get_output()
+ out *= 0
+ axm = AX()
+ axm.scalar = 0.5
+ axm.set_input_processor(cast)
+ axm.get_output(out)
+ #axm.apply()
+ print ("axm in {0} out {1}".format(c.as_array(), axm.get_output().as_array()))
+
+ # check out in DataSetProcessor
+ #a = numpy.asarray([i for i in range( size )])
+
+
+ # create a PixelByPixelDataProcessor
+
+ #define a python function which will take only one input (the pixel value)
+ pyfunc = lambda x: -x if x > 20 else x
+ clip = PixelByPixelDataProcessor()
+ clip.pyfunc = pyfunc
+ clip.set_input(c)
+ #clip.apply()
+
+ print ("clip in {0} out {1}".format(c.as_array(), clip.get_output().as_array()))
+
+ #dsp = DataProcessor()
+ #dsp.set_input(ds)
+ #dsp.input = a
+ # pipeline
+
+ chain = AX()
+ chain.scalar = 0.5
+ chain.set_input_processor(ax)
+ print ("chain in {0} out {1}".format(ax.get_output().as_array(), chain.get_output().as_array()))
+
+ # testing arithmetic operations
+
+ print (b)
+ print ((b+1))
+ print ((1+b))
+
+ print (b)
+ print ((b*2))
+
+ print (b)
+ print ((2*b))
+
+ print (b)
+ print ((b/2))
+
+ print (b)
+ print ((2/b))
+
+ print (b)
+ print ((b**2))
+
+ print (b)
+ print ((2**b))
+
+ print (type(volume3 + 2))
+
+ s = [i for i in range(3 * 4 * 4)]
+ s = numpy.reshape(numpy.asarray(s), (3,4,4))
+ sino = AcquisitionData( s )
+
+ shape = (4,3,2)
+ a = [i for i in range(2*3*4)]
+ a = numpy.asarray(a)
+ a = numpy.reshape(a, shape)
+ print (numpy.shape(a))
+ ds = DataContainer(a, True, ['X', 'Y','Z'])
+ # this means that I expect the X to be of length 2 ,
+ # y of length 3 and z of length 4
+ subset = ['Y' ,'Z']
+ b0 = ds.subset( subset )
+ print ("shape b 3,2? {0}".format(numpy.shape(b0.as_array())))
+ # expectation on b is that it is
+ # 3x2 cut at z = 0
+
+ subset = ['X' ,'Y']
+ b1 = ds.subset( subset , Z=1)
+ print ("shape b 2,3? {0}".format(numpy.shape(b1.as_array())))
+
+
+
+ # create VolumeData from geometry
+ vgeometry = ImageGeometry(voxel_num_x=2, voxel_num_y=3, channels=2)
+ vol = ImageData(geometry=vgeometry)
+
+ sgeometry = AcquisitionGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20),
+ geom_type='parallel', pixel_num_v=3,
+ pixel_num_h=5 , channels=2)
+ sino = AcquisitionData(geometry=sgeometry)
+ sino2 = sino.clone()
+
+ a0 = numpy.asarray([i for i in range(2*3*4)])
+ a1 = numpy.asarray([2*i for i in range(2*3*4)])
+
+
+ ds0 = DataContainer(numpy.reshape(a0,(2,3,4)))
+ ds1 = DataContainer(numpy.reshape(a1,(2,3,4)))
+
+ numpy.testing.assert_equal(ds0.dot(ds1), a0.dot(a1))
+
+ a2 = numpy.asarray([2*i for i in range(2*3*5)])
+ ds2 = DataContainer(numpy.reshape(a2,(2,3,5)))
+
+# # it should fail if the shape is wrong
+# try:
+# ds2.dot(ds0)
+# self.assertTrue(False)
+# except ValueError as ve:
+# self.assertTrue(True)
+
diff --git a/Wrappers/Python/build/lib/ccpi/io/__init__.py b/Wrappers/Python/build/lib/ccpi/io/__init__.py
new file mode 100644
index 0000000..9233d7a
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/io/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/io/reader.py b/Wrappers/Python/build/lib/ccpi/io/reader.py
new file mode 100644
index 0000000..07e3bf9
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/io/reader.py
@@ -0,0 +1,511 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev, Edoardo Pasca and Srikanth Nagella
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''
+This is a reader module with classes for loading 3D datasets.
+
+@author: Mr. Srikanth Nagella
+'''
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+from ccpi.framework import AcquisitionGeometry
+from ccpi.framework import AcquisitionData
+import numpy as np
+import os
+
+h5pyAvailable = True
+try:
+ from h5py import File as NexusFile
+except:
+ h5pyAvailable = False
+
+pilAvailable = True
+try:
+ from PIL import Image
+except:
+ pilAvailable = False
+
+class NexusReader(object):
+ '''
+ Reader class for loading Nexus files.
+ '''
+
+ def __init__(self, nexus_filename=None):
+ '''
+ This takes in input as filename and loads the data dataset.
+ '''
+ self.flat = None
+ self.dark = None
+ self.angles = None
+ self.geometry = None
+ self.filename = nexus_filename
+ self.key_path = 'entry1/tomo_entry/instrument/detector/image_key'
+ self.data_path = 'entry1/tomo_entry/data/data'
+ self.angle_path = 'entry1/tomo_entry/data/rotation_angle'
+
+ def get_image_keys(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ return np.array(file[self.key_path])
+ except KeyError as ke:
+ raise KeyError("get_image_keys: " , ke.args[0] , self.key_path)
+
+
+ def load(self, dimensions=None, image_key_id=0):
+ '''
+ This is generic loading function of flat field, dark field and projection data.
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ image_keys = np.array(file[self.key_path])
+ projections = None
+ if dimensions == None:
+ projections = np.array(file[self.data_path])
+ result = projections[image_keys==image_key_id]
+ return result
+ else:
+ #When dimensions are specified they need to be mapped to image_keys
+ index_array = np.where(image_keys==image_key_id)
+ projection_indexes = index_array[0][dimensions[0]]
+ new_dimensions = list(dimensions)
+ new_dimensions[0]= projection_indexes
+ new_dimensions = tuple(new_dimensions)
+ result = np.array(file[self.data_path][new_dimensions])
+ return result
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def load_projection(self, dimensions=None):
+ '''
+ Loads the projection data from the nexus file.
+ returns: numpy array with projection data
+ '''
+ try:
+ if 0 not in self.get_image_keys():
+ raise ValueError("Projections are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 0)
+
+ def load_flat(self, dimensions=None):
+ '''
+ Loads the flat field data from the nexus file.
+ returns: numpy array with flat field data
+ '''
+ try:
+ if 1 not in self.get_image_keys():
+ raise ValueError("Flats are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 1)
+
+ def load_dark(self, dimensions=None):
+ '''
+ Loads the Dark field data from the nexus file.
+ returns: numpy array with dark field data
+ '''
+ try:
+ if 2 not in self.get_image_keys():
+ raise ValueError("Darks are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 2)
+
+ def get_projection_angles(self):
+ '''
+ This function returns the projection angles
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ angles = np.array(file[self.angle_path],np.float32)
+ image_keys = np.array(file[self.key_path])
+ return angles[image_keys==0]
+ except:
+ print("get_projection_angles Error reading nexus file")
+ raise
+
+
+ def get_sinogram_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ projections = file[self.data_path]
+ image_keys = np.array(file[self.key_path])
+ dims = list(projections.shape)
+ dims[0] = dims[1]
+ dims[1] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def get_projection_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ try:
+ projections = file[self.data_path]
+ except KeyError as ke:
+ raise KeyError('Error: data path {0} not found\n{1}'\
+ .format(self.data_path,
+ ke.args[0]))
+ #image_keys = np.array(file[self.key_path])
+ image_keys = self.get_image_keys()
+ dims = list(projections.shape)
+ dims[0] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Warning: Error reading image_keys trying accessing data on " , self.data_path)
+ with NexusFile(self.filename,'r') as file:
+ dims = file[self.data_path].shape
+ return tuple(dims)
+
+
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ dims = self.get_projection_dimensions()
+ geometry = AcquisitionGeometry('parallel', '3D',
+ self.get_projection_angles(),
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = dims[1],
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+
+ def get_acquisition_data_subset(self, ymin=None, ymax=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ pass
+ dims = file[self.data_path].shape
+ if ymin is None and ymax is None:
+
+ try:
+ image_keys = self.get_image_keys()
+ print ("image_keys", image_keys)
+ projections = np.array(file[self.data_path])
+ data = projections[image_keys==0]
+ except KeyError as ke:
+ print (ke)
+ data = np.array(file[self.data_path])
+
+ else:
+ image_keys = self.get_image_keys()
+ print ("image_keys", image_keys)
+ projections = np.array(file[self.data_path])[image_keys==0]
+ if ymin is None:
+ ymin = 0
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ data = projections[:,:ymax,:]
+ elif ymax is None:
+ ymax = dims[1]
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+ data = projections[:,ymin:,:]
+ else:
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+
+ data = projections[: , ymin:ymax , :]
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)
+
+ if ymax-ymin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = ymax-ymin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif ymax-ymin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+ def get_acquisition_data_slice(self, y_slice=0):
+ return self.get_acquisition_data_subset(ymin=y_slice , ymax=y_slice+1)
+ def get_acquisition_data_whole(self):
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ print ("Warning: ")
+ dims = file[self.data_path].shape
+
+ ymin = 0
+ ymax = dims[1] - 1
+
+ return self.get_acquisition_data_subset(ymin=ymin, ymax=ymax)
+
+
+
+ def list_file_content(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ file.visit(print)
+ except:
+ print("Error reading nexus file")
+ raise
+ def get_acquisition_data_batch(self, bmin=None, bmax=None):
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ dims = file[self.data_path].shape
+ if bmin is None or bmax is None:
+ raise ValueError('get_acquisition_data_batch: please specify fastest index batch limits')
+
+ if bmin >= 0 and bmin < bmax and bmax <= dims[0]:
+ data = np.array(file[self.data_path][bmin:bmax])
+ else:
+ raise ValueError('get_acquisition_data_batch: bmin {0}>0 bmax {1}<{2}'.format(bmin, bmax, dims[0]))
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()[bmin:bmax]
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)[bmin:bmax]
+
+ if bmax-bmin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = bmax-bmin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif bmax-bmin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+
+
+
+class XTEKReader(object):
+ '''
+ Reader class for loading XTEK files
+ '''
+
+ def __init__(self, xtek_config_filename=None):
+ '''
+ This takes in the xtek config filename and loads the dataset and the
+ required geometry parameters
+ '''
+ self.projections = None
+ self.geometry = {}
+ self.filename = xtek_config_filename
+ self.load()
+
+ def load(self):
+ pixel_num_h = 0
+ pixel_num_v = 0
+ xpixel_size = 0
+ ypixel_size = 0
+ source_x = 0
+ detector_x = 0
+ with open(self.filename) as f:
+ content = f.readlines()
+ content = [x.strip() for x in content]
+ for line in content:
+ if line.startswith("SrcToObject"):
+ source_x = float(line.split('=')[1])
+ elif line.startswith("SrcToDetector"):
+ detector_x = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelsY"):
+ pixel_num_v = int(line.split('=')[1])
+ #self.num_of_vertical_pixels = self.calc_v_alighment(self.num_of_vertical_pixels, self.pixels_per_voxel)
+ elif line.startswith("DetectorPixelsX"):
+ pixel_num_h = int(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeX"):
+ xpixel_size = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeY"):
+ ypixel_size = float(line.split('=')[1])
+ elif line.startswith("Projections"):
+ self.num_projections = int(line.split('=')[1])
+ elif line.startswith("InitialAngle"):
+ self.initial_angle = float(line.split('=')[1])
+ elif line.startswith("Name"):
+ self.experiment_name = line.split('=')[1]
+ elif line.startswith("Scattering"):
+ self.scattering = float(line.split('=')[1])
+ elif line.startswith("WhiteLevel"):
+ self.white_level = float(line.split('=')[1])
+ elif line.startswith("MaskRadius"):
+ self.mask_radius = float(line.split('=')[1])
+
+ #Read Angles
+ angles = self.read_angles()
+ self.geometry = AcquisitionGeometry('cone', '3D', angles, pixel_num_h, xpixel_size, pixel_num_v, ypixel_size, -1 * source_x,
+ detector_x - source_x,
+ )
+
+ def read_angles(self):
+ """
+ Read the angles file .ang or _ctdata.txt file and returns the angles
+ as an numpy array.
+ """
+ input_path = os.path.dirname(self.filename)
+ angles_ctdata_file = os.path.join(input_path, '_ctdata.txt')
+ angles_named_file = os.path.join(input_path, self.experiment_name+'.ang')
+ angles = np.zeros(self.num_projections,dtype='f')
+ #look for _ctdata.txt
+ if os.path.exists(angles_ctdata_file):
+ #read txt file with angles
+ with open(angles_ctdata_file) as f:
+ content = f.readlines()
+ #skip firt three lines
+ #read the middle value of 3 values in each line as angles in degrees
+ index = 0
+ for line in content[3:]:
+ self.angles[index]=float(line.split(' ')[1])
+ index+=1
+ angles = np.deg2rad(self.angles+self.initial_angle);
+ elif os.path.exists(angles_named_file):
+ #read the angles file which is text with first line as header
+ with open(angles_named_file) as f:
+ content = f.readlines()
+ #skip first line
+ index = 0
+ for line in content[1:]:
+ angles[index] = float(line.split(':')[1])
+ index+=1
+ angles = np.flipud(angles+self.initial_angle) #angles are in the reverse order
+ else:
+ raise RuntimeError("Can't find angles file")
+ return angles
+
+ def load_projection(self, dimensions=None):
+ '''
+ This method reads the projection images from the directory and returns a numpy array
+ '''
+ if not pilAvailable:
+ raise('Image library pillow is not installed')
+ if dimensions != None:
+ raise('Extracting subset of data is not implemented')
+ input_path = os.path.dirname(self.filename)
+ pixels = np.zeros((self.num_projections, self.geometry.pixel_num_h, self.geometry.pixel_num_v), dtype='float32')
+ for i in range(1, self.num_projections+1):
+ im = Image.open(os.path.join(input_path,self.experiment_name+"_%04d"%i+".tif"))
+ pixels[i-1,:,:] = np.fliplr(np.transpose(np.array(im))) ##Not sure this is the correct way to populate the image
+
+ #normalising the data
+ #TODO: Move this to a processor
+ pixels = pixels - (self.white_level*self.scattering)/100.0
+ pixels[pixels < 0.0] = 0.000001 # all negative values to approximately 0 as the std log of zero and non negative number is not defined
+ return pixels
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ return AcquisitionData(data, geometry=self.geometry)
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py
new file mode 100644
index 0000000..cf2d93d
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py
index 12cbabc..a14378c 100644
--- a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py
@@ -34,7 +34,7 @@ class Algorithm(object):
method will stop when the stopping cryterion is met.
'''
- def __init__(self):
+ def __init__(self, **kwargs):
'''Constructor
Set the minimal number of parameters:
@@ -48,11 +48,11 @@ class Algorithm(object):
when evaluating the objective is computationally expensive.
'''
self.iteration = 0
- self.__max_iteration = 0
+ self.__max_iteration = kwargs.get('max_iteration', 0)
self.__loss = []
self.memopt = False
self.timing = []
- self.update_objective_interval = 1
+ self.update_objective_interval = kwargs.get('update_objective_interval', 1)
def set_up(self, *args, **kwargs):
'''Set up the algorithm'''
raise NotImplementedError()
@@ -91,9 +91,11 @@ class Algorithm(object):
if self.iteration % self.update_objective_interval == 0:
self.update_objective()
self.iteration += 1
+
def get_output(self):
'''Returns the solution found'''
return self.x
+
def get_last_loss(self):
'''Returns the last stored value of the loss function
@@ -146,39 +148,13 @@ class Algorithm(object):
print ("Stop cryterion has been reached.")
i = 0
-# print("Iteration {:<5} Primal {:<5} Dual {:<5} PDgap".format('','',''))
for _ in self:
-
-
- if self.iteration % self.update_objective_interval == 0:
-
+ if (self.iteration -1) % self.update_objective_interval == 0:
+ if verbose:
+ print ("Iteration {}/{}, = {}".format(self.iteration-1,
+ self.max_iteration, self.get_last_objective()) )
if callback is not None:
- callback(self.iteration, self.get_last_objective(), self.x)
-
- else:
-
- if verbose:
-
-# if verbose and self.iteration % self.update_objective_interval == 0:
- #pass
- # \t for tab
-# print( "{:04}/{:04} {:<5} {:.4f} {:<5} {:.4f} {:<5} {:.4f}".\
-# format(self.iteration, self.max_iteration,'', \
-# self.get_last_objective()[0],'',\
-# self.get_last_objective()[1],'',\
-# self.get_last_objective()[2]))
-
-
- print ("Iteration {}/{}, {}".format(self.iteration,
- self.max_iteration, self.get_last_objective()) )
-
- #print ("Iteration {}/{}, Primal, Dual, PDgap = {}".format(self.iteration,
- # self.max_iteration, self.get_last_objective()) )
-
-
-# else:
-# if callback is not None:
-# callback(self.iteration, self.get_last_objective(), self.x)
+ callback(self.iteration -1, self.get_last_objective(), self.x)
i += 1
if i == iterations:
break
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py
new file mode 100644
index 0000000..4d4843c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py
@@ -0,0 +1,87 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:11:23 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.algorithms import Algorithm
+
+class CGLS(Algorithm):
+
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ '''
+ def __init__(self, **kwargs):
+ super(CGLS, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ self.set_up(x_init =kwargs['x_init'],
+ operator=kwargs['operator'],
+ data =kwargs['data'])
+
+ def set_up(self, x_init, operator , data ):
+
+ self.r = data.copy()
+ self.x = x_init.copy()
+
+ self.operator = operator
+ self.d = operator.adjoint(self.r)
+
+
+ self.normr2 = self.d.squared_norm()
+ #if isinstance(self.normr2, Iterable):
+ # self.normr2 = sum(self.normr2)
+ #self.normr2 = numpy.sqrt(self.normr2)
+ #print ("set_up" , self.normr2)
+
+ def update(self):
+
+ Ad = self.operator.direct(self.d)
+ #norm = (Ad*Ad).sum()
+ #if isinstance(norm, Iterable):
+ # norm = sum(norm)
+ norm = Ad.squared_norm()
+
+ alpha = self.normr2/norm
+ self.x += (self.d * alpha)
+ self.r -= (Ad * alpha)
+ s = self.operator.adjoint(self.r)
+
+ normr2_new = s.squared_norm()
+ #if isinstance(normr2_new, Iterable):
+ # normr2_new = sum(normr2_new)
+ #normr2_new = numpy.sqrt(normr2_new)
+ #print (normr2_new)
+
+ beta = normr2_new/self.normr2
+ self.normr2 = normr2_new
+ self.d = s + beta*self.d
+
+ def update_objective(self):
+ self.loss.append(self.r.squared_norm()) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py
new file mode 100644
index 0000000..aa07359
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py
@@ -0,0 +1,86 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:09:03 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.algorithms import Algorithm
+from ccpi.optimisation.functions import ZeroFunction
+
+class FBPD(Algorithm):
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
+ constraint = None
+ data_fidelity = None
+ regulariser = None
+ def __init__(self, **kwargs):
+ pass
+ def set_up(self, x_init, operator=None, constraint=None, data_fidelity=None,\
+ regulariser=None, opt=None):
+
+ # default inputs
+ if constraint is None:
+ self.constraint = ZeroFun()
+ else:
+ self.constraint = constraint
+ if data_fidelity is None:
+ data_fidelity = ZeroFun()
+ else:
+ self.data_fidelity = data_fidelity
+ if regulariser is None:
+ self.regulariser = ZeroFun()
+ else:
+ self.regulariser = regulariser
+
+ # algorithmic parameters
+
+
+ # step-sizes
+ self.tau = 2 / (self.data_fidelity.L + 2)
+ self.sigma = (1/self.tau - self.data_fidelity.L/2) / self.regulariser.L
+
+ self.inv_sigma = 1/self.sigma
+
+ # initialization
+ self.x = x_init
+ self.y = operator.direct(self.x)
+
+
+ def update(self):
+
+ # primal forward-backward step
+ x_old = self.x
+ self.x = self.x - self.tau * ( self.data_fidelity.grad(self.x) + self.operator.adjoint(self.y) )
+ self.x = self.constraint.prox(self.x, self.tau);
+
+ # dual forward-backward step
+ self.y = self.y + self.sigma * self.operator.direct(2*self.x - x_old);
+ self.y = self.y - self.sigma * self.regulariser.prox(self.inv_sigma*self.y, self.inv_sigma);
+
+ # time and criterion
+ self.loss = self.constraint(self.x) + self.data_fidelity(self.x) + self.regulariser(self.operator.direct(self.x))
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py
new file mode 100644
index 0000000..14763c5
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py
@@ -0,0 +1,76 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:05:09 2019
+
+@author: ofn77899
+"""
+from ccpi.optimisation.algorithms import Algorithm
+
+class GradientDescent(Algorithm):
+ '''Implementation of Gradient Descent algorithm
+ '''
+
+ def __init__(self, **kwargs):
+ '''initialisation can be done at creation time if all
+ proper variables are passed or later with set_up'''
+ super(GradientDescent, self).__init__()
+ self.x = None
+ self.rate = 0
+ self.objective_function = None
+ self.regulariser = None
+ args = ['x_init', 'objective_function', 'rate']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(x_init=kwargs['x_init'],
+ objective_function=kwargs['objective_function'],
+ rate=kwargs['rate'])
+
+ def should_stop(self):
+ '''stopping cryterion, currently only based on number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def set_up(self, x_init, objective_function, rate):
+ '''initialisation of the algorithm'''
+ self.x = x_init.copy()
+ self.objective_function = objective_function
+ self.rate = rate
+ self.loss.append(objective_function(x_init))
+ self.iteration = 0
+ try:
+ self.memopt = self.objective_function.memopt
+ except AttributeError as ae:
+ self.memopt = False
+ if self.memopt:
+ self.x_update = x_init.copy()
+
+ def update(self):
+ '''Single iteration'''
+ if self.memopt:
+ self.objective_function.gradient(self.x, out=self.x_update)
+ self.x_update *= -self.rate
+ self.x += self.x_update
+ else:
+ self.x += -self.rate * self.objective_function.gradient(self.x)
+
+ def update_objective(self):
+ self.loss.append(self.objective_function(self.x))
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py
index 0f5e8ef..39b092b 100644
--- a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py
@@ -13,117 +13,79 @@ import time
from ccpi.optimisation.operators import BlockOperator
from ccpi.framework import BlockDataContainer
from ccpi.optimisation.functions import FunctionOperatorComposition
-import matplotlib.pyplot as plt
class PDHG(Algorithm):
'''Primal Dual Hybrid Gradient'''
def __init__(self, **kwargs):
- super(PDHG, self).__init__()
+ super(PDHG, self).__init__(max_iteration=kwargs.get('max_iteration',0))
self.f = kwargs.get('f', None)
self.operator = kwargs.get('operator', None)
self.g = kwargs.get('g', None)
self.tau = kwargs.get('tau', None)
self.sigma = kwargs.get('sigma', None)
- self.memopt = kwargs.get('memopt', False)
-
+
if self.f is not None and self.operator is not None and \
self.g is not None:
print ("Calling from creator")
self.set_up(self.f,
+ self.g,
self.operator,
- self.g,
self.tau,
self.sigma)
def set_up(self, f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
# algorithmic parameters
-
+ self.operator = operator
+ self.f = f
+ self.g = g
+ self.tau = tau
+ self.sigma = sigma
+ self.opt = opt
if sigma is None and tau is None:
raise ValueError('Need sigma*tau||K||^2<1')
-
-
+
self.x_old = self.operator.domain_geometry().allocate()
- self.y_old = self.operator.range_geometry().allocate()
-
- self.xbar = self.x_old.copy()
self.x_tmp = self.x_old.copy()
self.x = self.x_old.copy()
-
- self.y_tmp = self.y_old.copy()
- self.y = self.y_tmp.copy()
-
-
-
- #self.y = self.y_old.copy()
-
-
- #if self.memopt:
- # self.y_tmp = self.y_old.copy()
- # self.x_tmp = self.x_old.copy()
+
+ self.y_old = self.operator.range_geometry().allocate()
+ self.y_tmp = self.y_old.copy()
+ self.y = self.y_old.copy()
+
+ self.xbar = self.x_old.copy()
-
# relaxation parameter
self.theta = 1
def update(self):
- if self.memopt:
- # Gradient descent, Dual problem solution
- # self.y_old += self.sigma * self.operator.direct(self.xbar)
- self.operator.direct(self.xbar, out=self.y_tmp)
- self.y_tmp *= self.sigma
- self.y_tmp += self.y_old
-
- #self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
- self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)
-
- # Gradient ascent, Primal problem solution
- self.operator.adjoint(self.y, out=self.x_tmp)
- self.x_tmp *= -1*self.tau
- self.x_tmp += self.x_old
-
- self.g.proximal(self.x_tmp, self.tau, out=self.x)
-
- #Update
- self.x.subtract(self.x_old, out=self.xbar)
- self.xbar *= self.theta
- self.xbar += self.x
-
- self.x_old.fill(self.x)
- self.y_old.fill(self.y)
-
-
- else:
- # Gradient descent, Dual problem solution
- self.y_old += self.sigma * self.operator.direct(self.xbar)
- self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
-
- # Gradient ascent, Primal problem solution
- self.x_old -= self.tau * self.operator.adjoint(self.y)
- self.x = self.g.proximal(self.x_old, self.tau)
+ # Gradient descent, Dual problem solution
+ self.operator.direct(self.xbar, out=self.y_tmp)
+ self.y_tmp *= self.sigma
+ self.y_tmp += self.y_old
- #Update
- self.x.subtract(self.x_old, out=self.xbar)
- self.xbar *= self.theta
- self.xbar += self.x
+ #self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
+ self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)
+
+ # Gradient ascent, Primal problem solution
+ self.operator.adjoint(self.y, out=self.x_tmp)
+ self.x_tmp *= -1*self.tau
+ self.x_tmp += self.x_old
- self.x_old.fill(self.x)
- self.y_old.fill(self.y)
-
- #xbar = x + theta * (x - x_old)
-# self.xbar.fill(self.x)
-# self.xbar -= self.x_old
-# self.xbar *= self.theta
-# self.xbar += self.x
-
-# self.x_old.fill(self.x)
-# self.y_old.fill(self.y)
-
+ self.g.proximal(self.x_tmp, self.tau, out=self.x)
+
+ #Update
+ self.x.subtract(self.x_old, out=self.xbar)
+ self.xbar *= self.theta
+ self.xbar += self.x
+
+ self.x_old.fill(self.x)
+ self.y_old.fill(self.y)
def update_objective(self):
-
+
p1 = self.f(self.operator.direct(self.x)) + self.g(self.x)
d1 = -(self.f.convex_conjugate(self.y) + self.g.convex_conjugate(-1*self.operator.adjoint(self.y)))
@@ -169,64 +131,44 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
for i in range(niter):
+
- if not memopt:
-
- y_tmp = y_old + sigma * operator.direct(xbar)
- y = f.proximal_conjugate(y_tmp, sigma)
-
- x_tmp = x_old - tau*operator.adjoint(y)
- x = g.proximal(x_tmp, tau)
-
- x.subtract(x_old, out=xbar)
- xbar *= theta
- xbar += x
-
- if i%50==0:
-
- p1 = f(operator.direct(x)) + g(x)
- d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
- primal.append(p1)
- dual.append(d1)
- pdgap.append(p1-d1)
- print(p1, d1, p1-d1)
-
- x_old.fill(x)
- y_old.fill(y)
-
-
- else:
-
+ if memopt:
operator.direct(xbar, out = y_tmp)
y_tmp *= sigma
- y_tmp += y_old
- f.proximal_conjugate(y_tmp, sigma, out=y)
-
+ y_tmp += y_old
+ else:
+ y_tmp = y_old + sigma * operator.direct(xbar)
+
+ f.proximal_conjugate(y_tmp, sigma, out=y)
+
+ if memopt:
operator.adjoint(y, out = x_tmp)
x_tmp *= -1*tau
x_tmp += x_old
-
- g.proximal(x_tmp, tau, out = x)
-
- x.subtract(x_old, out=xbar)
- xbar *= theta
- xbar += x
+ else:
+ x_tmp = x_old - tau*operator.adjoint(y)
- if i%50==0:
-
- p1 = f(operator.direct(x)) + g(x)
- d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
- primal.append(p1)
- dual.append(d1)
- pdgap.append(p1-d1)
- print(p1, d1, p1-d1)
-
- x_old.fill(x)
- y_old.fill(y)
+ g.proximal(x_tmp, tau, out=x)
+
+ x.subtract(x_old, out=xbar)
+ xbar *= theta
+ xbar += x
+
+ x_old.fill(x)
+ y_old.fill(y)
-
+ if i%10==0:
+
+ p1 = f(operator.direct(x)) + g(x)
+ d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
+ primal.append(p1)
+ dual.append(d1)
+ pdgap.append(p1-d1)
+ print(p1, d1, p1-d1)
+
t_end = time.time()
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/SIRT.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/SIRT.py
new file mode 100644
index 0000000..30584d4
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/SIRT.py
@@ -0,0 +1,74 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.optimisation.algorithms import Algorithm
+
+class SIRT(Algorithm):
+
+ '''Simultaneous Iterative Reconstruction Technique
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ constraint: Function with prox-method, for example IndicatorBox to
+ enforce box constraints, default is None).
+ '''
+ def __init__(self, **kwargs):
+ super(SIRT, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ self.constraint = kwargs.get('constraint', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ self.set_up(x_init=kwargs['x_init'],
+ operator=kwargs['operator'],
+ data=kwargs['data'],
+ constraint=kwargs['constraint'])
+
+ def set_up(self, x_init, operator , data, constraint=None ):
+
+ self.x = x_init.copy()
+ self.operator = operator
+ self.data = data
+ self.constraint = constraint
+
+ self.r = data.copy()
+
+ self.relax_par = 1.0
+
+ # Set up scaling matrices D and M.
+ self.M = 1/self.operator.direct(self.operator.domain_geometry().allocate(value=1.0))
+ self.D = 1/self.operator.adjoint(self.operator.range_geometry().allocate(value=1.0))
+
+
+ def update(self):
+
+ self.r = self.data - self.operator.direct(self.x)
+
+ self.x += self.relax_par * (self.D*self.operator.adjoint(self.M*self.r))
+
+ if self.constraint != None:
+ self.x = self.constraint.prox(self.x,None)
+
+ def update_objective(self):
+ self.loss.append(self.r.squared_norm()) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py
new file mode 100644
index 0000000..2dbacfc
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py
@@ -0,0 +1,33 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:03:13 2019
+
+@author: ofn77899
+"""
+
+from .Algorithm import Algorithm
+from .CGLS import CGLS
+from .SIRT import SIRT
+from .GradientDescent import GradientDescent
+from .FISTA import FISTA
+from .FBPD import FBPD
+from .PDHG import PDHG
+from .PDHG import PDHG_old
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algs.py b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py
new file mode 100644
index 0000000..f5ba85e
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py
@@ -0,0 +1,307 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy
+import time
+
+
+
+
+def FISTA(x_init, f=None, g=None, opt=None):
+ '''Fast Iterative Shrinkage-Thresholding Algorithm
+
+ Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding
+ algorithm for linear inverse problems.
+ SIAM journal on imaging sciences,2(1), pp.183-202.
+
+ Parameters:
+ x_init: initial guess
+ f: data fidelity
+ g: regularizer
+ h:
+ opt: additional algorithm
+ '''
+ # default inputs
+ if f is None: f = ZeroFun()
+ if g is None: g = ZeroFun()
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000, 'memopt':False}
+
+ max_iter = opt['iter'] if 'iter' in opt.keys() else 1000
+ tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+
+
+ # initialization
+ if memopt:
+ y = x_init.clone()
+ x_old = x_init.clone()
+ x = x_init.clone()
+ u = x_init.clone()
+ else:
+ x_old = x_init
+ y = x_init;
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ invL = 1/f.L
+
+ t_old = 1
+
+# c = f(x_init) + g(x_init)
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ time0 = time.time()
+ if memopt:
+ # u = y - invL*f.grad(y)
+ # store the result in x_old
+ f.gradient(y, out=u)
+ u.__imul__( -invL )
+ u.__iadd__( y )
+ # x = g.prox(u,invL)
+ g.proximal(u, invL, out=x)
+
+ t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2)))
+
+ # y = x + (t_old-1)/t*(x-x_old)
+ x.subtract(x_old, out=y)
+ y.__imul__ ((t_old-1)/t)
+ y.__iadd__( x )
+
+ x_old.fill(x)
+ t_old = t
+
+
+ else:
+ u = y - invL*f.gradient(y)
+
+ x = g.proximal(u,invL)
+
+ t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2)))
+
+ y = x + (t_old-1)/t*(x-x_old)
+
+ x_old = x.copy()
+ t_old = t
+
+ # time and criterion
+# timing[it] = time.time() - time0
+# criter[it] = f(x) + g(x);
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ #print(it, 'out of', 10, 'iterations', end='\r');
+
+ #criter = criter[0:it+1];
+# timing = numpy.cumsum(timing[0:it+1]);
+
+ return x #, it, timing, criter
+
+def FBPD(x_init, operator=None, constraint=None, data_fidelity=None,\
+ regulariser=None, opt=None):
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
+ # default inputs
+ if constraint is None: constraint = ZeroFun()
+ if data_fidelity is None: data_fidelity = ZeroFun()
+ if regulariser is None: regulariser = ZeroFun()
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+ memopt = opt['memopts'] if 'memopts' in opt.keys() else False
+
+ # step-sizes
+ tau = 2 / (data_fidelity.L + 2)
+ sigma = (1/tau - data_fidelity.L/2) / regulariser.L
+ inv_sigma = 1/sigma
+
+ # initialization
+ x = x_init
+ y = operator.direct(x);
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+
+
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ t = time.time()
+
+ # primal forward-backward step
+ x_old = x;
+ x = x - tau * ( data_fidelity.grad(x) + operator.adjoint(y) );
+ x = constraint.prox(x, tau);
+
+ # dual forward-backward step
+ y = y + sigma * operator.direct(2*x - x_old);
+ y = y - sigma * regulariser.prox(inv_sigma*y, inv_sigma);
+
+ # time and criterion
+ timing[it] = time.time() - t
+ criter[it] = constraint(x) + data_fidelity(x) + regulariser(operator.direct(x))
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ criter = criter[0:it+1]
+ timing = numpy.cumsum(timing[0:it+1])
+
+ return x, it, timing, criter
+
+def CGLS(x_init, operator , data , opt=None):
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ opt: additional algorithm
+ '''
+
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ r = data.copy()
+ x = x_init.copy()
+
+ d = operator.adjoint(r)
+
+ normr2 = (d**2).sum()
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ t = time.time()
+
+ Ad = operator.direct(d)
+ alpha = normr2/( (Ad**2).sum() )
+ x = x + alpha*d
+ r = r - alpha*Ad
+ s = operator.adjoint(r)
+
+ normr2_new = (s**2).sum()
+ beta = normr2_new/normr2
+ normr2 = normr2_new
+ d = s + beta*d
+
+ # time and criterion
+ timing[it] = time.time() - t
+ criter[it] = (r**2).sum()
+
+ return x, it, timing, criter
+
+def SIRT(x_init, operator , data , opt=None, constraint=None):
+ '''Simultaneous Iterative Reconstruction Technique
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ opt: additional algorithm
+ constraint: func of Indicator type specifying convex constraint.
+ '''
+
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ x = x_init.clone()
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ # Relaxation parameter must be strictly between 0 and 2. For now fix at 1.0
+ relax_par = 1.0
+
+ # Set up scaling matrices D and M.
+ M = 1/operator.direct(operator.domain_geometry().allocate(value=1.0))
+ D = 1/operator.adjoint(operator.range_geometry().allocate(value=1.0))
+
+ # algorithm loop
+ for it in range(0, max_iter):
+ t = time.time()
+ r = data - operator.direct(x)
+
+ x = x + relax_par * (D*operator.adjoint(M*r))
+
+ if constraint != None:
+ x = constraint.prox(x,None)
+
+ timing[it] = time.time() - t
+ if it > 0:
+ criter[it-1] = (r**2).sum()
+
+ r = data - operator.direct(x)
+ criter[it] = (r**2).sum()
+ return x, it, timing, criter
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py
new file mode 100644
index 0000000..ba33666
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py
@@ -0,0 +1,69 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import warnings
+from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+
+class Function(object):
+ '''Abstract class representing a function
+
+ Members:
+ L is the Lipschitz constant of the gradient of the Function
+ '''
+ def __init__(self):
+ self.L = None
+
+ def __call__(self,x, out=None):
+ '''Evaluates the function at x '''
+ raise NotImplementedError
+
+ def gradient(self, x, out=None):
+ '''Returns the gradient of the function at x, if the function is differentiable'''
+ raise NotImplementedError
+
+ def proximal(self, x, tau, out=None):
+ '''This returns the proximal operator for the function at x, tau'''
+ raise NotImplementedError
+
+ def convex_conjugate(self, x, out=None):
+ '''This evaluates the convex conjugate of the function at x'''
+ raise NotImplementedError
+
+ def proximal_conjugate(self, x, tau, out = None):
+ '''This returns the proximal operator for the convex conjugate of the function at x, tau'''
+ raise NotImplementedError
+
+ def grad(self, x):
+ '''Alias of gradient(x,None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use gradient instead''', DeprecationWarning)
+ return self.gradient(x, out=None)
+
+ def prox(self, x, tau):
+ '''Alias of proximal(x, tau, None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use proximal instead''', DeprecationWarning)
+ return self.proximal(x, tau, out=None)
+
+ def __rmul__(self, scalar):
+ '''Defines the multiplication by a scalar on the left
+
+ returns a ScaledFunction'''
+ return ScaledFunction(self, scalar)
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py
new file mode 100644
index 0000000..df8dc89
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py
@@ -0,0 +1,65 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from ccpi.optimisation.functions import Function
+import numpy
+
+class IndicatorBox(Function):
+ '''Box constraints indicator function.
+
+ Calling returns 0 if argument is within the box. The prox operator is projection onto the box.
+ Only implements one scalar lower and one upper as constraint on all elements. Should generalise
+ to vectors to allow different constraints one elements.
+'''
+
+ def __init__(self,lower=-numpy.inf,upper=numpy.inf):
+ # Do nothing
+ super(IndicatorBox, self).__init__()
+ self.lower = lower
+ self.upper = upper
+
+
+ def __call__(self,x):
+
+ if (numpy.all(x.array>=self.lower) and
+ numpy.all(x.array <= self.upper) ):
+ val = 0
+ else:
+ val = numpy.inf
+ return val
+
+ def prox(self,x,tau=None):
+ return (x.maximum(self.lower)).minimum(self.upper)
+
+ def proximal(self, x, tau, out=None):
+ if out is None:
+ return self.prox(x, tau)
+ else:
+ if not x.shape == out.shape:
+ raise ValueError('Norm1 Incompatible size:',
+ x.shape, out.shape)
+ #(x.abs() - tau*self.gamma).maximum(0) * x.sign()
+ x.abs(out = out)
+ out.__isub__(tau*self.gamma)
+ out.maximum(0, out=out)
+ if self.sign_x is None or not x.shape == self.sign_x.shape:
+ self.sign_x = x.sign()
+ else:
+ x.sign(out=self.sign_x)
+
+ out.__imul__( self.sign_x )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/KullbackLeibler.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/KullbackLeibler.py
index b53f669..cf1a244 100644
--- a/Wrappers/Python/build/lib/ccpi/optimisation/functions/KullbackLeibler.py
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/KullbackLeibler.py
@@ -62,6 +62,7 @@ class KullbackLeibler(Function):
if out is None:
return 1 - self.b/(x + self.bnoise)
else:
+
x.add(self.bnoise, out=out)
self.b.divide(out, out=out)
out.subtract(1, out=out)
@@ -105,15 +106,12 @@ class KullbackLeibler(Function):
z = x + tau * self.bnoise
return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt())
else:
-# z = x + tau * self.bnoise
-# out.fill( 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) )
-
- tmp1 = x + tau * self.bnoise - 1
- tmp2 = tmp1 + 2
-
- self.b.multiply(4*tau, out=out)
- tmp1.multiply(tmp1, out=tmp1)
- out += tmp1
+
+ z_m = x + tau * self.bnoise -1
+ self.b.multiply(4*tau, out=out)
+ z_m.multiply(z_m, out=z_m)
+ out += z_m
+
out.sqrt(out=out)
out *= -1
@@ -133,43 +131,6 @@ class KullbackLeibler(Function):
return ScaledFunction(self, scalar)
-
-
-if __name__ == '__main__':
-
-
- from ccpi.framework import ImageGeometry
- import numpy
-
- N, M = 2,3
- ig = ImageGeometry(N, M)
- data = ImageData(numpy.random.randint(-10, 10, size=(M, N)))
- x = ImageData(numpy.random.randint(-10, 10, size=(M, N)))
-
- bnoise = ImageData(numpy.random.randint(-10, 10, size=(M, N)))
-
- f = KullbackLeibler(data)
-
- print(f(x))
-
-# numpy.random.seed(10)
-#
-#
-# x = numpy.random.randint(-10, 10, size = (2,3))
-# b = numpy.random.randint(1, 10, size = (2,3))
-#
-# ind1 = x>0
-#
-# res = x[ind1] - b * numpy.log(x[ind1])
-#
-## ind = x>0
-#
-## y = x[ind]
-#
-#
-#
-#
-#
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py
new file mode 100644
index 0000000..4e53f2c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py
@@ -0,0 +1,234 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from ccpi.optimisation.functions import Function
+from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+from ccpi.optimisation.operators import ShrinkageOperator
+
+
+class L1Norm(Function):
+
+ '''
+
+ Class: L1Norm
+
+ Cases: a) f(x) = ||x||_{1}
+
+ b) f(x) = ||x - b||_{1}
+
+ '''
+
+ def __init__(self, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+
+ ''' Evaluate L1Norm at x: f(x) '''
+
+ y = x
+ if self.b is not None:
+ y = x - self.b
+ return y.abs().sum()
+
+ def gradient(self,x):
+ #TODO implement subgradient???
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ #TODO implement Indicator infty???
+
+ y = 0
+ if self.b is not None:
+ y = 0 + (self.b * x).sum()
+ return y
+
+ def proximal(self, x, tau, out=None):
+
+ # TODO implement shrinkage operator, we will need it later e.g SplitBregman
+
+ if out is None:
+ if self.b is not None:
+ return self.b + ShrinkageOperator.__call__(self, x - self.b, tau)
+ else:
+ return ShrinkageOperator.__call__(self, x, tau)
+ else:
+ if self.b is not None:
+ out.fill(self.b + ShrinkageOperator.__call__(self, x - self.b, tau))
+ else:
+ out.fill(ShrinkageOperator.__call__(self, x, tau))
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ if out is None:
+ if self.b is not None:
+ return (x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0))
+ else:
+ return x.divide(x.abs().maximum(1.0))
+ else:
+ if self.b is not None:
+ out.fill((x - tau*self.b).divide((x - tau*self.b).abs().maximum(1.0)))
+ else:
+ out.fill(x.divide(x.abs().maximum(1.0)) )
+
+ def __rmul__(self, scalar):
+ return ScaledFunction(self, scalar)
+
+
+#import numpy as np
+##from ccpi.optimisation.funcs import Function
+#from ccpi.optimisation.functions import Function
+#from ccpi.framework import DataContainer, ImageData
+#
+#
+############################# L1NORM FUNCTIONS #############################
+#class SimpleL1Norm(Function):
+#
+# def __init__(self, alpha=1):
+#
+# super(SimpleL1Norm, self).__init__()
+# self.alpha = alpha
+#
+# def __call__(self, x):
+# return self.alpha * x.abs().sum()
+#
+# def gradient(self,x):
+# return ValueError('Not Differentiable')
+#
+# def convex_conjugate(self,x):
+# return 0
+#
+# def proximal(self, x, tau):
+# ''' Soft Threshold'''
+# return x.sign() * (x.abs() - tau * self.alpha).maximum(0)
+#
+# def proximal_conjugate(self, x, tau):
+# return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+#class L1Norm(SimpleL1Norm):
+#
+# def __init__(self, alpha=1, **kwargs):
+#
+# super(L1Norm, self).__init__()
+# self.alpha = alpha
+# self.b = kwargs.get('b',None)
+#
+# def __call__(self, x):
+#
+# if self.b is None:
+# return SimpleL1Norm.__call__(self, x)
+# else:
+# return SimpleL1Norm.__call__(self, x - self.b)
+#
+# def gradient(self, x):
+# return ValueError('Not Differentiable')
+#
+# def convex_conjugate(self,x):
+# if self.b is None:
+# return SimpleL1Norm.convex_conjugate(self, x)
+# else:
+# return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+#
+# def proximal(self, x, tau):
+#
+# if self.b is None:
+# return SimpleL1Norm.proximal(self, x, tau)
+# else:
+# return self.b + SimpleL1Norm.proximal(self, x - self.b , tau)
+#
+# def proximal_conjugate(self, x, tau):
+#
+# if self.b is None:
+# return SimpleL1Norm.proximal_conjugate(self, x, tau)
+# else:
+# return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+#
+
+###############################################################################
+
+
+
+
+if __name__ == '__main__':
+
+ from ccpi.framework import ImageGeometry
+ import numpy
+ N, M = 40,40
+ ig = ImageGeometry(N, M)
+ scalar = 10
+ b = ig.allocate('random_int')
+ u = ig.allocate('random_int')
+
+ f = L1Norm()
+ f_scaled = scalar * L1Norm()
+
+ f_b = L1Norm(b=b)
+ f_scaled_b = scalar * L1Norm(b=b)
+
+ # call
+
+ a1 = f(u)
+ a2 = f_scaled(u)
+ numpy.testing.assert_equal(scalar * a1, a2)
+
+ a3 = f_b(u)
+ a4 = f_scaled_b(u)
+ numpy.testing.assert_equal(scalar * a3, a4)
+
+ # proximal
+ tau = 0.4
+ b1 = f.proximal(u, tau*scalar)
+ b2 = f_scaled.proximal(u, tau)
+
+ numpy.testing.assert_array_almost_equal(b1.as_array(), b2.as_array(), decimal=4)
+
+ b3 = f_b.proximal(u, tau*scalar)
+ b4 = f_scaled_b.proximal(u, tau)
+
+ z1 = b + (u-b).sign() * ((u-b).abs() - tau * scalar).maximum(0)
+
+ numpy.testing.assert_array_almost_equal(b3.as_array(), b4.as_array(), decimal=4)
+#
+# #proximal conjugate
+#
+ c1 = f_scaled.proximal_conjugate(u, tau)
+ c2 = u.divide((u.abs()/scalar).maximum(1.0))
+
+ numpy.testing.assert_array_almost_equal(c1.as_array(), c2.as_array(), decimal=4)
+
+ c3 = f_scaled_b.proximal_conjugate(u, tau)
+ c4 = (u - tau*b).divide( ((u-tau*b).abs()/scalar).maximum(1.0) )
+
+ numpy.testing.assert_array_almost_equal(c3.as_array(), c4.as_array(), decimal=4)
+
+
+
+
+
+
+
+
+
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py
index e73da93..b77d472 100644
--- a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py
@@ -94,21 +94,18 @@ class L2NormSquared(Function):
if self.b is None:
return x/(1+2*tau)
else:
-
tmp = x.subtract(self.b)
tmp /= (1+2*tau)
tmp += self.b
return tmp
else:
- out.fill(x)
- if self.b is not None:
- out -= self.b
- out /= (1+2*tau)
if self.b is not None:
- out += self.b
-
-
+ x.subtract(self.b, out=out)
+ out /= (1+2*tau)
+ out += self.b
+ else:
+ x.divide((1+2*tau), out=out)
def proximal_conjugate(self, x, tau, out=None):
@@ -287,17 +284,3 @@ if __name__ == '__main__':
numpy.testing.assert_array_almost_equal(res1.as_array(), \
res2.as_array(), decimal=4)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py
new file mode 100644
index 0000000..b553d7c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py
@@ -0,0 +1,98 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from ccpi.optimisation.functions import Function
+import numpy
+import warnings
+
+# Define a class for squared 2-norm
+class Norm2sq(Function):
+ '''
+ f(x) = c*||A*x-b||_2^2
+
+ which has
+
+ grad[f](x) = 2*c*A^T*(A*x-b)
+
+ and Lipschitz constant
+
+ L = 2*c*||A||_2^2 = 2*s1(A)^2
+
+ where s1(A) is the largest singular value of A.
+
+ '''
+
+ def __init__(self,A,b,c=1.0,memopt=False):
+ super(Norm2sq, self).__init__()
+
+ self.A = A # Should be an operator, default identity
+ self.b = b # Default zero DataSet?
+ self.c = c # Default 1.
+ if memopt:
+ try:
+ self.range_tmp = A.range_geometry().allocate()
+ self.domain_tmp = A.domain_geometry().allocate()
+ self.memopt = True
+ except NameError as ne:
+ warnings.warn(str(ne))
+ self.memopt = False
+ except NotImplementedError as nie:
+ print (nie)
+ warnings.warn(str(nie))
+ self.memopt = False
+ else:
+ self.memopt = False
+
+ # Compute the Lipschitz parameter from the operator if possible
+ # Leave it initialised to None otherwise
+ try:
+ self.L = 2.0*self.c*(self.A.norm()**2)
+ except AttributeError as ae:
+ pass
+ except NotImplementedError as noe:
+ pass
+
+ #def grad(self,x):
+ # return self.gradient(x, out=None)
+
+ def __call__(self,x):
+ #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
+ #if out is None:
+ # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
+ #else:
+ y = self.A.direct(x)
+ y.__isub__(self.b)
+ #y.__imul__(y)
+ #return y.sum() * self.c
+ try:
+ return y.squared_norm() * self.c
+ except AttributeError as ae:
+ # added for compatibility with SIRF
+ return (y.norm()**2) * self.c
+
+ def gradient(self, x, out = None):
+ if self.memopt:
+ #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
+
+ self.A.direct(x, out=self.range_tmp)
+ self.range_tmp -= self.b
+ self.A.adjoint(self.range_tmp, out=out)
+ #self.direct_placehold.multiply(2.0*self.c, out=out)
+ out *= (self.c * 2.0)
+ else:
+ return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py
new file mode 100644
index 0000000..a82ee3e
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py
@@ -0,0 +1,13 @@
+# -*- coding: utf-8 -*-
+
+from .Function import Function
+from .ZeroFunction import ZeroFunction
+from .L1Norm import L1Norm
+from .L2NormSquared import L2NormSquared
+from .ScaledFunction import ScaledFunction
+from .BlockFunction import BlockFunction
+from .FunctionOperatorComposition import FunctionOperatorComposition
+from .MixedL21Norm import MixedL21Norm
+from .IndicatorBox import IndicatorBox
+from .KullbackLeibler import KullbackLeibler
+from .Norm2Sq import Norm2sq
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py
new file mode 100644
index 0000000..aeb6c53
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py
@@ -0,0 +1,67 @@
+from numbers import Number
+import numpy
+from ccpi.optimisation.operators import ScaledOperator
+import functools
+
+class BlockScaledOperator(ScaledOperator):
+ '''ScaledOperator
+
+ A class to represent the scalar multiplication of an Operator with a scalar.
+ It holds an operator and a scalar. Basically it returns the multiplication
+ of the result of direct and adjoint of the operator with the scalar.
+ For the rest it behaves like the operator it holds.
+
+ Args:
+ operator (Operator): a Operator or LinearOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+ sop = ScaledOperator(operator, scalar)
+ sop.direct(x) = scalar * operator.direct(x)
+ sop.adjoint(x) = scalar * operator.adjoint(x)
+ sop.norm() = operator.norm()
+ sop.range_geometry() = operator.range_geometry()
+ sop.domain_geometry() = operator.domain_geometry()
+ '''
+ def __init__(self, operator, scalar, shape=None):
+ if shape is None:
+ shape = operator.shape
+
+ if isinstance(scalar, (list, tuple, numpy.ndarray)):
+ size = functools.reduce(lambda x,y:x*y, shape, 1)
+ if len(scalar) != size:
+ raise ValueError('Scalar and operators size do not match: {}!={}'
+ .format(len(scalar), len(operator)))
+ self.scalar = scalar[:]
+ print ("BlockScaledOperator ", self.scalar)
+ elif isinstance (scalar, Number):
+ self.scalar = scalar
+ else:
+ raise TypeError('expected scalar to be a number of an iterable: got {}'.format(type(scalar)))
+ self.operator = operator
+ self.shape = shape
+ def direct(self, x, out=None):
+ print ("BlockScaledOperator self.scalar", self.scalar)
+ #print ("self.scalar", self.scalar[0]* x.get_item(0).as_array())
+ return self.scalar * (self.operator.direct(x, out=out))
+ def adjoint(self, x, out=None):
+ if self.operator.is_linear():
+ return self.scalar * self.operator.adjoint(x, out=out)
+ else:
+ raise TypeError('Operator is not linear')
+ def norm(self):
+ return numpy.abs(self.scalar) * self.operator.norm()
+ def range_geometry(self):
+ return self.operator.range_geometry()
+ def domain_geometry(self):
+ return self.operator.domain_geometry()
+ @property
+ def T(self):
+ '''Return the transposed of self'''
+ #print ("transpose before" , self.shape)
+ #shape = (self.shape[1], self.shape[0])
+ ##self.shape = shape
+ ##self.operator.shape = shape
+ #print ("transpose" , shape)
+ #return self
+ return type(self)(self.operator.T, self.scalar) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator_old.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator_old.py
new file mode 100644
index 0000000..387fb4b
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator_old.py
@@ -0,0 +1,374 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:51:17 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import LinearOperator
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, BlockDataContainer
+import numpy as np
+
+class FiniteDiff(LinearOperator):
+
+ # Works for Neum/Symmetric & periodic boundary conditions
+ # TODO add central differences???
+ # TODO not very well optimised, too many conditions
+ # TODO add discretisation step, should get that from imageGeometry
+
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_y', 'direction_x']
+ # Grad_order = ['direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+
+ def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'):
+ ''''''
+ super(FiniteDiff, self).__init__()
+ '''FIXME: domain and range should be geometries'''
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+
+ self.direction = direction
+ self.bnd_cond = bnd_cond
+
+ # Domain Geometry = Range Geometry if not stated
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+ # check direction and "length" of geometry
+ if self.direction + 1 > len(self.gm_domain.shape):
+ raise ValueError('Gradient directions more than geometry domain')
+
+ #self.voxel_size = kwargs.get('voxel_size',1)
+ # this wrongly assumes a homogeneous voxel size
+ self.voxel_size = self.gm_domain.voxel_size_x
+
+
+ def direct(self, x, out=None):
+
+ x_asarr = x.as_array()
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros_like(x_asarr)
+ fd_arr = out
+ else:
+ fd_arr = out.as_array()
+# fd_arr[:]=0
+
+# if out is None:
+# out = self.gm_domain.allocate().as_array()
+#
+# fd_arr = out.as_array()
+# fd_arr = self.gm_domain.allocate().as_array()
+
+ ######################## Direct for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:], x_asarr[0:-1], out = fd_arr[0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[0:-1,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[-1,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+# res = out #/self.voxel_size
+ return type(x)(out)
+
+
+ def adjoint(self, x, out=None):
+
+ x_asarr = x.as_array()
+ #x_asarr = x
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros_like(x_asarr)
+ fd_arr = out
+ else:
+ fd_arr = out.as_array()
+
+# if out is None:
+# out = self.gm_domain.allocate().as_array()
+# fd_arr = out
+# else:
+# fd_arr = out.as_array()
+## fd_arr = self.gm_domain.allocate().as_array()
+
+ ######################## Adjoint for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0], 0, out = fd_arr[:,0] )
+ np.subtract( -x_asarr[:,-2], 0, out = fd_arr[:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,0] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:], x_asarr[0:-1,:], out = fd_arr[1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:], 0, out = fd_arr[0,:] )
+ np.subtract( -x_asarr[-2,:], 0, out = fd_arr[-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[0,:] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:], 0, out = fd_arr[0,:,:] )
+ np.subtract( -x_asarr[-2,:,:], 0, out = fd_arr[-1,:,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:], 0, out = fd_arr[:,0,:] )
+ np.subtract( -x_asarr[:,-2,:], 0, out = fd_arr[:,-1,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0], 0, out = fd_arr[:,:,0] )
+ np.subtract( -x_asarr[:,:,-2], 0, out = fd_arr[:,:,-1] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[1:,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:,:], 0, out = fd_arr[0,:,:,:] )
+ np.subtract( -x_asarr[-2,:,:,:], 0, out = fd_arr[-1,:,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[0,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:,:], 0, out = fd_arr[:,0,:,:] )
+ np.subtract( -x_asarr[:,-2,:,:], 0, out = fd_arr[:,-1,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0,:], 0, out = fd_arr[:,:,0,:] )
+ np.subtract( -x_asarr[:,:,-2,:], 0, out = fd_arr[:,:,-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,:,0], 0, out = fd_arr[:,:,:,0] )
+ np.subtract( -x_asarr[:,:,:,-2], 0, out = fd_arr[:,:,:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+ out *= -1 #/self.voxel_size
+ return type(x)(out)
+
+ def range_geometry(self):
+ '''Returns the range geometry'''
+ return self.gm_range
+
+ def domain_geometry(self):
+ '''Returns the domain geometry'''
+ return self.gm_domain
+
+ def norm(self):
+ x0 = self.gm_domain.allocate()
+ x0.fill( np.random.random_sample(x0.shape) )
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+if __name__ == '__main__':
+
+ from ccpi.framework import ImageGeometry
+ import numpy
+
+ N, M = 2, 3
+
+ ig = ImageGeometry(N, M)
+
+
+ FD = FiniteDiff(ig, direction = 0, bnd_cond = 'Neumann')
+ u = FD.domain_geometry().allocate('random_int')
+
+
+ res = FD.domain_geometry().allocate()
+ FD.direct(u, out=res)
+
+ z = FD.direct(u)
+ print(z.as_array(), res.as_array())
+
+ for i in range(10):
+
+ z1 = FD.direct(u)
+ FD.direct(u, out=res)
+ numpy.testing.assert_array_almost_equal(z1.as_array(), \
+ res.as_array(), decimal=4)
+
+
+
+
+
+
+# w = G.range_geometry().allocate('random_int')
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py
index e0b8a32..6ffaf70 100644
--- a/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py
@@ -111,7 +111,7 @@ class Gradient(LinearOperator):
return BlockDataContainer(*mat)
- def sum_abs_row(self):
+ def sum_abs_col(self):
tmp = self.gm_range.allocate()
res = self.gm_domain.allocate()
@@ -120,7 +120,7 @@ class Gradient(LinearOperator):
res += spMat.sum_abs_row()
return res
- def sum_abs_col(self):
+ def sum_abs_row(self):
tmp = self.gm_range.allocate()
res = []
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py
new file mode 100644
index 0000000..a853b8d
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:30:51 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import LinearOperator
+import scipy.sparse as sp
+import numpy as np
+from ccpi.framework import ImageData
+
+
+class Identity(LinearOperator):
+
+ def __init__(self, gm_domain, gm_range=None):
+
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+
+ super(Identity, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def norm(self):
+ return 1.0
+
+ def domain_geometry(self):
+ return self.gm_domain
+
+ def range_geometry(self):
+ return self.gm_range
+
+ def matrix(self):
+
+ return sp.eye(np.prod(self.gm_domain.shape))
+
+ def sum_abs_row(self):
+
+ return self.gm_range.allocate(1)#ImageData(np.array(np.reshape(abs(self.matrix()).sum(axis=0), self.gm_domain.shape, 'F')))
+
+ def sum_abs_col(self):
+
+ return self.gm_domain.allocate(1)#ImageData(np.array(np.reshape(abs(self.matrix()).sum(axis=1), self.gm_domain.shape, 'F')))
+
+
+if __name__ == '__main__':
+
+ from ccpi.framework import ImageGeometry
+
+ M, N = 2, 3
+ ig = ImageGeometry(M, N)
+ arr = ig.allocate('random_int')
+
+ Id = Identity(ig)
+ d = Id.matrix()
+ print(d.toarray())
+
+ d1 = Id.sum_abs_col()
+ print(d1.as_array())
+
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py
new file mode 100644
index 0000000..2d2089b
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py
@@ -0,0 +1,30 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:55:56 2019
+
+@author: ofn77899
+"""
+from ccpi.optimisation.operators.ScaledOperator import ScaledOperator
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ '''Returns the application of the Operator on x'''
+ raise NotImplementedError
+ def norm(self):
+ '''Returns the norm of the Operator'''
+ raise NotImplementedError
+ def range_geometry(self):
+ '''Returns the range of the Operator: Y space'''
+ raise NotImplementedError
+ def domain_geometry(self):
+ '''Returns the domain of the Operator: X space'''
+ raise NotImplementedError
+ def __rmul__(self, scalar):
+ '''Defines the multiplication by a scalar on the left
+
+ returns a ScaledOperator'''
+ return ScaledOperator(self, scalar)
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py
new file mode 100644
index 0000000..ba0049e
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py
@@ -0,0 +1,51 @@
+from numbers import Number
+import numpy
+
+class ScaledOperator(object):
+ '''ScaledOperator
+ A class to represent the scalar multiplication of an Operator with a scalar.
+ It holds an operator and a scalar. Basically it returns the multiplication
+ of the result of direct and adjoint of the operator with the scalar.
+ For the rest it behaves like the operator it holds.
+ Args:
+ operator (Operator): a Operator or LinearOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+ sop = ScaledOperator(operator, scalar)
+ sop.direct(x) = scalar * operator.direct(x)
+ sop.adjoint(x) = scalar * operator.adjoint(x)
+ sop.norm() = operator.norm()
+ sop.range_geometry() = operator.range_geometry()
+ sop.domain_geometry() = operator.domain_geometry()
+ '''
+ def __init__(self, operator, scalar):
+ super(ScaledOperator, self).__init__()
+ if not isinstance (scalar, Number):
+ raise TypeError('expected scalar: got {}'.format(type(scalar)))
+ self.scalar = scalar
+ self.operator = operator
+ def direct(self, x, out=None):
+ if out is None:
+ return self.scalar * self.operator.direct(x, out=out)
+ else:
+ self.operator.direct(x, out=out)
+ out *= self.scalar
+ def adjoint(self, x, out=None):
+ if self.operator.is_linear():
+ if out is None:
+ return self.scalar * self.operator.adjoint(x, out=out)
+ else:
+ self.operator.adjoint(x, out=out)
+ out *= self.scalar
+ else:
+ raise TypeError('Operator is not linear')
+ def norm(self):
+ return numpy.abs(self.scalar) * self.operator.norm()
+ def range_geometry(self):
+ return self.operator.range_geometry()
+ def domain_geometry(self):
+ return self.operator.domain_geometry()
+ def is_linear(self):
+ return self.operator.is_linear()
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ShrinkageOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ShrinkageOperator.py
new file mode 100644
index 0000000..f47c655
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ShrinkageOperator.py
@@ -0,0 +1,19 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:30:51 2019
+
+@author: evangelos
+"""
+
+from ccpi.framework import DataContainer
+
+class ShrinkageOperator():
+
+ def __init__(self):
+ pass
+
+ def __call__(self, x, tau, out=None):
+
+ return x.sign() * (x.abs() - tau).maximum(0)
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/SparseFiniteDiff.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SparseFiniteDiff.py
new file mode 100644
index 0000000..c5c2ec9
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SparseFiniteDiff.py
@@ -0,0 +1,144 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Apr 2 14:06:15 2019
+
+@author: vaggelis
+"""
+
+import scipy.sparse as sp
+import numpy as np
+from ccpi.framework import ImageData
+
+class SparseFiniteDiff():
+
+ def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'):
+
+ super(SparseFiniteDiff, self).__init__()
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ self.direction = direction
+ self.bnd_cond = bnd_cond
+
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+
+ self.get_dims = [i for i in gm_domain.shape]
+
+ if self.direction + 1 > len(self.gm_domain.shape):
+ raise ValueError('Gradient directions more than geometry domain')
+
+ def matrix(self):
+
+ i = self.direction
+
+ mat = sp.spdiags(np.vstack([-np.ones((1,self.get_dims[i])),np.ones((1,self.get_dims[i]))]), [0,1], self.get_dims[i], self.get_dims[i], format = 'lil')
+
+ if self.bnd_cond == 'Neumann':
+ mat[-1,:] = 0
+ elif self.bnd_cond == 'Periodic':
+ mat[-1,0] = 1
+
+ tmpGrad = mat if i == 0 else sp.eye(self.get_dims[0])
+
+ for j in range(1, self.gm_domain.length):
+
+ tmpGrad = sp.kron(mat, tmpGrad ) if j == i else sp.kron(sp.eye(self.get_dims[j]), tmpGrad )
+
+ return tmpGrad
+
+ def T(self):
+ return self.matrix().T
+
+ def direct(self, x):
+
+ x_asarr = x.as_array()
+ res = np.reshape( self.matrix() * x_asarr.flatten('F'), self.gm_domain.shape, 'F')
+ return type(x)(res)
+
+ def adjoint(self, x):
+
+ x_asarr = x.as_array()
+ res = np.reshape( self.matrix().T * x_asarr.flatten('F'), self.gm_domain.shape, 'F')
+ return type(x)(res)
+
+ def sum_abs_row(self):
+
+ res = np.array(np.reshape(abs(self.matrix()).sum(axis=0), self.gm_domain.shape, 'F'))
+ #res[res==0]=0
+ return ImageData(res)
+
+ def sum_abs_col(self):
+
+ res = np.array(np.reshape(abs(self.matrix()).sum(axis=1), self.gm_domain.shape, 'F') )
+ #res[res==0]=0
+ return ImageData(res)
+
+if __name__ == '__main__':
+
+ from ccpi.framework import ImageGeometry
+ from ccpi.optimisation.operators import FiniteDiff
+
+ # 2D
+ M, N= 2, 3
+ ig = ImageGeometry(M, N)
+ arr = ig.allocate('random_int')
+
+ for i in [0,1]:
+
+ # Neumann
+ sFD_neum = SparseFiniteDiff(ig, direction=i, bnd_cond='Neumann')
+ G_neum = FiniteDiff(ig, direction=i, bnd_cond='Neumann')
+
+ # Periodic
+ sFD_per = SparseFiniteDiff(ig, direction=i, bnd_cond='Periodic')
+ G_per = FiniteDiff(ig, direction=i, bnd_cond='Periodic')
+
+ u_neum_direct = G_neum.direct(arr)
+ u_neum_sp_direct = sFD_neum.direct(arr)
+ np.testing.assert_array_almost_equal(u_neum_direct.as_array(), u_neum_sp_direct.as_array(), decimal=4)
+
+ u_neum_adjoint = G_neum.adjoint(arr)
+ u_neum_sp_adjoint = sFD_neum.adjoint(arr)
+ np.testing.assert_array_almost_equal(u_neum_adjoint.as_array(), u_neum_sp_adjoint.as_array(), decimal=4)
+
+ u_per_direct = G_neum.direct(arr)
+ u_per_sp_direct = sFD_neum.direct(arr)
+ np.testing.assert_array_almost_equal(u_per_direct.as_array(), u_per_sp_direct.as_array(), decimal=4)
+
+ u_per_adjoint = G_per.adjoint(arr)
+ u_per_sp_adjoint = sFD_per.adjoint(arr)
+ np.testing.assert_array_almost_equal(u_per_adjoint.as_array(), u_per_sp_adjoint.as_array(), decimal=4)
+
+ # 3D
+ M, N, K = 2, 3, 4
+ ig3D = ImageGeometry(M, N, K)
+ arr3D = ig3D.allocate('random_int')
+
+ for i in [0,1,2]:
+
+ # Neumann
+ sFD_neum3D = SparseFiniteDiff(ig3D, direction=i, bnd_cond='Neumann')
+ G_neum3D = FiniteDiff(ig3D, direction=i, bnd_cond='Neumann')
+
+ # Periodic
+ sFD_per3D = SparseFiniteDiff(ig3D, direction=i, bnd_cond='Periodic')
+ G_per3D = FiniteDiff(ig3D, direction=i, bnd_cond='Periodic')
+
+ u_neum_direct3D = G_neum3D.direct(arr3D)
+ u_neum_sp_direct3D = sFD_neum3D.direct(arr3D)
+ np.testing.assert_array_almost_equal(u_neum_direct3D.as_array(), u_neum_sp_direct3D.as_array(), decimal=4)
+
+ u_neum_adjoint3D = G_neum3D.adjoint(arr3D)
+ u_neum_sp_adjoint3D = sFD_neum3D.adjoint(arr3D)
+ np.testing.assert_array_almost_equal(u_neum_adjoint3D.as_array(), u_neum_sp_adjoint3D.as_array(), decimal=4)
+
+ u_per_direct3D = G_neum3D.direct(arr3D)
+ u_per_sp_direct3D = sFD_neum3D.direct(arr3D)
+ np.testing.assert_array_almost_equal(u_per_direct3D.as_array(), u_per_sp_direct3D.as_array(), decimal=4)
+
+ u_per_adjoint3D = G_per3D.adjoint(arr3D)
+ u_per_sp_adjoint3D = sFD_per3D.adjoint(arr3D)
+ np.testing.assert_array_almost_equal(u_per_adjoint3D.as_array(), u_per_sp_adjoint3D.as_array(), decimal=4)
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/processors/CenterOfRotationFinder.py b/Wrappers/Python/build/lib/ccpi/processors/CenterOfRotationFinder.py
new file mode 100644
index 0000000..936dc05
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/processors/CenterOfRotationFinder.py
@@ -0,0 +1,408 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+
+from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\
+ AcquisitionGeometry, ImageGeometry, ImageData
+import numpy
+from scipy import ndimage
+
+class CenterOfRotationFinder(DataProcessor):
+ '''Processor to find the center of rotation in a parallel beam experiment
+
+ This processor read in a AcquisitionDataSet and finds the center of rotation
+ based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
+
+ Input: AcquisitionDataSet
+
+ Output: float. center of rotation in pixel coordinate
+ '''
+
+ def __init__(self):
+ kwargs = {
+
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(CenterOfRotationFinder, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ if dataset.geometry.geom_type == 'parallel':
+ return True
+ else:
+ raise ValueError('{0} is suitable only for parallel beam geometry'\
+ .format(self.__class__.__name__))
+ else:
+ raise ValueError("Expected input dimensions is 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+
+ # #########################################################################
+ # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
+ # #
+ # Copyright 2015. UChicago Argonne, LLC. This software was produced #
+ # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
+ # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
+ # U.S. Department of Energy. The U.S. Government has rights to use, #
+ # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
+ # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
+ # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
+ # modified to produce derivative works, such modified software should #
+ # be clearly marked, so as not to confuse it with the version available #
+ # from ANL. #
+ # #
+ # Additionally, redistribution and use in source and binary forms, with #
+ # or without modification, are permitted provided that the following #
+ # conditions are met: #
+ # #
+ # * Redistributions of source code must retain the above copyright #
+ # notice, this list of conditions and the following disclaimer. #
+ # #
+ # * Redistributions in binary form must reproduce the above copyright #
+ # notice, this list of conditions and the following disclaimer in #
+ # the documentation and/or other materials provided with the #
+ # distribution. #
+ # #
+ # * Neither the name of UChicago Argonne, LLC, Argonne National #
+ # Laboratory, ANL, the U.S. Government, nor the names of its #
+ # contributors may be used to endorse or promote products derived #
+ # from this software without specific prior written permission. #
+ # #
+ # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
+ # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
+ # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
+ # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
+ # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
+ # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
+ # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
+ # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
+ # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
+ # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
+ # POSSIBILITY OF SUCH DAMAGE. #
+ # #########################################################################
+
+ @staticmethod
+ def as_ndarray(arr, dtype=None, copy=False):
+ if not isinstance(arr, numpy.ndarray):
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_dtype(arr, dtype, copy=False):
+ if not arr.dtype == dtype:
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_float32(arr):
+ arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
+ return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
+
+
+
+
+ @staticmethod
+ def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
+ ratio=2., drop=20):
+ """
+ Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
+
+ Parameters
+ ----------
+ tomo : ndarray
+ 3D tomographic data.
+ ind : int, optional
+ Index of the slice to be used for reconstruction.
+ smin, smax : int, optional
+ Reference to the horizontal center of the sinogram.
+ srad : float, optional
+ Fine search radius.
+ step : float, optional
+ Step of fine searching.
+ ratio : float, optional
+ The ratio between the FOV of the camera and the size of object.
+ It's used to generate the mask.
+ drop : int, optional
+ Drop lines around vertical center of the mask.
+
+ Returns
+ -------
+ float
+ Rotation axis location.
+
+ Notes
+ -----
+ The function may not yield a correct estimate, if:
+
+ - the sample size is bigger than the field of view of the camera.
+ In this case the ``ratio`` argument need to be set larger
+ than the default of 2.0.
+
+ - there is distortion in the imaging hardware. If there's
+ no correction applied, the center of the projection image may
+ yield a better estimate.
+
+ - the sample contrast is weak. Paganin's filter need to be applied
+ to overcome this.
+
+ - the sample was changed during the scan.
+ """
+ tomo = CenterOfRotationFinder.as_float32(tomo)
+
+ if ind is None:
+ ind = tomo.shape[1] // 2
+ _tomo = tomo[:, ind, :]
+
+
+
+ # Reduce noise by smooth filters. Use different filters for coarse and fine search
+ _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
+ _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
+
+ # Coarse and fine searches for finding the rotation center.
+ if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
+ #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
+ #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
+ #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
+ smax, ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+ else:
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
+ smin, smax,
+ ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+
+ #logger.debug('Rotation center search finished: %i', fine_cen)
+ return fine_cen
+
+
+ @staticmethod
+ def _search_coarse(sino, smin, smax, ratio, drop):
+ """
+ Coarse search for finding the rotation center.
+ """
+ (Nrow, Ncol) = sino.shape
+ centerfliplr = (Ncol - 1.0) / 2.0
+
+ # Copy the sinogram and flip left right, the purpose is to
+ # make a full [0;2Pi] sinogram
+ _copy_sino = numpy.fliplr(sino[1:])
+
+ # This image is used for compensating the shift of sinogram 2
+ temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
+ temp_img[:] = sino[-1]
+
+ # Start coarse search in which the shift step is 1
+ listshift = numpy.arange(smin, smax + 1)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
+ 0.5 * ratio * Ncol, drop)
+ for i in listshift:
+ _sino = numpy.roll(_copy_sino, i, axis=1)
+ if i >= 0:
+ _sino[:, 0:i] = temp_img[:, 0:i]
+ else:
+ _sino[:, i:] = temp_img[:, i:]
+ listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # numpy.vstack((sino, _sino)))
+ numpy.fft.fft2(numpy.vstack((sino, _sino)))
+ )) * mask)
+ minpos = numpy.argmin(listmetric)
+ return centerfliplr + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _search_fine(sino, srad, step, init_cen, ratio, drop):
+ """
+ Fine search for finding the rotation center.
+ """
+ Nrow, Ncol = sino.shape
+ centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
+ # Use to shift the sinogram 2 to the raw CoR.
+ shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
+ _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
+ if init_cen <= centerfliplr:
+ lefttake = numpy.int16(numpy.ceil(srad + 1))
+ righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
+ else:
+ lefttake = numpy.int16(numpy.ceil(
+ init_cen - (Ncol - 1 - init_cen) + srad + 1))
+ righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
+ Ncol1 = righttake - lefttake + 1
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
+ 0.5 * ratio * Ncol, drop)
+ numshift = numpy.int16((2 * srad) / step) + 1
+ listshift = numpy.linspace(-srad, srad, num=numshift)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ factor1 = numpy.mean(sino[-1, lefttake:righttake])
+ num1 = 0
+ for i in listshift:
+ _sino = ndimage.interpolation.shift(
+ _copy_sino, (0, i), prefilter=False)
+ factor2 = numpy.mean(_sino[0,lefttake:righttake])
+ _sino = _sino * factor1 / factor2
+ sinojoin = numpy.vstack((sino, _sino))
+ listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # sinojoin[:, lefttake:righttake + 1])
+ numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
+ )) * mask)
+ num1 = num1 + 1
+ minpos = numpy.argmin(listmetric)
+ return init_cen + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _create_mask(nrow, ncol, radius, drop):
+ du = 1.0 / ncol
+ dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
+ centerrow = numpy.ceil(nrow / 2) - 1
+ centercol = numpy.ceil(ncol / 2) - 1
+ # added by Edoardo Pasca
+ centerrow = int(centerrow)
+ centercol = int(centercol)
+ mask = numpy.zeros((nrow, ncol), dtype='float32')
+ for i in range(nrow):
+ num1 = numpy.round(((i - centerrow) * dv / radius) / du)
+ (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
+ (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
+ mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
+ if drop < centerrow:
+ mask[centerrow - drop:centerrow + drop + 1,
+ :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
+ mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
+ return mask
+
+ def process(self, out=None):
+
+ projections = self.get_input()
+
+ cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
+
+ return cor
+
+
+class AcquisitionDataPadder(DataProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self,
+ center_of_rotation = None,
+ acquisition_geometry = None,
+ pad_value = 1e-5):
+ kwargs = {
+ 'acquisition_geometry' : acquisition_geometry,
+ 'center_of_rotation' : center_of_rotation,
+ 'pad_value' : pad_value
+ }
+
+ super(AcquisitionDataPadder, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if self.acquisition_geometry is None:
+ self.acquisition_geometry = dataset.geometry
+ if dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self, out=None):
+ projections = self.get_input()
+ w = projections.get_dimension_size('horizontal')
+ delta = w - 2 * self.center_of_rotation
+
+ padded_width = int (
+ numpy.ceil(abs(delta)) + w
+ )
+ delta_pix = padded_width - w
+
+ voxel_per_pixel = 1
+ geom = pbalg.pb_setup_geometry_from_acquisition(projections.as_array(),
+ self.acquisition_geometry.angles,
+ self.center_of_rotation,
+ voxel_per_pixel )
+
+ padded_geometry = self.acquisition_geometry.clone()
+
+ padded_geometry.pixel_num_h = geom['n_h']
+ padded_geometry.pixel_num_v = geom['n_v']
+
+ delta_pix_h = padded_geometry.pixel_num_h - self.acquisition_geometry.pixel_num_h
+ delta_pix_v = padded_geometry.pixel_num_v - self.acquisition_geometry.pixel_num_v
+
+ if delta_pix_h == 0:
+ delta_pix_h = delta_pix
+ padded_geometry.pixel_num_h = padded_width
+ #initialize a new AcquisitionData with values close to 0
+ out = AcquisitionData(geometry=padded_geometry)
+ out = out + self.pad_value
+
+
+ #pad in the horizontal-vertical plane -> slice on angles
+ if delta > 0:
+ #pad left of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(delta_pix_h, delta_pix_h+w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ else:
+ #pad right of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(0, w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ #cleaned = eval(command)
+ exec(command)
+ return out \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/processors/Normalizer.py b/Wrappers/Python/build/lib/ccpi/processors/Normalizer.py
new file mode 100644
index 0000000..da65e5c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/processors/Normalizer.py
@@ -0,0 +1,124 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+
+from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\
+ AcquisitionGeometry, ImageGeometry, ImageData
+import numpy
+
+class Normalizer(DataProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
+ kwargs = {
+ 'flat_field' : flat_field,
+ 'dark_field' : dark_field,
+ # very small number. Used when there is a division by zero
+ 'tolerance' : tolerance
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(Normalizer, self).__init__(**kwargs)
+ if not flat_field is None:
+ self.set_flat_field(flat_field)
+ if not dark_field is None:
+ self.set_dark_field(dark_field)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3 or\
+ dataset.number_of_dimensions == 2:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def set_dark_field(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Dark Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.dark_field = df
+ elif issubclass(type(df), DataContainer):
+ self.dark_field = self.set_dark_field(df.as_array())
+
+ def set_flat_field(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Flat Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.flat_field = df
+ elif issubclass(type(df), DataContainer):
+ self.flat_field = self.set_flat_field(df.as_array())
+
+ @staticmethod
+ def normalize_projection(projection, flat, dark, tolerance):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
+ return c
+
+ @staticmethod
+ def estimate_normalised_error(projection, flat, dark, delta_flat, delta_dark):
+ '''returns the estimated relative error of the normalised projection
+
+ n = (projection - dark) / (flat - dark)
+ Dn/n = (flat-dark + projection-dark)/((flat-dark)*(projection-dark))*(Df/f + Dd/d)
+ '''
+ a = (projection - dark)
+ b = (flat-dark)
+ df = delta_flat / flat
+ dd = delta_dark / dark
+ rel_norm_error = (b + a) / (b * a) * (df + dd)
+ return rel_norm_error
+
+ def process(self, out=None):
+
+ projections = self.get_input()
+ dark = self.dark_field
+ flat = self.flat_field
+
+ if projections.number_of_dimensions == 3:
+ if not (projections.shape[1:] == dark.shape and \
+ projections.shape[1:] == flat.shape):
+ raise ValueError('Flats/Dark and projections size do not match.')
+
+
+ a = numpy.asarray(
+ [ Normalizer.normalize_projection(
+ projection, flat, dark, self.tolerance) \
+ for projection in projections.as_array() ]
+ )
+ elif projections.number_of_dimensions == 2:
+ a = Normalizer.normalize_projection(projections.as_array(),
+ flat, dark, self.tolerance)
+ y = type(projections)( a , True,
+ dimension_labels=projections.dimension_labels,
+ geometry=projections.geometry)
+ return y
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/processors/__init__.py b/Wrappers/Python/build/lib/ccpi/processors/__init__.py
new file mode 100644
index 0000000..f8d050e
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/processors/__init__.py
@@ -0,0 +1,9 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Apr 30 13:51:09 2019
+
+@author: ofn77899
+"""
+
+from .CenterOfRotationFinder import CenterOfRotationFinder
+from .Normalizer import Normalizer
diff --git a/Wrappers/Python/ccpi/data/__init__.py b/Wrappers/Python/ccpi/data/__init__.py
new file mode 100644
index 0000000..2884108
--- /dev/null
+++ b/Wrappers/Python/ccpi/data/__init__.py
@@ -0,0 +1,66 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from ccpi.framework import ImageData
+import numpy
+from PIL import Image
+import os
+import os.path
+
+data_dir = os.path.abspath(os.path.dirname(__file__))
+
+def camera(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'camera.png'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
+
+def boat(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'boat.tiff'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
+
+def peppers(**kwargs):
+
+ tmp = Image.open(os.path.join(data_dir, 'peppers.tiff'))
+
+ size = kwargs.get('size',(512, 512))
+
+ data = numpy.array(tmp.resize(size))
+
+ data = data/data.max()
+
+ return ImageData(data)
+
diff --git a/Wrappers/Python/ccpi/data/boat.tiff b/Wrappers/Python/ccpi/data/boat.tiff
new file mode 100644
index 0000000..fc1205a
--- /dev/null
+++ b/Wrappers/Python/ccpi/data/boat.tiff
Binary files differ
diff --git a/Wrappers/Python/ccpi/data/camera.png b/Wrappers/Python/ccpi/data/camera.png
new file mode 100644
index 0000000..49be869
--- /dev/null
+++ b/Wrappers/Python/ccpi/data/camera.png
Binary files differ
diff --git a/Wrappers/Python/ccpi/data/peppers.tiff b/Wrappers/Python/ccpi/data/peppers.tiff
new file mode 100644
index 0000000..8c956f8
--- /dev/null
+++ b/Wrappers/Python/ccpi/data/peppers.tiff
Binary files differ
diff --git a/Wrappers/Python/ccpi/data/test_show_data.py b/Wrappers/Python/ccpi/data/test_show_data.py
new file mode 100644
index 0000000..7325c27
--- /dev/null
+++ b/Wrappers/Python/ccpi/data/test_show_data.py
@@ -0,0 +1,30 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue May 7 20:43:48 2019
+
+@author: evangelos
+"""
+
+from ccpi.data import camera, boat, peppers
+import matplotlib.pyplot as plt
+
+
+d = camera(size=(256,256))
+
+plt.imshow(d.as_array())
+plt.colorbar()
+plt.show()
+
+d1 = boat(size=(256,256))
+
+plt.imshow(d1.as_array())
+plt.colorbar()
+plt.show()
+
+
+d2 = peppers(size=(256,256))
+
+plt.imshow(d2.as_array())
+plt.colorbar()
+plt.show() \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/__pycache__/__init__.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/__pycache__/__init__.cpython-36.pyc
new file mode 100644
index 0000000..c7dd009
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/__pycache__/__init__.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/Algorithm.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/Algorithm.cpython-36.pyc
new file mode 100644
index 0000000..3a68266
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/Algorithm.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/CGLS.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/CGLS.cpython-36.pyc
new file mode 100644
index 0000000..1b83229
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/CGLS.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FBPD.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FBPD.cpython-36.pyc
new file mode 100644
index 0000000..1bb0153
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FBPD.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FISTA.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FISTA.cpython-36.pyc
new file mode 100644
index 0000000..15a3317
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/FISTA.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/GradientDescent.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/GradientDescent.cpython-36.pyc
new file mode 100644
index 0000000..46d6d4a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/GradientDescent.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/PDHG.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/PDHG.cpython-36.pyc
new file mode 100644
index 0000000..45abb22
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/PDHG.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/SIRT.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/SIRT.cpython-36.pyc
new file mode 100644
index 0000000..96b3e83
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/SIRT.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/__init__.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/__init__.cpython-36.pyc
new file mode 100644
index 0000000..a713e47
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/__pycache__/__init__.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc
new file mode 100644
index 0000000..941a262
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Function.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Function.cpython-36.pyc
new file mode 100644
index 0000000..5f52020
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Function.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc
new file mode 100644
index 0000000..dd14b60
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/IndicatorBox.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/IndicatorBox.cpython-36.pyc
new file mode 100644
index 0000000..5b12cc6
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/IndicatorBox.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/KullbackLeibler.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/KullbackLeibler.cpython-36.pyc
new file mode 100644
index 0000000..b6d85de
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/KullbackLeibler.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc
new file mode 100644
index 0000000..05b5010
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc
new file mode 100644
index 0000000..61a4e29
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/MixedL21Norm.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/MixedL21Norm.cpython-36.pyc
new file mode 100644
index 0000000..623f7d7
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/MixedL21Norm.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Norm2Sq.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Norm2Sq.cpython-36.pyc
new file mode 100644
index 0000000..8d4779a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/Norm2Sq.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ScaledFunction.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ScaledFunction.cpython-36.pyc
new file mode 100644
index 0000000..ba77722
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ScaledFunction.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFunction.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFunction.cpython-36.pyc
new file mode 100644
index 0000000..93b93ed
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFunction.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc
new file mode 100644
index 0000000..f0d07a4
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockOperator.cpython-36.pyc
new file mode 100644
index 0000000..b4da27c
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockScaledOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockScaledOperator.cpython-36.pyc
new file mode 100644
index 0000000..32b7f28
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/BlockScaledOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/FiniteDifferenceOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/FiniteDifferenceOperator.cpython-36.pyc
new file mode 100644
index 0000000..8484ac0
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/FiniteDifferenceOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/GradientOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/GradientOperator.cpython-36.pyc
new file mode 100644
index 0000000..727b35a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/GradientOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/IdentityOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/IdentityOperator.cpython-36.pyc
new file mode 100644
index 0000000..95297d5
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/IdentityOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperator.cpython-36.pyc
new file mode 100644
index 0000000..83bc87b
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperatorMatrix.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperatorMatrix.cpython-36.pyc
new file mode 100644
index 0000000..16c7bdc
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/LinearOperatorMatrix.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/Operator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/Operator.cpython-36.pyc
new file mode 100644
index 0000000..3d1ae4e
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/Operator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ScaledOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ScaledOperator.cpython-36.pyc
new file mode 100644
index 0000000..980891e
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ScaledOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ShrinkageOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ShrinkageOperator.cpython-36.pyc
new file mode 100644
index 0000000..3087afc
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ShrinkageOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SparseFiniteDiff.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SparseFiniteDiff.cpython-36.pyc
new file mode 100644
index 0000000..93f4f2d
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SparseFiniteDiff.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SymmetrizedGradientOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SymmetrizedGradientOperator.cpython-36.pyc
new file mode 100644
index 0000000..ff62cae
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/SymmetrizedGradientOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ZeroOperator.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ZeroOperator.cpython-36.pyc
new file mode 100644
index 0000000..21a2a3a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/ZeroOperator.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__pycache__/__init__.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/__init__.cpython-36.pyc
new file mode 100644
index 0000000..c5db258
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__pycache__/__init__.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/demos/PDHG_TGV_Denoising_SaltPepper.py b/Wrappers/Python/demos/PDHG_TGV_Denoising_SaltPepper.py
new file mode 100644
index 0000000..7b65c31
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TGV_Denoising_SaltPepper.py
@@ -0,0 +1,194 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Feb 22 14:53:03 2019
+
+@author: evangelos
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, \
+ Gradient, SymmetrizedGradient, ZeroOperator
+from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
+ MixedL21Norm, BlockFunction
+
+from skimage.util import random_noise
+
+# Create phantom for TGV SaltPepper denoising
+
+N = 100
+
+data = np.zeros((N,N))
+
+x1 = np.linspace(0, int(N/2), N)
+x2 = np.linspace(int(N/2), 0., N)
+xv, yv = np.meshgrid(x1, x2)
+
+xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T
+
+data = xv
+data = ImageData(data/data.max())
+
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+ag = ig
+
+# Create noisy data. Add Gaussian noise
+n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2)
+noisy_data = ImageData(n1)
+
+# Regularisation Parameters
+alpha = 0.8
+beta = numpy.sqrt(2)* alpha
+
+method = '1'
+
+if method == '0':
+
+ # Create operators
+ op11 = Gradient(ig)
+ op12 = Identity(op11.range_geometry())
+
+ op22 = SymmetrizedGradient(op11.domain_geometry())
+ op21 = ZeroOperator(ig, op22.range_geometry())
+
+ op31 = Identity(ig, ag)
+ op32 = ZeroOperator(op22.domain_geometry(), ag)
+
+ operator = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) )
+
+ f1 = alpha * MixedL21Norm()
+ f2 = beta * MixedL21Norm()
+ f3 = L1Norm(b=noisy_data)
+ f = BlockFunction(f1, f2, f3)
+ g = ZeroFunction()
+
+else:
+
+ # Create operators
+ op11 = Gradient(ig)
+ op12 = Identity(op11.range_geometry())
+ op22 = SymmetrizedGradient(op11.domain_geometry())
+ op21 = ZeroOperator(ig, op22.range_geometry())
+
+ operator = BlockOperator(op11, -1*op12, op21, op22, shape=(2,2) )
+
+ f1 = alpha * MixedL21Norm()
+ f2 = beta * MixedL21Norm()
+
+ f = BlockFunction(f1, f2)
+ g = BlockFunction(L1Norm(b=noisy_data), ZeroFunction())
+
+## Compute operator Norm
+normK = operator.norm()
+#
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+#%%
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output()[0].as_array())
+plt.title('TGV Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+if cvx_not_installable:
+
+ u = Variable(ig.shape)
+ w1 = Variable((N, N))
+ w2 = Variable((N, N))
+
+ # create TGV regulariser
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u) - vec(w1), \
+ DY.matrix() * vec(u) - vec(w2)]), 2, axis = 0)) + \
+ beta * sum(norm(vstack([ DX.matrix().transpose() * vec(w1), DY.matrix().transpose() * vec(w2), \
+ 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ), \
+ 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ) ]), 2, axis = 0 ) )
+
+ constraints = []
+ fidelity = pnorm(u - noisy_data.as_array(),1)
+ solver = MOSEK
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+ diff_cvx = numpy.abs( pdhg.get_output()[0].as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output()[0].as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
+
+
+
+
diff --git a/Wrappers/Python/demos/PDHG_TGV_Tomo2D.py b/Wrappers/Python/demos/PDHG_TGV_Tomo2D.py
new file mode 100644
index 0000000..49d4db6
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TGV_Tomo2D.py
@@ -0,0 +1,124 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Gradient, Identity, \
+ SymmetrizedGradient, ZeroOperator
+from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, \
+ MixedL21Norm, BlockFunction
+
+from ccpi.astra.ops import AstraProjectorSimple
+
+# Create phantom for TV 2D tomography
+N = 75
+
+data = np.zeros((N,N))
+
+x1 = np.linspace(0, int(N/2), N)
+x2 = np.linspace(int(N/2), 0., N)
+xv, yv = np.meshgrid(x1, x2)
+
+xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T
+data = xv
+data = ImageData(data/data.max())
+
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+
+detectors = N
+angles = np.linspace(0, np.pi, N, dtype=np.float32)
+
+ag = AcquisitionGeometry('parallel','2D',angles, detectors)
+Aop = AstraProjectorSimple(ig, ag, 'gpu')
+sin = Aop.direct(data)
+
+# Create noisy data. Apply Poisson noise
+scale = 0.1
+np.random.seed(5)
+n1 = scale * np.random.poisson(sin.as_array()/scale)
+noisy_data = AcquisitionData(n1, ag)
+
+
+plt.imshow(noisy_data.as_array())
+plt.show()
+#%%
+# Regularisation Parameters
+alpha = 0.7
+beta = 2
+
+# Create Operators
+op11 = Gradient(ig)
+op12 = Identity(op11.range_geometry())
+
+op22 = SymmetrizedGradient(op11.domain_geometry())
+op21 = ZeroOperator(ig, op22.range_geometry())
+
+op31 = Aop
+op32 = ZeroOperator(op22.domain_geometry(), ag)
+
+operator = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) )
+
+f1 = alpha * MixedL21Norm()
+f2 = beta * MixedL21Norm()
+f3 = KullbackLeibler(noisy_data)
+f = BlockFunction(f1, f2, f3)
+g = ZeroFunction()
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output()[0].as_array())
+plt.title('TGV Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'TGV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
diff --git a/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian.py b/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian.py
new file mode 100644
index 0000000..c830025
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian.py
@@ -0,0 +1,211 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+ min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)
+
+
+Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2}
+
+ \alpha: Regularization parameter
+
+ \nabla: Gradient operator
+
+ g: Noisy Data with Gaussian Noise
+
+ Method = 0: K = [ \nabla,
+ Identity]
+
+ Method = 1: K = \nabla
+
+
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
+ MixedL21Norm, BlockFunction
+
+
+from ccpi.data import camera
+
+
+# Load Data
+data = camera(size=(256,256))
+
+N, M = data.shape
+
+# Image and Acquitition Geometries
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+ag = ig
+
+# Create Noisy data. Add Gaussian noise
+np.random.seed(10)
+noisy_data = ImageData( data.as_array() + np.random.normal(0, 0.1, size=ig.shape) )
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(15,15))
+plt.subplot(2,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(2,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+# Regularisation Parameter
+alpha = 0.2
+
+method = '0'
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+ f1 = alpha * MixedL21Norm()
+ f2 = 0.5 * L2NormSquared(b = noisy_data)
+ f = BlockFunction(f1, f2)
+
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * MixedL21Norm()
+ g = 0.5 * L2NormSquared(b = noisy_data)
+
+# Compute Operator Norm
+normK = operator.norm()
+
+# Primal & Dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+# Setup and Run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
+pdhg.max_iteration = 3000
+pdhg.update_objective_interval = 200
+pdhg.run(3000, verbose=False)
+
+# Show Results
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('TV Reconstruction')
+plt.colorbar()
+plt.show()
+
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+ fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = MOSEK)
+
+ diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'Truth')
+
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
diff --git a/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian_3D.py b/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian_3D.py
new file mode 100644
index 0000000..c86ddc9
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Denoising_Gaussian_3D.py
@@ -0,0 +1,155 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
+ MixedL21Norm, BlockFunction
+
+from skimage.util import random_noise
+
+# Create phantom for TV Gaussian denoising
+import timeit
+import os
+from tomophantom import TomoP3D
+import tomophantom
+
+print ("Building 3D phantom using TomoPhantom software")
+tic=timeit.default_timer()
+model = 13 # select a model number from the library
+N = 64 # Define phantom dimensions using a scalar value (cubic phantom)
+path = os.path.dirname(tomophantom.__file__)
+path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
+
+#This will generate a N x N x N phantom (3D)
+phantom_tm = TomoP3D.Model(model, N, path_library3D)
+
+# Create noisy data. Add Gaussian noise
+ig = ImageGeometry(voxel_num_x=N, voxel_num_y=N, voxel_num_z=N)
+ag = ig
+n1 = random_noise(phantom_tm, mode = 'gaussian', mean=0, var = 0.001, seed=10)
+noisy_data = ImageData(n1)
+
+sliceSel = int(0.5*N)
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(noisy_data.as_array()[sliceSel,:,:],vmin=0, vmax=1)
+plt.title('Axial View')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array()[:,sliceSel,:],vmin=0, vmax=1)
+plt.title('Coronal View')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(noisy_data.as_array()[:,:,sliceSel],vmin=0, vmax=1)
+plt.title('Sagittal View')
+plt.colorbar()
+plt.show()
+
+
+# Regularisation Parameter
+alpha = 0.05
+
+method = '0'
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+
+ f1 = alpha * MixedL21Norm()
+ f2 = 0.5 * L2NormSquared(b = noisy_data)
+ f = BlockFunction(f1, f2)
+
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * MixedL21Norm()
+ g = 0.5 * L2NormSquared(b = noisy_data)
+
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 200
+pdhg.run(2000)
+
+fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10, 8))
+
+plt.subplot(2,3,1)
+plt.imshow(noisy_data.as_array()[sliceSel,:,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Axial View')
+
+plt.subplot(2,3,2)
+plt.imshow(noisy_data.as_array()[:,sliceSel,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Coronal View')
+
+plt.subplot(2,3,3)
+plt.imshow(noisy_data.as_array()[:,:,sliceSel],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Sagittal View')
+
+
+plt.subplot(2,3,4)
+plt.imshow(pdhg.get_output().as_array()[sliceSel,:,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.subplot(2,3,5)
+plt.imshow(pdhg.get_output().as_array()[:,sliceSel,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.subplot(2,3,6)
+plt.imshow(pdhg.get_output().as_array()[:,:,sliceSel],vmin=0, vmax=1)
+plt.axis('off')
+im = plt.imshow(pdhg.get_output().as_array()[:,:,sliceSel],vmin=0, vmax=1)
+
+
+fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
+ wspace=0.02, hspace=0.02)
+
+cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
+cbar = fig.colorbar(im, cax=cb_ax)
+
+
+plt.show()
+
diff --git a/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py
new file mode 100644
index 0000000..70f6b9b
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py
@@ -0,0 +1,207 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 STFC, University of Manchester
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+ min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)
+
+
+Problem: min_x, x>0 \alpha * ||\nabla x||_{1} + \int x - g * log(x)
+
+ \nabla: Gradient operator
+ g: Noisy Data with Poisson Noise
+ \alpha: Regularization parameter
+
+ Method = 0: K = [ \nabla,
+ Identity]
+
+ Method = 1: K = \nabla
+
+
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, \
+ MixedL21Norm, BlockFunction
+
+from skimage.util import random_noise
+
+# Create phantom for TV Poisson denoising
+N = 100
+
+data = np.zeros((N,N))
+data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+data = ImageData(data)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+ag = ig
+
+# Create noisy data. Apply Poisson noise
+n1 = random_noise(data.as_array(), mode = 'poisson', seed = 10)
+noisy_data = ImageData(n1)
+
+# Regularisation Parameter
+alpha = 2
+
+method = '1'
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+
+ f1 = alpha * MixedL21Norm()
+ f2 = KullbackLeibler(noisy_data)
+ f = BlockFunction(f1, f2)
+
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * MixedL21Norm()
+ g = KullbackLeibler(noisy_data)
+
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+opt = {'niter':2000, 'memopt': True}
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+
+def pdgap_objectives(niter, objective, solution):
+
+
+ print( "{:04}/{:04} {:<5} {:.4f} {:<5} {:.4f} {:<5} {:.4f}".\
+ format(niter, pdhg.max_iteration,'', \
+ objective[0],'',\
+ objective[1],'',\
+ objective[2]))
+
+pdhg.run(2000, callback = pdgap_objectives)
+
+
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('TV Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u1 = Variable(ig.shape)
+ q = Variable()
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u1), DY.matrix() * vec(u1)]), 2, axis = 0))
+
+ fidelity = sum( u1 - multiply(noisy_data.as_array(), log(u1)) )
+ constraints = [q>= fidelity, u1>=0]
+
+ solver = ECOS
+ obj = Minimize( regulariser + q)
+ prob = Problem(obj, constraints)
+ result = prob.solve(verbose = True, solver = solver)
+
+
+ diff_cvx = numpy.abs( pdhg.get_output().as_array() - u1.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u1.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
+
+
+
+
diff --git a/Wrappers/Python/demos/PDHG_TV_Denoising_SaltPepper.py b/Wrappers/Python/demos/PDHG_TV_Denoising_SaltPepper.py
new file mode 100644
index 0000000..f5d4ce4
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Denoising_SaltPepper.py
@@ -0,0 +1,198 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+ min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)
+
+
+Problem: min_x, x>0 \alpha * ||\nabla x||_{1} + ||x-g||_{1}
+
+ \nabla: Gradient operator
+ g: Noisy Data with Salt & Pepper Noise
+ \alpha: Regularization parameter
+
+ Method = 0: K = [ \nabla,
+ Identity]
+
+ Method = 1: K = \nabla
+
+
+"""
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
+ MixedL21Norm, BlockFunction
+
+from skimage.util import random_noise
+
+# Create phantom for TV Salt & Pepper denoising
+N = 100
+
+data = np.zeros((N,N))
+data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+data = ImageData(data)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+ag = ig
+
+# Create noisy data. Apply Salt & Pepper noise
+n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2)
+noisy_data = ImageData(n1)
+
+# Regularisation Parameter
+alpha = 2
+
+method = '0'
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+
+ f1 = alpha * MixedL21Norm()
+ f2 = L1Norm(b = noisy_data)
+ f = BlockFunction(f1, f2)
+
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * MixedL21Norm()
+ g = L1Norm(b = noisy_data)
+
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+opt = {'niter':2000, 'memopt': True}
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('TV Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+##%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+ fidelity = pnorm( u - noisy_data.as_array(),1)
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+ diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
+
+
+
+
diff --git a/Wrappers/Python/demos/PDHG_TV_Tomo2D.py b/Wrappers/Python/demos/PDHG_TV_Tomo2D.py
new file mode 100644
index 0000000..87d5328
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Tomo2D.py
@@ -0,0 +1,245 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, \
+ MixedL21Norm, BlockFunction
+
+from ccpi.astra.ops import AstraProjectorSimple
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+ min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)
+
+
+Problem: min_x, x>0 \alpha * ||\nabla x||_{1} + int A x -g log(Ax + \eta)
+
+ \nabla: Gradient operator
+
+ A: Projection Matrix
+ g: Noisy sinogram corrupted with Poisson Noise
+
+ \eta: Background Noise
+ \alpha: Regularization parameter
+
+"""
+
+# Create phantom for TV 2D tomography
+N = 75
+x = np.zeros((N,N))
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+data = ImageData(x)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+
+detectors = N
+angles = np.linspace(0, np.pi, N, dtype=np.float32)
+
+ag = AcquisitionGeometry('parallel','2D',angles, detectors)
+Aop = AstraProjectorSimple(ig, ag, 'cpu')
+sin = Aop.direct(data)
+
+# Create noisy data. Apply Poisson noise
+scale = 2
+n1 = scale * np.random.poisson(sin.as_array()/scale)
+noisy_data = AcquisitionData(n1, ag)
+
+# Regularisation Parameter
+alpha = 5
+
+# Create operators
+op1 = Gradient(ig)
+op2 = Aop
+
+# Create BlockOperator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+# Create functions
+
+f1 = alpha * MixedL21Norm()
+f2 = KullbackLeibler(noisy_data)
+f = BlockFunction(f1, f2)
+
+g = ZeroFunction()
+
+diag_precon = True
+
+if diag_precon:
+
+ def tau_sigma_precond(operator):
+
+ tau = 1/operator.sum_abs_row()
+ sigma = 1/ operator.sum_abs_col()
+
+ return tau, sigma
+
+ tau, sigma = tau_sigma_precond(operator)
+
+else:
+ # Compute operator Norm
+ normK = operator.norm()
+ # Primal & dual stepsizes
+ sigma = 10
+ tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+
+#%%
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('TV Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+import astra
+import numpy
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+
+ ##Construct problem
+ u = Variable(N*N)
+ #q = Variable()
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+
+ # create matrix representation for Astra operator
+
+ vol_geom = astra.create_vol_geom(N, N)
+ proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
+
+ proj_id = astra.create_projector('strip', proj_geom, vol_geom)
+
+ matrix_id = astra.projector.matrix(proj_id)
+
+ ProjMat = astra.matrix.get(matrix_id)
+
+ fidelity = sum( ProjMat * u - noisy_data.as_array().ravel() * log(ProjMat * u))
+ #constraints = [q>= fidelity, u>=0]
+ constraints = [u>=0]
+
+ solver = SCS
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj, constraints)
+ result = prob.solve(verbose = True, solver = solver)
+
+
+##%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+ fidelity = pnorm( u - noisy_data.as_array(),1)
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(np.reshape(u.value, (N, N)))
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) \ No newline at end of file
diff --git a/Wrappers/Python/demos/PDHG_TV_Tomo2D_time.py b/Wrappers/Python/demos/PDHG_TV_Tomo2D_time.py
new file mode 100644
index 0000000..045458a
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_TV_Tomo2D_time.py
@@ -0,0 +1,169 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Gradient
+from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, \
+ MixedL21Norm, BlockFunction
+
+from ccpi.astra.ops import AstraProjectorMC
+
+import os
+import tomophantom
+from tomophantom import TomoP2D
+
+# Create phantom for TV 2D dynamic tomography
+
+model = 102 # note that the selected model is temporal (2D + time)
+N = 50 # set dimension of the phantom
+# one can specify an exact path to the parameters file
+# path_library2D = '../../../PhantomLibrary/models/Phantom2DLibrary.dat'
+path = os.path.dirname(tomophantom.__file__)
+path_library2D = os.path.join(path, "Phantom2DLibrary.dat")
+#This will generate a N_size x N_size x Time frames phantom (2D + time)
+phantom_2Dt = TomoP2D.ModelTemporal(model, N, path_library2D)
+
+plt.close('all')
+plt.figure(1)
+plt.rcParams.update({'font.size': 21})
+plt.title('{}''{}'.format('2D+t phantom using model no.',model))
+for sl in range(0,np.shape(phantom_2Dt)[0]):
+ im = phantom_2Dt[sl,:,:]
+ plt.imshow(im, vmin=0, vmax=1)
+ plt.pause(.1)
+ plt.draw
+
+
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, channels = np.shape(phantom_2Dt)[0])
+data = ImageData(phantom_2Dt, geometry=ig)
+
+detectors = N
+angles = np.linspace(0,np.pi,N)
+
+ag = AcquisitionGeometry('parallel','2D', angles, detectors, channels = np.shape(phantom_2Dt)[0])
+Aop = AstraProjectorMC(ig, ag, 'gpu')
+sin = Aop.direct(data)
+
+scale = 2
+n1 = scale * np.random.poisson(sin.as_array()/scale)
+noisy_data = AcquisitionData(n1, ag)
+
+tindex = [3, 6, 10]
+
+fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 10))
+plt.subplot(1,3,1)
+plt.imshow(noisy_data.as_array()[tindex[0],:,:])
+plt.axis('off')
+plt.title('Time {}'.format(tindex[0]))
+plt.subplot(1,3,2)
+plt.imshow(noisy_data.as_array()[tindex[1],:,:])
+plt.axis('off')
+plt.title('Time {}'.format(tindex[1]))
+plt.subplot(1,3,3)
+plt.imshow(noisy_data.as_array()[tindex[2],:,:])
+plt.axis('off')
+plt.title('Time {}'.format(tindex[2]))
+
+fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
+ wspace=0.02, hspace=0.02)
+
+plt.show()
+
+#%%
+# Regularisation Parameter
+alpha = 5
+
+# Create operators
+#op1 = Gradient(ig)
+op1 = Gradient(ig, correlation='SpaceChannels')
+op2 = Aop
+
+# Create BlockOperator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+# Create functions
+
+f1 = alpha * MixedL21Norm()
+f2 = KullbackLeibler(noisy_data)
+f = BlockFunction(f1, f2)
+
+g = ZeroFunction()
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 200
+pdhg.run(2000)
+
+
+#%%
+fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10, 8))
+
+plt.subplot(2,3,1)
+plt.imshow(phantom_2Dt[tindex[0],:,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Time {}'.format(tindex[0]))
+
+plt.subplot(2,3,2)
+plt.imshow(phantom_2Dt[tindex[1],:,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Time {}'.format(tindex[1]))
+
+plt.subplot(2,3,3)
+plt.imshow(phantom_2Dt[tindex[2],:,:],vmin=0, vmax=1)
+plt.axis('off')
+plt.title('Time {}'.format(tindex[2]))
+
+
+plt.subplot(2,3,4)
+plt.imshow(pdhg.get_output().as_array()[tindex[0],:,:])
+plt.axis('off')
+plt.subplot(2,3,5)
+plt.imshow(pdhg.get_output().as_array()[tindex[1],:,:])
+plt.axis('off')
+plt.subplot(2,3,6)
+plt.imshow(pdhg.get_output().as_array()[tindex[2],:,:])
+plt.axis('off')
+im = plt.imshow(pdhg.get_output().as_array()[tindex[0],:,:])
+
+
+fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
+ wspace=0.02, hspace=0.02)
+
+cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
+cbar = fig.colorbar(im, cax=cb_ax)
+
+
+plt.show()
+
diff --git a/Wrappers/Python/demos/PDHG_Tikhonov_Denoising.py b/Wrappers/Python/demos/PDHG_Tikhonov_Denoising.py
new file mode 100644
index 0000000..041d4ee
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_Tikhonov_Denoising.py
@@ -0,0 +1,176 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction
+
+from skimage.util import random_noise
+
+# Create phantom for TV Salt & Pepper denoising
+N = 100
+
+data = np.zeros((N,N))
+data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+data = ImageData(data)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+ag = ig
+
+# Create noisy data. Apply Salt & Pepper noise
+n1 = random_noise(data.as_array(), mode = 'gaussian', mean=0, var = 0.05, seed=10)
+noisy_data = ImageData(n1)
+
+# Regularisation Parameter
+alpha = 4
+
+method = '0'
+
+if method == '0':
+
+ # Create operators
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Create BlockOperator
+ operator = BlockOperator(op1, op2, shape=(2,1) )
+
+ # Create functions
+
+ f1 = alpha * L2NormSquared()
+ f2 = 0.5 * L2NormSquared(b = noisy_data)
+ f = BlockFunction(f1, f2)
+ g = ZeroFunction()
+
+else:
+
+ # Without the "Block Framework"
+ operator = Gradient(ig)
+ f = alpha * L2NormSquared()
+ g = 0.5 * L2NormSquared(b = noisy_data)
+
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+opt = {'niter':2000, 'memopt': True}
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('Tikhonov Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
+##%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+ ##Construct problem
+ u = Variable(ig.shape)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ # Define Total Variation as a regulariser
+
+ regulariser = alpha * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+ fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+ diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
+
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(pdhg.get_output().as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+ plt.subplot(3,1,2)
+ plt.imshow(u.value)
+ plt.title('CVX solution')
+ plt.colorbar()
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+ plt.title('Middle Line Profiles')
+ plt.show()
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+
+
+
+
+
diff --git a/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py b/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py
new file mode 100644
index 0000000..f17c4fe
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py
@@ -0,0 +1,108 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction
+from skimage.util import random_noise
+from ccpi.astra.ops import AstraProjectorSimple
+
+# Create phantom for TV 2D tomography
+N = 75
+x = np.zeros((N,N))
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+data = ImageData(x)
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+
+detectors = N
+angles = np.linspace(0, np.pi, N, dtype=np.float32)
+
+ag = AcquisitionGeometry('parallel','2D',angles, detectors)
+Aop = AstraProjectorSimple(ig, ag, 'gpu')
+sin = Aop.direct(data)
+
+# Create noisy data. Apply Gaussian noise
+
+np.random.seed(10)
+noisy_data = sin + AcquisitionData(np.random.normal(0, 3, sin.shape))
+
+# Regularisation Parameter
+alpha = 500
+
+# Create operators
+op1 = Gradient(ig)
+op2 = Aop
+
+# Create BlockOperator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+# Create functions
+
+f1 = alpha * L2NormSquared()
+f2 = 0.5 * L2NormSquared(b=noisy_data)
+f = BlockFunction(f1, f2)
+
+g = ZeroFunction()
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg.max_iteration = 5000
+pdhg.update_objective_interval = 50
+pdhg.run(2000)
+
+#%%
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('Tikhonov Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+
diff --git a/Wrappers/Python/environment.yml b/Wrappers/Python/environment.yml
new file mode 100644
index 0000000..5cdd6fe
--- /dev/null
+++ b/Wrappers/Python/environment.yml
@@ -0,0 +1,11 @@
+name: test_new
+dependencies:
+ - python=3.6.7=h8dc6b48_1004
+ - numpy=1.11.3=py36hdf140aa_1207
+ - spyder=3.3.4=py36_0
+ - scikit-image=0.15.0=py36h6de7cb9_0
+ - scipy=1.2.1=py36hbd7caa9_1
+ - astra-toolbox=1.8.3=py36h804c3c0_0
+
+
+
diff --git a/Wrappers/Python/wip/.DS_Store b/Wrappers/Python/wip/.DS_Store
new file mode 100644
index 0000000..a9a83e2
--- /dev/null
+++ b/Wrappers/Python/wip/.DS_Store
Binary files differ
diff --git a/Wrappers/Python/wip/Compare_Algs/LeastSq_CGLS_FISTA_PDHG.py b/Wrappers/Python/wip/Compare_Algs/LeastSq_CGLS_FISTA_PDHG.py
index c877018..39f0907 100644
--- a/Wrappers/Python/wip/Compare_Algs/LeastSq_CGLS_FISTA_PDHG.py
+++ b/Wrappers/Python/wip/Compare_Algs/LeastSq_CGLS_FISTA_PDHG.py
@@ -61,7 +61,6 @@ sin = Aop.direct(data)
noisy_data = sin
# Setup and run Astra CGLS algorithm
-
vol_geom = astra.create_vol_geom(N, N)
proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
diff --git a/Wrappers/Python/wip/Demos/.DS_Store b/Wrappers/Python/wip/Demos/.DS_Store
new file mode 100644
index 0000000..5008ddf
--- /dev/null
+++ b/Wrappers/Python/wip/Demos/.DS_Store
Binary files differ
diff --git a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py
index 860e76e..5df02b1 100644
--- a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py
+++ b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py
@@ -1,21 +1,23 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
"""
@@ -25,12 +27,14 @@ Total Variation Denoising using PDHG algorithm:
min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)
-Problem: min_x \alpha * ||\nabla x||_{1} + || x - g ||_{2}^{2}
+Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2}
- \nabla: Gradient operator
- g: Noisy Data with Gaussian Noise
\alpha: Regularization parameter
+ \nabla: Gradient operator
+
+ g: Noisy Data with Gaussian Noise
+
Method = 0: K = [ \nabla,
Identity]
@@ -50,22 +54,50 @@ from ccpi.optimisation.algorithms import PDHG
from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
MixedL21Norm, BlockFunction
+
+
+
+
+from Data import *
+
+#%%
-# Create phantom for TV Gaussian denoising
-N = 200
+data = ImageData(plt.imread('camera.png'))
+
+#
+## Create phantom for TV Gaussian denoising
+#N = 200
+#
+#data = np.zeros((N,N))
+#data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+#data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+#data = ImageData(data)
+#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+#ag = ig
+#
+#
+#
+## Replace with http://sipi.usc.edu/database/database.php?volume=misc&image=36#top
+
-data = np.zeros((N,N))
-data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-data = ImageData(data)
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-ag = ig
# Create noisy data. Add Gaussian noise
np.random.seed(10)
noisy_data = ImageData( data.as_array() + np.random.normal(0, 0.05, size=ig.shape) )
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(15,15))
+plt.subplot(2,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(2,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
# Regularisation Parameter
alpha = 2
@@ -80,8 +112,7 @@ if method == '0':
# Create BlockOperator
operator = BlockOperator(op1, op2, shape=(2,1) )
- # Create functions
-
+ # Create functions
f1 = alpha * MixedL21Norm()
f2 = 0.5 * L2NormSquared(b = noisy_data)
f = BlockFunction(f1, f2)
@@ -95,19 +126,20 @@ else:
f = alpha * MixedL21Norm()
g = 0.5 * L2NormSquared(b = noisy_data)
-# Compute operator Norm
+# Compute Operator Norm
normK = operator.norm()
-# Primal & dual stepsizes
+# Primal & Dual stepsizes
sigma = 1
tau = 1/(sigma*normK**2)
-# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+# Setup and Run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
pdhg.max_iteration = 3000
pdhg.update_objective_interval = 200
pdhg.run(3000, verbose=False)
+# Show Results
plt.figure(figsize=(15,15))
plt.subplot(3,1,1)
plt.imshow(data.as_array())
diff --git a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py
index 3c295f5..70f6b9b 100644
--- a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py
+++ b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py
@@ -3,7 +3,7 @@
# Visual Analytics and Imaging System Group of the Science Technology
# Facilities Council, STFC
-# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+# Copyright 2018-2019 STFC, University of Manchester
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -26,7 +26,7 @@ Total Variation Denoising using PDHG algorithm:
Problem: min_x, x>0 \alpha * ||\nabla x||_{1} + \int x - g * log(x)
- \nabla: Gradient operator
+ \nabla: Gradient operator
g: Noisy Data with Poisson Noise
\alpha: Regularization parameter