summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xWrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TGV_Denoising.py102
-rw-r--r--Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_Tikhonov_Denoising.py213
-rw-r--r--Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py142
3 files changed, 221 insertions, 236 deletions
diff --git a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TGV_Denoising.py b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TGV_Denoising.py
index 4d6da00..e9bad7e 100755
--- a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TGV_Denoising.py
+++ b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TGV_Denoising.py
@@ -23,23 +23,21 @@
Total Generalised Variation (TGV) Denoising using PDHG algorithm:
-Problem: min_{x} \alpha * ||\nabla x - w||_{2,1} +
- \beta * || E w ||_{2,1} +
- fidelity
-
- where fidelity can be as follows depending on the noise characteristics
- of the data:
- * Norm2Squared \frac{1}{2} * || x - g ||_{2}^{2}
- * KullbackLeibler \int u - g * log(u) + Id_{u>0}
- * L1Norm ||u - g||_{1}
-
- \alpha: Regularization parameter
- \beta: Regularization parameter
-
+Problem: min_{u} \alpha * ||\nabla u - w||_{2,1} +
+ \beta * || E u ||_{2,1} +
+ Fidelity(u, g)
+
\nabla: Gradient operator
- E: Symmetrized Gradient operator
+ E: Symmetrized Gradient operator
+ \alpha: Regularization parameter
+ \beta: Regularization parameter
- g: Noisy Data with Salt & Pepper Noise
+ g: Noisy Data
+
+ Fidelity = 1) L2NormSquarred ( \frac{1}{2} * || u - g ||_{2}^{2} ) if Noise is Gaussian
+ 2) L1Norm ( ||u - g||_{1} )if Noise is Salt & Pepper
+ 3) Kullback Leibler (\int u - g * log(u) + Id_{u>0}) if Noise is Poisson
+
Method = 0 ( PDHG - split ) : K = [ \nabla, - Identity
ZeroOperator, E
@@ -48,10 +46,15 @@ Problem: min_{x} \alpha * ||\nabla x - w||_{2,1} +
Method = 1 (PDHG - explicit ): K = [ \nabla, - Identity
ZeroOperator, E ]
+
+ Default: TGV denoising
+ noise = Gaussian
+ Fidelity = L2NormSquarred
+ method = 0
"""
-from ccpi.framework import ImageData, ImageGeometry
+from ccpi.framework import ImageData
import numpy as np
import numpy
@@ -63,14 +66,14 @@ from ccpi.optimisation.operators import BlockOperator, Identity, \
Gradient, SymmetrizedGradient, ZeroOperator
from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
MixedL21Norm, BlockFunction, KullbackLeibler, L2NormSquared
-import sys
+
+from ccpi.framework import TestData
+import os, sys
if int(numpy.version.version.split('.')[1]) > 12:
from skimage.util import random_noise
else:
from demoutil import random_noise
-
-
# user supplied input
if len(sys.argv) > 1:
which_noise = int(sys.argv[1])
@@ -81,35 +84,23 @@ print ("Applying {} noise")
if len(sys.argv) > 2:
method = sys.argv[2]
else:
- method = '1'
+ method = '0'
print ("method ", method)
-# Create phantom for TGV SaltPepper denoising
-
-N = 100
-
-x1 = np.linspace(0, int(N/2), N)
-x2 = np.linspace(int(N/2), 0., N)
-xv, yv = np.meshgrid(x1, x2)
-
-xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T
-#data = xv
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-data = ig.allocate()
-data.fill(xv/xv.max())
+loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+data = loader.load(TestData.SHAPES)
+ig = data.geometry
ag = ig
# Create noisy data.
-# Apply Salt & Pepper noise
-# gaussian
-# poisson
noises = ['gaussian', 'poisson', 's&p']
noise = noises[which_noise]
if noise == 's&p':
n1 = random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2, seed=10)
elif noise == 'poisson':
- n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+ scale = 5
+ n1 = random_noise( data.as_array()/scale, mode = noise, seed = 10)*scale
elif noise == 'gaussian':
n1 = random_noise(data.as_array(), mode = noise, seed = 10)
else:
@@ -128,23 +119,24 @@ plt.title('Noisy Data')
plt.colorbar()
plt.show()
-# Regularisation Parameters
+# Regularisation Parameter depending on the noise distribution
if noise == 's&p':
alpha = 0.8
elif noise == 'poisson':
- alpha = .1
-elif noise == 'gaussian':
alpha = .3
+elif noise == 'gaussian':
+ alpha = .2
-beta = numpy.sqrt(2)* alpha
+# TODO add ref why this choice
+beta = 2 * alpha
-# fidelity
+# Fidelity
if noise == 's&p':
f3 = L1Norm(b=noisy_data)
elif noise == 'poisson':
f3 = KullbackLeibler(noisy_data)
elif noise == 'gaussian':
- f3 = L2NormSquared(b=noisy_data)
+ f3 = 0.5 * L2NormSquared(b=noisy_data)
if method == '0':
@@ -162,7 +154,6 @@ if method == '0':
f1 = alpha * MixedL21Norm()
f2 = beta * MixedL21Norm()
- # f3 depends on the noise characteristics
f = BlockFunction(f1, f2, f3)
g = ZeroFunction()
@@ -183,28 +174,27 @@ else:
f = BlockFunction(f1, f2)
g = BlockFunction(f3, ZeroFunction())
-## Compute operator Norm
+# Compute operator Norm
normK = operator.norm()
-#
+
# Primal & dual stepsizes
sigma = 1
tau = 1/(sigma*normK**2)
-
# Setup and run the PDHG algorithm
pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
pdhg.max_iteration = 2000
-pdhg.update_objective_interval = 200
-pdhg.run(2000, verbose = True)
+pdhg.update_objective_interval = 100
+pdhg.run(2000)
-#%%
+# Show results
plt.figure(figsize=(20,5))
plt.subplot(1,4,1)
-plt.imshow(data.as_array())
+plt.imshow(data.subset(channel=0).as_array())
plt.title('Ground Truth')
plt.colorbar()
plt.subplot(1,4,2)
-plt.imshow(noisy_data.as_array())
+plt.imshow(noisy_data.subset(channel=0).as_array())
plt.title('Noisy Data')
plt.colorbar()
plt.subplot(1,4,3)
@@ -212,10 +202,8 @@ plt.imshow(pdhg.get_output()[0].as_array())
plt.title('TGV Reconstruction')
plt.colorbar()
plt.subplot(1,4,4)
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'TGV reconstruction')
+plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), data.as_array()[int(ig.shape[0]/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), pdhg.get_output()[0].as_array()[int(ig.shape[0]/2),:], label = 'TGV reconstruction')
plt.legend()
plt.title('Middle Line Profiles')
-plt.show()
-
-
+plt.show() \ No newline at end of file
diff --git a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_Tikhonov_Denoising.py b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_Tikhonov_Denoising.py
index 5aa334d..8a9920c 100644
--- a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_Tikhonov_Denoising.py
+++ b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_Tikhonov_Denoising.py
@@ -18,26 +18,37 @@
# limitations under the License.
#
#=========================================================================
+
"""
-Tikhonov Denoising using PDHG algorithm:
+``Tikhonov`` Regularization Denoising using PDHG algorithm:
-Problem: min_{x} \alpha * ||\nabla x||_{2}^{2} + \frac{1}{2} * || x - g ||_{2}^{2}
+Problem: min_{u}, \alpha * ||\nabla u||_{2,2} + Fidelity(u, g)
\alpha: Regularization parameter
\nabla: Gradient operator
- g: Noisy Data with Gaussian Noise
+ g: Noisy Data
+ Fidelity = 1) L2NormSquarred ( \frac{1}{2} * || u - g ||_{2}^{2} ) if Noise is Gaussian
+ 2) L1Norm ( ||u - g||_{1} )if Noise is Salt & Pepper
+ 3) Kullback Leibler (\int u - g * log(u) + Id_{u>0}) if Noise is Poisson
+
Method = 0 ( PDHG - split ) : K = [ \nabla,
Identity]
- Method = 1 (PDHG - explicit ): K = \nabla
-
-"""
+ Method = 1 (PDHG - explicit ): K = \nabla
+
+
+ Default: Tikhonov denoising
+ noise = Gaussian
+ Fidelity = L2NormSquarred
+ method = 0
+
+"""
from ccpi.framework import ImageData, TestData
@@ -62,7 +73,7 @@ else:
if len(sys.argv) > 1:
which_noise = int(sys.argv[1])
else:
- which_noise = 0
+ which_noise = 2
print ("Applying {} noise")
if len(sys.argv) > 2:
@@ -71,39 +82,25 @@ else:
method = '0'
print ("method ", method)
-# Create phantom for TV Salt & Pepper denoising
-N = 100
-
loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,N))
+data = loader.load(TestData.SHAPES)
ig = data.geometry
ag = ig
-# Create noisy data. Apply Salt & Pepper noise
# Create noisy data.
-# Apply Salt & Pepper noise
-# gaussian
-# poisson
noises = ['gaussian', 'poisson', 's&p']
noise = noises[which_noise]
if noise == 's&p':
n1 = random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2)
elif noise == 'poisson':
- n1 = random_noise(data.as_array(), mode = noise, seed = 10)
+ scale = 5
+ n1 = random_noise( data.as_array()/scale, mode = noise, seed = 10)*scale
elif noise == 'gaussian':
n1 = random_noise(data.as_array(), mode = noise, seed = 10)
else:
raise ValueError('Unsupported Noise ', noise)
noisy_data = ImageData(n1)
-# fidelity
-if noise == 's&p':
- f2 = L1Norm(b=noisy_data)
-elif noise == 'poisson':
- f2 = KullbackLeibler(noisy_data)
-elif noise == 'gaussian':
- f2 = 0.5 * L2NormSquared(b=noisy_data)
-
# Show Ground Truth and Noisy Data
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
@@ -116,15 +113,21 @@ plt.title('Noisy Data')
plt.colorbar()
plt.show()
-
-# Regularisation Parameter
-# no edge preservation alpha is big
+# Regularisation Parameter depending on the noise distribution
+if noise == 's&p':
+ alpha = 20
+elif noise == 'poisson':
+ alpha = 10
+elif noise == 'gaussian':
+ alpha = 5
+
+# fidelity
if noise == 's&p':
- alpha = 8.
+ f2 = L1Norm(b=noisy_data)
elif noise == 'poisson':
- alpha = 8.
+ f2 = KullbackLeibler(noisy_data)
elif noise == 'gaussian':
- alpha = 8.
+ f2 = 0.5 * L2NormSquared(b=noisy_data)
if method == '0':
@@ -135,21 +138,14 @@ if method == '0':
# Create BlockOperator
operator = BlockOperator(op1, op2, shape=(2,1) )
- # Create functions
-
+ # Create functions
f1 = alpha * L2NormSquared()
- # f2 must change according to noise
- #f2 = 0.5 * L2NormSquared(b = noisy_data)
f = BlockFunction(f1, f2)
g = ZeroFunction()
else:
- # Without the "Block Framework"
operator = Gradient(ig)
- f = alpha * L2NormSquared()
- # g must change according to noise
- #g = 0.5 * L2NormSquared(b = noisy_data)
g = f2
@@ -159,13 +155,12 @@ normK = operator.norm()
# Primal & dual stepsizes
sigma = 1
tau = 1/(sigma*normK**2)
-opt = {'niter':2000, 'memopt': True}
# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
pdhg.max_iteration = 2000
-pdhg.update_objective_interval = 50
-pdhg.run(1500)
+pdhg.update_objective_interval = 100
+pdhg.run(2000)
plt.figure(figsize=(20,5))
@@ -179,78 +174,78 @@ plt.title('Noisy Data')
plt.colorbar()
plt.subplot(1,4,3)
plt.imshow(pdhg.get_output().as_array())
-plt.title('Tikhonov Reconstruction')
+plt.title('TV Reconstruction')
plt.colorbar()
plt.subplot(1,4,4)
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
+plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), data.as_array()[int(ig.shape[0]/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), pdhg.get_output().as_array()[int(ig.shape[0]/2),:], label = 'Tikhonov reconstruction')
plt.legend()
plt.title('Middle Line Profiles')
plt.show()
-##%% Check with CVX solution
-
-from ccpi.optimisation.operators import SparseFiniteDiff
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-
-if cvx_not_installable:
-
- ##Construct problem
- u = Variable(ig.shape)
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- # Define Total Variation as a regulariser
-
- regulariser = alpha * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
- fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
-
- # choose solver
- if 'MOSEK' in installed_solvers():
- solver = MOSEK
- else:
- solver = SCS
-
- obj = Minimize( regulariser + fidelity)
- prob = Problem(obj)
- result = prob.solve(verbose = True, solver = solver)
-
- diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(u.value)
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
-
-
-
-
-
+###%% Check with CVX solution
+#
+#from ccpi.optimisation.operators import SparseFiniteDiff
+#
+#try:
+# from cvxpy import *
+# cvx_not_installable = True
+#except ImportError:
+# cvx_not_installable = False
+#
+#
+#if cvx_not_installable:
+#
+# ##Construct problem
+# u = Variable(ig.shape)
+#
+# DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+# DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+#
+# # Define Total Variation as a regulariser
+#
+# regulariser = alpha * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+# fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
+#
+# # choose solver
+# if 'MOSEK' in installed_solvers():
+# solver = MOSEK
+# else:
+# solver = SCS
+#
+# obj = Minimize( regulariser + fidelity)
+# prob = Problem(obj)
+# result = prob.solve(verbose = True, solver = solver)
+#
+# diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
+#
+# plt.figure(figsize=(15,15))
+# plt.subplot(3,1,1)
+# plt.imshow(pdhg.get_output().as_array())
+# plt.title('PDHG solution')
+# plt.colorbar()
+# plt.subplot(3,1,2)
+# plt.imshow(u.value)
+# plt.title('CVX solution')
+# plt.colorbar()
+# plt.subplot(3,1,3)
+# plt.imshow(diff_cvx)
+# plt.title('Difference')
+# plt.colorbar()
+# plt.show()
+#
+# plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+# plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+# plt.legend()
+# plt.title('Middle Line Profiles')
+# plt.show()
+#
+# print('Primal Objective (CVX) {} '.format(obj.value))
+# print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
+#
+#
+#
+#
+#
diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py
index 95fe2c1..e7e33cb 100644
--- a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py
+++ b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py
@@ -84,7 +84,7 @@ sin = Aop.direct(data)
# Create noisy data. Apply Poisson noise
scale = 0.5
eta = 0
-n1 = scale * np.random.poisson(eta + sin.as_array()/scale)
+n1 = np.random.poisson(eta + sin.as_array())
noisy_data = AcquisitionData(n1, ag)
@@ -100,6 +100,8 @@ plt.title('Noisy Data')
plt.colorbar()
plt.show()
+
+#%%
# Regularisation Parameter
alpha = 2
@@ -157,72 +159,72 @@ plt.show()
#%% Check with CVX solution
#
-from ccpi.optimisation.operators import SparseFiniteDiff
-import astra
-import numpy
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-
-if cvx_not_installable:
-
-
- ##Construct problem
- u = Variable(N*N)
- q = Variable()
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
-
- # create matrix representation for Astra operator
-
- vol_geom = astra.create_vol_geom(N, N)
- proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
-
- proj_id = astra.create_projector('strip', proj_geom, vol_geom)
-
- matrix_id = astra.projector.matrix(proj_id)
-
- ProjMat = astra.matrix.get(matrix_id)
-
- tmp = noisy_data.as_array().ravel()
-
- fidelity = sum(kl_div(tmp, ProjMat * u))
-
- constraints = [q>=fidelity, u>=0]
- solver = SCS
- obj = Minimize( regulariser + q)
- prob = Problem(obj, constraints)
- result = prob.solve(verbose = True, solver = solver)
-
- diff_cvx = np.abs(pdhg.get_output().as_array() - np.reshape(u.value, (N, N)))
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(np.reshape(u.value, (N, N)))
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), np.reshape(u.value, (N, N))[int(N/2),:], label = 'CVX')
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) \ No newline at end of file
+#from ccpi.optimisation.operators import SparseFiniteDiff
+#import astra
+#import numpy
+#
+#try:
+# from cvxpy import *
+# cvx_not_installable = True
+#except ImportError:
+# cvx_not_installable = False
+#
+#
+#if cvx_not_installable:
+#
+#
+# ##Construct problem
+# u = Variable(N*N)
+# q = Variable()
+#
+# DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+# DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+#
+# regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+#
+# # create matrix representation for Astra operator
+#
+# vol_geom = astra.create_vol_geom(N, N)
+# proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
+#
+# proj_id = astra.create_projector('strip', proj_geom, vol_geom)
+#
+# matrix_id = astra.projector.matrix(proj_id)
+#
+# ProjMat = astra.matrix.get(matrix_id)
+#
+# tmp = noisy_data.as_array().ravel()
+#
+# fidelity = sum(kl_div(tmp, ProjMat * u))
+#
+# constraints = [q>=fidelity, u>=0]
+# solver = SCS
+# obj = Minimize( regulariser + q)
+# prob = Problem(obj, constraints)
+# result = prob.solve(verbose = True, solver = solver)
+#
+# diff_cvx = np.abs(pdhg.get_output().as_array() - np.reshape(u.value, (N, N)))
+#
+# plt.figure(figsize=(15,15))
+# plt.subplot(3,1,1)
+# plt.imshow(pdhg.get_output().as_array())
+# plt.title('PDHG solution')
+# plt.colorbar()
+# plt.subplot(3,1,2)
+# plt.imshow(np.reshape(u.value, (N, N)))
+# plt.title('CVX solution')
+# plt.colorbar()
+# plt.subplot(3,1,3)
+# plt.imshow(diff_cvx)
+# plt.title('Difference')
+# plt.colorbar()
+# plt.show()
+#
+# plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
+# plt.plot(np.linspace(0,N,N), np.reshape(u.value, (N, N))[int(N/2),:], label = 'CVX')
+# plt.legend()
+# plt.title('Middle Line Profiles')
+# plt.show()
+#
+# print('Primal Objective (CVX) {} '.format(obj.value))
+# print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) \ No newline at end of file