summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py102
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py69
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/FunctionComposition.py175
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py53
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py75
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py101
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py40
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__init__.py10
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pycbin0 -> 2398 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionComposition.cpython-36.pycbin0 -> 5778 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pycbin0 -> 2127 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pycbin0 -> 2922 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pycbin0 -> 3428 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFun.cpython-36.pycbin0 -> 1698 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pycbin0 -> 413 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/__pycache__/mixed_L12Norm.cpython-36.pycbin0 -> 2294 bytes
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/functions.py311
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py65
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/test_functions.py474
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py314
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py125
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py42
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py118
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py39
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/__init__.py8
-rw-r--r--Wrappers/Python/setup.py3
26 files changed, 2123 insertions, 1 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
new file mode 100644
index 0000000..7488310
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Feb 4 16:18:06 2019
+
+@author: evangelos
+"""
+
+from ccpi.framework import ImageData
+import numpy as np
+import matplotlib.pyplot as plt
+import time
+from Operators.CompositeOperator import CompositeOperator
+from Operators.CompositeDataContainer import CompositeDataContainer
+
+def PDHG(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-6, 'niter': 500, 'show_iter': 100, \
+ 'memopt': False}
+
+ if sigma is None and tau is None:
+ raise ValueError('Need sigma*tau||K||^2<1')
+
+ niter = opt['niter'] if 'niter' in opt.keys() else 1000
+ tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+ show_iter = opt['show_iter'] if 'show_iter' in opt.keys() else False
+ stop_crit = opt['stop_crit'] if 'stop_crit' in opt.keys() else False
+
+ if isinstance(operator, CompositeOperator):
+# if isinstance(operator, CompositeOperator_DataContainer):
+ x_old = operator.alloc_domain_dim()
+ y_old = operator.alloc_range_dim()
+ else:
+ x_old = ImageData(np.zeros(operator.domain_dim()))
+ y_old = ImageData(np.zeros(operator.range_dim()))
+
+
+ xbar = x_old
+ x_tmp = x_old
+ x = x_old
+
+ y_tmp = y_old
+ y = y_tmp
+
+ # relaxation parameter
+ theta = 1
+
+ t = time.time()
+
+ objective = []
+
+ for i in range(niter):
+
+ # Gradient descent, Dual problem solution
+ y_tmp = y_old + sigma * operator.direct(xbar)
+ y = f.proximal_conjugate(y_tmp, sigma)
+
+ # Gradient ascent, Primal problem solution
+ x_tmp = x_old - tau * operator.adjoint(y)
+ x = g.proximal(x_tmp, tau)
+
+ #Update
+ xbar = x + theta * (x - x_old)
+
+ x_old = x
+ y_old = y
+
+# pdgap
+ print(f(x) + g(x) + f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
+
+
+
+
+
+# # TV denoising, pdgap with composite
+#
+# primal_obj = f.get_item(0).alpha * ImageData(operator.compMat[0][0].direct(x.get_item(0)).power(2).sum(axis=0)).sqrt().sum() +\
+# 0.5*( (operator.compMat[1][0].direct(x.get_item(0)) - f.get_item(1).b).power(2).sum())
+# dual_obj = 0.5 * ((y.get_item(1).power(2)).sum()) + ( y.get_item(1)*f.get_item(1).b ).sum()
+
+ # TV denoising, pdgap with no composite
+
+
+
+# primal_obj = f.get_item(0).alpha * ImageData(operator.compMat[0][0].direct(x.get_item(0)).power(2).sum(axis=0)).sqrt().sum() +\
+# 0.5*( (operator.compMat[1][0].direct(x.get_item(0)) - f.get_item(1).b).power(2).sum())
+# dual_obj = 0.5 * ((y.get_item(1).power(2)).sum()) + ( y.get_item(1)*f.get_item(1).b ).sum()
+
+
+# print(primal_obj)
+# objective = primal_obj
+#
+
+
+
+ t_end = time.time()
+
+ return x, t_end - t, objective
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
new file mode 100644
index 0000000..bc9b62d
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/BlockFunction.py
@@ -0,0 +1,69 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 8 10:01:31 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import BlockDataContainer
+
+class BlockFunction(Function):
+
+ def __init__(self, operator, *functions):
+
+ self.functions = functions
+ self.operator = operator
+ self.length = len(self.functions)
+
+ super(BlockFunction, self).__init__()
+
+ def __call__(self, x):
+
+ tmp = self.operator.direct(x)
+
+ t = 0
+ for i in range(tmp.shape[0]):
+ t += self.functions[i](tmp.get_item(i))
+ return t
+
+ def call_adjoint(self, x):
+
+ tmp = operator.adjoint(x)
+
+ t = 0
+ for i in range(tmp.shape[0]):
+ t += self.functions[i](tmp.get_item(i))
+ return t
+
+ def convex_conjugate(self, x):
+
+ ''' Convex_conjugate does not take into account the BlockOperator'''
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i].convex_conjugate(x.get_item(i))
+ return t
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ ''' proximal_conjugate does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+
+ return BlockDataContainer(*out)
+
+ def proximal(self, x, tau, out = None):
+
+ ''' proximal does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau)
+
+ return BlockDataContainer(*out)
+
+ def gradient(self,x, out=None):
+ pass \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionComposition.py
new file mode 100644
index 0000000..5b6defc
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionComposition.py
@@ -0,0 +1,175 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:45:06 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+from ccpi.framework import BlockDataContainer
+
+class FunctionOperatorComposition(Function):
+
+ def __init__(self, function, operator):
+
+ self.function = functions
+ self.operator = operator
+ self.grad_Lipschitz_cnst = 2*self.function.alpha*operator.norm()**2
+ super(FunctionOperatorComposition, self).__init__()
+
+ def __call__(self, x):
+
+ return self.function(operator.direct(x))
+
+ def call_adjoint(self, x):
+
+ return self.function(operator.adjoint(x))
+
+ def convex_conjugate(self, x):
+
+ return self.function.convex_conjugate(x)
+
+ def proximal(self, x, tau):
+
+ ''' proximal does not take into account the Operator'''
+
+ return self.function.proximal(x, tau, out=None)
+
+ def proximal_conjugate(self, x, tau):
+
+ ''' proximal conjugate does not take into account the Operator'''
+
+ return self.function.proximal_conjugate(x, tau, out=None)
+
+ def gradient(self, x):
+
+ ''' Gradient takes into account the Operator'''
+
+ return self.adjoint(self.function.gradient(self.operator.direct(x)))
+
+
+class BlockFunction(Function):
+
+ def __init__(self, operator, *functions):
+
+ self.functions = functions
+ self.operator = operator
+ self.length = len(self.functions)
+
+ super(BlockFunction, self).__init__()
+
+ def __call__(self, x):
+
+ tmp = operator.direct(x)
+
+ t = 0
+ for i in range(tmp.shape[0]):
+ t += self.functions[i](tmp.get_item(i))
+ return t
+
+ def call_adjoint(self, x):
+
+ tmp = operator.adjoint(x)
+
+ t = 0
+ for i in range(tmp.shape[0]):
+ t += self.functions[i](tmp.get_item(i))
+ return t
+
+ def convex_conjugate(self, x):
+
+ ''' Convex_conjugate does not take into account the BlockOperator'''
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i].convex_conjugate(x.get_item(i))
+ return t
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ ''' proximal_conjugate does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+
+ return CompositeDataContainer(*out)
+
+ def proximal(self, x, tau, out = None):
+
+ ''' proximal does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau)
+
+ return CompositeDataContainer(*out)
+
+ def gradient(self,x, out=None):
+ pass
+
+
+class FunctionComposition_new(Function):
+
+ def __init__(self, operator, *functions):
+
+ self.functions = functions
+ self.operator = operator
+ self.length = len(self.functions)
+
+ super(FunctionComposition_new, self).__init__()
+
+ def __call__(self, x):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i](x.get_item(i))
+ return t
+
+ def convex_conjugate(self, x):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i].convex_conjugate(x.get_item(i))
+ return t
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+
+ if self.length==1:
+ return ImageData(*out)
+ else:
+ return CompositeDataContainer(*out)
+
+ def proximal(self, x, tau, out = None):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau)
+
+ if self.length==1:
+ return ImageData(*out)
+ else:
+ return CompositeDataContainer(*out)
+
+
+if __name__ == '__main__':
+
+ from operators import Operator
+ from IdentityOperator import Identity \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
new file mode 100644
index 0000000..a67b884
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py
@@ -0,0 +1,53 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 8 09:55:36 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+
+
+class FunctionOperatorComposition(Function):
+
+ def __init__(self, operator, function):
+
+ self.function = function
+ self.operator = operator
+ self.L = 2*self.function.alpha*operator.norm()**2
+ super(FunctionOperatorComposition, self).__init__()
+
+ def __call__(self, x):
+
+ return self.function(self.operator.direct(x))
+
+ def call_adjoint(self, x):
+
+ return self.function(self.operator.adjoint(x))
+
+ def convex_conjugate(self, x):
+
+ ''' convex_conjugate does not take into account the Operator'''
+ return self.function.convex_conjugate(x)
+
+ def proximal(self, x, tau):
+
+ ''' proximal does not take into account the Operator'''
+
+ return self.function.proximal(x, tau, out=None)
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ ''' proximal conjugate does not take into account the Operator'''
+
+ return self.function.proximal_conjugate(x, tau)
+
+ def gradient(self, x):
+
+ ''' Gradient takes into account the Operator'''
+
+ return self.operator.adjoint(self.function.gradient(self.operator.direct(x)))
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
new file mode 100644
index 0000000..ec7aa5b
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -0,0 +1,75 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:42:34 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+
+############################ L1NORM FUNCTIONS #############################
+class SimpleL1NormEdo(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL1Norm, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.abs().sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ ''' Soft Threshold'''
+ return x.sign() * (x.abs() - tau * self.alpha).maximum(0)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+class L1Norm(SimpleL1NormEdo):
+
+ def __init__(self, alpha=1, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL1Norm.__call__(self, x)
+ else:
+ return SimpleL1Norm.__call__(self, x - self.b)
+
+ def gradient(self, x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ if self.b is None:
+ return SimpleL1Norm.convex_conjugate(self, x)
+ else:
+ return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL1Norm.proximal(self, x - self.b , tau)
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
new file mode 100644
index 0000000..8b73be6
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -0,0 +1,101 @@
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 7 13:10:56 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+
+class SimpleL2NormSq(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL2NormSq, self).__init__()
+ self.alpha = alpha
+
+ # Lispchitz constant of gradient
+ self.L = 2*self.alpha
+
+ def __call__(self, x):
+ return self.alpha * x.power(2).sum()
+
+ def gradient(self,x):
+ return 2 * self.alpha * x
+
+ def convex_conjugate(self,x):
+ return (1/(4*self.alpha)) * x.power(2).sum()
+
+ def proximal(self, x, tau):
+ return x.divide(1+2*tau*self.alpha)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide(1 + tau/(2*self.alpha) )
+
+
+############################ L2NORM FUNCTIONS #############################
+class L2NormSq(SimpleL2NormSq):
+
+ def __init__(self, alpha, **kwargs):
+
+ super(L2NormSq, self).__init__(alpha)
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL2NormSq.__call__(self, x)
+ else:
+ return SimpleL2NormSq.__call__(self, x - self.b)
+
+ def gradient(self, x):
+
+ if self.b is None:
+ return 2*self.alpha * x
+ else:
+ return 2*self.alpha * (x - self.b)
+
+ def convex_conjugate(self, x):
+
+ ''' The convex conjugate corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.convex_conjugate(self, x)
+ else:
+ return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau)
+
+
+ def proximal_conjugate(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple convex conjugate
+ functional i.e., f^{*}(x^{)
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+ if self.b is None:
+ return SimpleL2NormSq.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau)
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py b/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py
new file mode 100644
index 0000000..b41cc26
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/ZeroFun.py
@@ -0,0 +1,40 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:44:10 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData
+from ccpi.framework import BlockDataContainer
+
+class ZeroFun(Function):
+
+ def __init__(self):
+ super(ZeroFun, self).__init__()
+
+ def __call__(self,x):
+ return 0
+
+ def convex_conjugate(self, x):
+ ''' This is the support function sup <x, x^{*}> which in fact is the
+ indicator function for the set = {0}
+ So 0 if x=0, or inf if x neq 0
+ '''
+
+ if x.shape[0]==1:
+ return x.maximum(0).sum()
+ else:
+ if isinstance(x, CompositeDataContainer):
+ return x.get_item(0).maximum(0).sum() + x.get_item(1).maximum(0).sum()
+ else:
+ return x.maximum(0).sum() + x.maximum(0).sum()
+
+ def proximal(self,x,tau):
+ return x.copy()
+
+ def proximal_conjugate(self, x, tau):
+ return 0 \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
new file mode 100644
index 0000000..7ce617a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__init__.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8 -*-
+
+
+from .ZeroFun import ZeroFun
+from .L1Norm import *
+from .L2NormSquared import *
+from .mixed_L12Norm import *
+from .FunctionOperatorComposition import FunctionOperatorComposition
+from .BlockFunction import BlockFunction
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc
new file mode 100644
index 0000000..660532e
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/BlockFunction.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionComposition.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionComposition.cpython-36.pyc
new file mode 100644
index 0000000..075cdfb
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionComposition.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc
new file mode 100644
index 0000000..f564eff
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/FunctionOperatorComposition.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc
new file mode 100644
index 0000000..4ef959d
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L1Norm.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc
new file mode 100644
index 0000000..ad1b296
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/L2NormSquared.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFun.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFun.cpython-36.pyc
new file mode 100644
index 0000000..f2bf70f
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/ZeroFun.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc
new file mode 100644
index 0000000..1321257
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/__init__.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/__pycache__/mixed_L12Norm.cpython-36.pyc b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/mixed_L12Norm.cpython-36.pyc
new file mode 100644
index 0000000..d43e3ad
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/__pycache__/mixed_L12Norm.cpython-36.pyc
Binary files differ
diff --git a/Wrappers/Python/ccpi/optimisation/functions/functions.py b/Wrappers/Python/ccpi/optimisation/functions/functions.py
new file mode 100644
index 0000000..f40abb9
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/functions.py
@@ -0,0 +1,311 @@
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 7 13:10:56 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+from operators import CompositeDataContainer, Identity, CompositeOperator
+from numbers import Number
+
+
+############################ L2NORM FUNCTIONS #############################
+class SimpleL2NormSq(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL2NormSq, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.power(2).sum()
+
+ def gradient(self,x):
+ return 2 * self.alpha * x
+
+ def convex_conjugate(self,x):
+ return (1/4*self.alpha) * x.power(2).sum()
+
+ def proximal(self, x, tau):
+ return x.divide(1+2*tau*self.alpha)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide(1 + tau/2*self.alpha )
+
+
+class L2NormSq(SimpleL2NormSq):
+
+ def __init__(self, A, b = None, alpha=1, **kwargs):
+
+ super(L2NormSq, self).__init__(alpha=alpha)
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL2NormSq.__call__(self, self.A.direct(x))
+ else:
+ return SimpleL2NormSq.__call__(self, self.A.direct(x) - self.b)
+
+ def convex_conjugate(self, x):
+
+ ''' The convex conjugate corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.convex_conjugate(self, x)
+ else:
+ return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def gradient(self, x):
+
+ if self.b is None:
+ return 2*self.alpha * self.A.adjoint(self.A.direct(x))
+ else:
+ return 2*self.alpha * self.A.adjoint(self.A.direct(x) - self.b)
+
+ def proximal(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau)
+
+
+ def proximal_conjugate(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple convex conjugate
+ functional i.e., f^{*}(x^{)
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+ if self.b is None:
+ return SimpleL2NormSq.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau)
+
+
+############################ L1NORM FUNCTIONS #############################
+class SimpleL1Norm(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL1Norm, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.abs().sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ ''' Soft Threshold'''
+ return x.sign() * (x.abs() - tau * self.alpha).maximum(1.0)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+class L1Norm(SimpleL1Norm):
+
+ def __init__(self, A, b = None, alpha=1, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL1Norm.__call__(self, self.A.direct(x))
+ else:
+ return SimpleL1Norm.__call__(self, self.A.direct(x) - self.b)
+
+ def gradient(self, x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ if self.b is None:
+ return SimpleL1Norm.convex_conjugate(self, x)
+ else:
+ return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL1Norm.proximal(self, x + self.b , tau)
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+
+
+############################ mixed_L1,2NORM FUNCTIONS #############################
+class mixed_L12Norm(Function):
+
+ def __init__(self, A, b=None, alpha=1, **kwargs):
+
+ super(mixed_L12Norm, self).__init__()
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ self.sym_grad = kwargs.get('sym_grad',False)
+
+
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+
+ def __call__(self,x):
+
+ y = self.A.direct(x)
+ eucl_norm = ImageData(y.power(2).sum(axis=0)).sqrt()
+ eucl_norm.__isub__(self.b)
+ return eucl_norm.sum() * self.alpha
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+
+ if self.sym_grad:
+ tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+ res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+ res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
+
+ else:
+ res = (x - tau*self.b)/ ((x - tau*self.b)).abs().maximum(1.0)
+
+ return res
+
+
+#%%
+
+class ZeroFun(Function):
+
+ def __init__(self):
+ super(ZeroFun, self).__init__()
+
+ def __call__(self,x):
+ return 0
+
+ def convex_conjugate(self, x):
+ ''' This is the support function sup <x, x^{*}> which in fact is the
+ indicator function for the set = {0}
+ So 0 if x=0, or inf if x neq 0
+ '''
+ return x.maximum(0).sum()
+
+ def proximal(self,x,tau):
+ return x.copy()
+
+ def proximal_conjugate(self, x, tau):
+ return 0
+
+
+class CompositeFunction(Function):
+
+ def __init__(self, *args):
+ self.functions = args
+ self.length = len(self.functions)
+
+ def get_item(self, ind):
+ return self.functions[ind]
+
+ def __call__(self,x):
+
+ t = 0
+ for i in range(self.length):
+ for j in range(x.shape[0]):
+ t +=self.functions[i](x.get_item(j))
+ return t
+
+ def convex_conjugate(self, x):
+
+ z = 0
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[z].convex_conjugate(x.get_item(i))
+ z += 1
+
+ return t
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+
+
+
+if __name__ == '__main__':
+
+ N = 3
+ ig = (N,N)
+ ag = ig
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Form Composite Operator
+ operator = CompositeOperator((2,1), op1, op2 )
+
+ # Create functions
+ alpha = 1
+ noisy_data = ImageData(np.random.randint(10, size=ag))
+ f = CompositeFunction(L1Norm(op1,alpha), \
+ L2NormSq(op2, noisy_data, c = 0.5, memopt = False) )
+
+ u = ImageData(np.random.randint(10, size=ig))
+ uComp = CompositeDataContainer(u)
+
+ print(f(uComp)) # This is f(Kx) = f1(K1*u) + f2(K2*u)
+
+ f1 = L1Norm(op1,alpha)
+ f2 = L2NormSq(op2, noisy_data, c = 0.5, memopt = False)
+
+ print(f1(u) + f2(u))
+
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py b/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py
new file mode 100644
index 0000000..0ce1d28
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/mixed_L12Norm.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:43:12 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+
+
+############################ mixed_L1,2NORM FUNCTIONS #############################
+class mixed_L12Norm(Function):
+
+ def __init__(self, alpha, **kwargs):
+
+ super(mixed_L12Norm, self).__init__()
+
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+ self.sym_grad = kwargs.get('sym_grad',False)
+
+ def __call__(self,x):
+
+ if self.b is None:
+ tmp1 = x
+ else:
+ tmp1 = x - self.b
+#
+ if self.sym_grad:
+ tmp = np.sqrt(tmp1.as_array()[0]**2 + tmp1.as_array()[1]**2 + 2*tmp1.as_array()[2]**2)
+ else:
+ tmp = ImageData(tmp1.power(2).sum(axis=0)).sqrt()
+
+ return self.alpha*tmp.sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ pass
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.sym_grad:
+ tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+ res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+ res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
+
+ return res
+
+ def composition_with(self, operator):
+
+ if self.b is None:
+ return FunctionComposition(mixed_L12Norm(self.alpha), operator)
+ else:
+ return FunctionComposition(mixed_L12Norm(self.alpha, b=self.b), operator)
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/test_functions.py b/Wrappers/Python/ccpi/optimisation/functions/test_functions.py
new file mode 100644
index 0000000..54a952a
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/functions/test_functions.py
@@ -0,0 +1,474 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat Mar 2 19:24:37 2019
+
+@author: evangelos
+"""
+
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 7 13:10:56 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+from operators import CompositeDataContainer, Identity, CompositeOperator
+from numbers import Number
+from GradientOperator import Gradient
+
+
+class SimpleL2NormSq(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL2NormSq, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.power(2).sum()
+
+ def gradient(self,x):
+ return 2 * self.alpha * x
+
+ def convex_conjugate(self,x):
+ return (1/(4*self.alpha)) * x.power(2).sum()
+
+ def proximal(self, x, tau):
+ return x.divide(1+2*tau*self.alpha)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide(1 + tau/(2*self.alpha) )
+
+
+############################ L2NORM FUNCTIONS #############################
+class L2NormSq(SimpleL2NormSq):
+
+ def __init__(self, alpha, **kwargs):
+
+ super(L2NormSq, self).__init__(alpha)
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+ self.L = 1
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL2NormSq.__call__(self, x)
+ else:
+ return SimpleL2NormSq.__call__(self, x - self.b)
+
+ def gradient(self, x):
+
+ if self.b is None:
+ return 2*self.alpha * x
+ else:
+ return 2*self.alpha * (x - self.b)
+
+ def composition_with(self, operator):
+
+ if self.b is None:
+ return FunctionComposition(L2NormSq(self.alpha), operator)
+ else:
+ return FunctionComposition(L2NormSq(self.alpha, b=self.b), operator)
+
+ def convex_conjugate(self, x):
+
+ ''' The convex conjugate corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.convex_conjugate(self, x)
+ else:
+ return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau)
+
+
+ def proximal_conjugate(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple convex conjugate
+ functional i.e., f^{*}(x^{)
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+ if self.b is None:
+ return SimpleL2NormSq.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau)
+
+
+############################ L1NORM FUNCTIONS #############################
+class SimpleL1Norm(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL1Norm, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.abs().sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ ''' Soft Threshold'''
+ return x.sign() * (x.abs() - tau * self.alpha).maximum(1.0)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+class L1Norm(SimpleL1Norm):
+
+ def __init__(self, alpha=1, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.alpha = alpha
+
+ self.A = kwargs.get('A',None)
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL1Norm.__call__(self, self.A.direct(x))
+ else:
+ return SimpleL1Norm.__call__(self, self.A.direct(x) - self.b)
+
+ def eval_norm(self, x):
+
+ return SimpleL1Norm.__call__(self, x)
+
+ def gradient(self, x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ if self.b is None:
+ return SimpleL1Norm.convex_conjugate(self, x)
+ else:
+ return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL1Norm.proximal(self, x + self.b , tau)
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+
+
+############################ mixed_L1,2NORM FUNCTIONS #############################
+class mixed_L12Norm(Function):
+
+ def __init__(self, alpha, **kwargs):
+
+ super(mixed_L12Norm, self).__init__()
+
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+ self.sym_grad = kwargs.get('sym_grad',False)
+
+ def __call__(self,x):
+
+ if self.b is None:
+ tmp1 = x
+ else:
+ tmp1 = x - self.b
+#
+ if self.sym_grad:
+ tmp = np.sqrt(tmp1.as_array()[0]**2 + tmp1.as_array()[1]**2 + 2*tmp1.as_array()[2]**2)
+ else:
+ tmp = ImageData(tmp1.power(2).sum(axis=0)).sqrt()
+
+ return self.alpha*tmp.sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ pass
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.sym_grad:
+ tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+ res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+ res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
+
+ return res
+
+ def composition_with(self, operator):
+
+ if self.b is None:
+ return FunctionComposition(mixed_L12Norm(self.alpha), operator)
+ else:
+ return FunctionComposition(mixed_L12Norm(self.alpha, b=self.b), operator)
+
+
+#%%
+
+class ZeroFun(Function):
+
+ def __init__(self):
+ super(ZeroFun, self).__init__()
+
+ def __call__(self,x):
+ return 0
+
+ def convex_conjugate(self, x):
+ ''' This is the support function sup <x, x^{*}> which in fact is the
+ indicator function for the set = {0}
+ So 0 if x=0, or inf if x neq 0
+ '''
+
+ if x.shape[0]==1:
+ return x.maximum(0).sum()
+ else:
+ return x.get_item(0).maximum(0).sum() + x.get_item(1).maximum(0).sum()
+
+ def proximal(self,x,tau):
+ return x.copy()
+
+ def proximal_conjugate(self, x, tau):
+ return 0
+
+
+class CompositeFunction(Function):
+
+ def __init__(self, *functions, blockMatrix):
+
+ self.blockMatrix = blockMatrix
+ self.functions = functions
+ self.length = len(self.functions)
+
+ def get_item(self, ind):
+ return self.functions[ind]
+
+ def __call__(self,x):
+
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i](x.get_item(i))
+ return t
+
+
+ def convex_conjugate(self, x):
+
+ z = 0
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[z].convex_conjugate(x.get_item(i))
+ z += 1
+
+ return t
+
+ def proximal(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+#
+class FunctionComposition(Function):
+
+ def __init__(self, function, operator):
+
+ self.function = function
+ self.alpha = self.function.alpha
+ self.b = self.function.b
+ self.operator = operator
+
+
+ super(FunctionComposition, self).__init__()
+
+ ''' overide call and gradient '''
+ def __call__(self, x):
+ return self.function(x)
+
+ def gradient(self,x):
+ return self.operator.adjoint(self.function.gradient(self.operator.direct(x)))
+
+ ''' Same as in the parent class'''
+ def proximal(self,x, tau):
+ return self.function.proximal(x, tau)
+
+ def proximal_conjugate(self,x, tau):
+ return self.function.proximal_conjugate(x, tau)
+
+ def convex_conjugate(self,x):
+ return self.function.convex_conjugate(x)
+
+
+class FunctionComposition_new(Function):
+
+ def __init__(self, operator, *functions):
+
+ self.functions = functions
+ self.operator = operator
+ self.length = len(self.functions)
+
+# if self.length==1:
+# self.L = self.functions[0].alpha*(self.operator.norm()**2)
+
+ # length == to operator.shape[0]#
+ super(FunctionComposition_new, self).__init__()
+
+ def __call__(self, x):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i](x.get_item(i))
+ return t
+
+ def convex_conjugate(self, x):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i].convex_conjugate(x.get_item(i))
+ return t
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+
+ if self.length==1:
+ return ImageData(*out)
+ else:
+ return CompositeDataContainer(*out)
+
+ def proximal(self, x, tau, out = None):
+
+ if isinstance(x, ImageData):
+ x = CompositeDataContainer(x)
+
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau)
+
+ if self.length==1:
+ return ImageData(*out)
+ else:
+ return CompositeDataContainer(*out)
+
+
+if __name__ == '__main__':
+
+ N = 3
+ ig = (N,N)
+ ag = ig
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Form Composite Operator
+ operator = CompositeOperator((2,1), op1, op2 )
+
+ # Create functions
+ noisy_data = ImageData(np.random.randint(10, size=ag))
+
+ d = ImageData(np.random.randint(10, size=ag))
+
+ f = mixed_L12Norm(alpha = 1).composition_with(op1)
+ g = L2NormSq(alpha=0.5, b=noisy_data)
+
+ # Compare call of f
+ a1 = ImageData(op1.direct(d).power(2).sum(axis=0)).sqrt().sum()
+ print(a1, f(d))
+
+ # Compare call of g
+ a2 = g.alpha*(d - noisy_data).power(2).sum()
+ print(a2, g(d))
+
+ # Compare convex conjugate of g
+ a3 = 0.5 * d.power(2).sum() + (d*noisy_data).sum()
+ print( a3, g.convex_conjugate(d))
+
+
+
+
+
+#
+# f1 = L2NormSq(alpha=1, b=noisy_data)
+# print(f1(noisy_data))
+#
+# f2 = L2NormSq(alpha=5, b=noisy_data).composition_with(op2)
+# print(f2(noisy_data))
+#
+# print(f1.gradient(noisy_data).as_array())
+# print(f2.gradient(noisy_data).as_array())
+##
+# print(f1.proximal(noisy_data,1).as_array())
+# print(f2.proximal(noisy_data,1).as_array())
+#
+#
+# f3 = mixed_L12Norm(alpha = 1).composition_with(op1)
+# print(f3(noisy_data))
+#
+# print(ImageData(op1.direct(noisy_data).power(2).sum(axis=0)).sqrt().sum())
+#
+# print( 5*(op2.direct(d) - noisy_data).power(2).sum(), f2(d))
+#
+# from functions import mixed_L12Norm as mixed_L12Norm_old
+#
+# print(mixed_L12Norm_old(op1,None,alpha)(noisy_data))
+
+
+ #
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
new file mode 100644
index 0000000..16cd215
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
@@ -0,0 +1,314 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:51:17 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, BlockDataContainer
+import numpy as np
+
+class FiniteDiff(Operator):
+
+ # Works for Neum/Symmetric & periodic boundary conditions
+ # TODO add central differences???
+ # TODO not very well optimised, too many conditions
+ # TODO add discretisation step, should get that from imageGeometry
+
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_y', 'direction_x']
+ # Grad_order = ['direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+
+ def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'):
+
+ super(FiniteDiff, self).__init__()
+
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ self.direction = direction
+ self.bnd_cond = bnd_cond
+
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+
+ if self.direction + 1 > len(gm_domain):
+ raise ValueError('Gradient directions more than geometry domain')
+
+ def direct(self, x, out=None):
+
+# x_asarr = x.as_array()
+ x_asarr = x
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros(x.shape)
+
+ fd_arr = out
+
+ ######################## Direct for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:], x_asarr[0:-1], out = fd_arr[0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[0:-1,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[-1,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+ res = out
+ return res
+
+ def adjoint(self, x, out=None):
+
+# x_asarr = x.as_array()
+ x_asarr = x
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros(x.shape)
+
+ fd_arr = out
+
+ ######################## Adjoint for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0], 0, out = fd_arr[:,0] )
+ np.subtract( -x_asarr[:,-2], 0, out = fd_arr[:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,0] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:], x_asarr[0:-1,:], out = fd_arr[1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:], 0, out = fd_arr[0,:] )
+ np.subtract( -x_asarr[-2,:], 0, out = fd_arr[-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[0,:] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:], 0, out = fd_arr[0,:,:] )
+ np.subtract( -x_asarr[-2,:,:], 0, out = fd_arr[-1,:,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:], 0, out = fd_arr[:,0,:] )
+ np.subtract( -x_asarr[:,-2,:], 0, out = fd_arr[:,-1,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0], 0, out = fd_arr[:,:,0] )
+ np.subtract( -x_asarr[:,:,-2], 0, out = fd_arr[:,:,-1] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[1:,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:,:], 0, out = fd_arr[0,:,:,:] )
+ np.subtract( -x_asarr[-2,:,:,:], 0, out = fd_arr[-1,:,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[0,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:,:], 0, out = fd_arr[:,0,:,:] )
+ np.subtract( -x_asarr[:,-2,:,:], 0, out = fd_arr[:,-1,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0,:], 0, out = fd_arr[:,:,0,:] )
+ np.subtract( -x_asarr[:,:,-2,:], 0, out = fd_arr[:,:,-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,:,0], 0, out = fd_arr[:,:,:,0] )
+ np.subtract( -x_asarr[:,:,:,-2], 0, out = fd_arr[:,:,:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+ res = out
+ return res
+
+ def range_dim(self):
+ return self.gm_range
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def norm(self):
+ x0 = ImageData(np.random.random_sample(self.domain_dim()))
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
new file mode 100644
index 0000000..3dcc1bd
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py
@@ -0,0 +1,125 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:50:04 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, BlockDataContainer
+import numpy as np
+from ccpi.optimisation.operators import FiniteDiff
+
+#%%
+
+class Gradient(Operator):
+
+ def __init__(self, gm_domain, gm_range=None, bnd_cond = 'Neumann', **kwargs):
+
+ super(Gradient, self).__init__()
+
+ self.gm_domain = gm_domain # Domain of Grad Operator
+ self.gm_range = gm_range # Range of Grad Operator
+ self.bnd_cond = bnd_cond # Boundary conditions of Finite Differences
+
+
+ if self.gm_range is None:
+ self.gm_range = ((len(self.gm_domain),)+self.gm_domain)
+
+ # Kwargs Default options
+ self.memopt = kwargs.get('memopt',False)
+ self.correlation = kwargs.get('correlation','Space')
+
+ #TODO not tested yet, operator norm???
+ self.voxel_size = kwargs.get('voxel_size',[1]*len(gm_domain))
+
+
+ def direct(self, x, out=None):
+
+ tmp = np.zeros(self.gm_range)
+ for i in range(len(self.gm_domain)):
+ tmp[i] = FiniteDiff(self.gm_domain, direction = i, bnd_cond = self.bnd_cond).direct(x.as_array())/self.voxel_size[i]
+# return type(x)(tmp)
+ return type(x)(tmp)
+
+ def adjoint(self, x, out=None):
+
+ tmp = np.zeros(self.gm_domain)
+ for i in range(len(self.gm_domain)):
+ tmp+=FiniteDiff(self.gm_domain, direction = i, bnd_cond = self.bnd_cond).adjoint(x.as_array()[i])/self.voxel_size[i]
+ return type(x)(-tmp)
+
+ def alloc_domain_dim(self):
+ return ImageData(np.zeros(self.gm_domain))
+
+ def alloc_range_dim(self):
+ return ImageData(np.zeros(self.range_dim))
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range
+
+ def norm(self):
+# return np.sqrt(4*len(self.domainDim()))
+ #TODO this takes time for big ImageData
+ # for 2D ||grad|| = sqrt(8), 3D ||grad|| = sqrt(12)
+ x0 = ImageData(np.random.random_sample(self.domain_dim()))
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+if __name__ == '__main__':
+
+ N, M = (200,300)
+ ig = (N,M)
+ G = Gradient(ig)
+ u = DataContainer(np.random.randint(10, size=G.domain_dim()))
+ w = DataContainer(np.random.randint(10, size=G.range_dim()))
+# w = [DataContainer(np.random.randint(10, size=G.domain_dim())),\
+# DataContainer(np.random.randint(10, size=G.domain_dim()))]
+
+ # domain_dim
+ print('Domain {}'.format(G.domain_dim()))
+
+ # range_dim
+ print('Range {}'.format(G.range_dim()))
+
+ # Direct
+ z = G.direct(u)
+
+ # Adjoint
+ z1 = G.adjoint(w)
+
+ print(z)
+ print(z1)
+
+ LHS = (G.direct(u)*w).sum()
+ RHS = (u * G.adjoint(w)).sum()
+#
+ print(LHS,RHS)
+ print(G.norm())
+
+# print(G.adjoint(G.direct(u)))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py
new file mode 100644
index 0000000..d49cb30
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/IdentityOperator.py
@@ -0,0 +1,42 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:30:51 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+
+
+class Identity(Operator):
+
+ def __init__(self, gm_domain, gm_range=None):
+
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+
+ super(Identity, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def norm(self):
+ return 1.0
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
new file mode 100644
index 0000000..d908e49
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -0,0 +1,118 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:53:55 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+from ccpi.optimisation.operators import FiniteDiff
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, DataContainer
+import numpy as np
+
+
+class SymmetrizedGradient(Operator):
+
+ def __init__(self, gm_domain, gm_range, bnd_cond = 'Neumann', **kwargs):
+
+ super(SymmetrizedGradient, self).__init__()
+
+ self.gm_domain = gm_domain # Domain of Grad Operator
+ self.gm_range = gm_range # Range of Grad Operator
+ self.bnd_cond = bnd_cond # Boundary conditions of Finite Differences
+
+ # Kwargs Default options
+ self.memopt = kwargs.get('memopt',False)
+ self.correlation = kwargs.get('correlation','Space')
+
+ #TODO not tested yet, operator norm???
+ self.voxel_size = kwargs.get('voxel_size',[1]*len(gm_domain))
+
+
+ def direct(self, x, out=None):
+
+ tmp = np.zeros(self.gm_range)
+ tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0])
+ tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1])
+ tmp[2] = 0.5 * (FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) +
+ FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) )
+
+ return type(x)(tmp)
+
+
+ def adjoint(self, x, out=None):
+
+ tmp = np.zeros(self.gm_domain)
+
+ tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[0]) + \
+ FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[2])
+
+ tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) + \
+ FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[1])
+
+ return type(x)(tmp)
+
+ def alloc_domain_dim(self):
+ return ImageData(np.zeros(self.gm_domain))
+
+ def alloc_range_dim(self):
+ return ImageData(np.zeros(self.range_dim))
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range
+
+ def norm(self):
+# return np.sqrt(4*len(self.domainDim()))
+ #TODO this takes time for big ImageData
+ # for 2D ||grad|| = sqrt(8), 3D ||grad|| = sqrt(12)
+ x0 = ImageData(np.random.random_sample(self.domain_dim()))
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+
+if __name__ == '__main__':
+
+ ###########################################################################
+ ## Symmetrized Gradient
+
+ N, M = 2, 3
+ ig = (N,M)
+ ig2 = (2,) + ig
+ ig3 = (3,) + ig
+ u1 = DataContainer(np.random.randint(10, size=ig2))
+ w1 = DataContainer(np.random.randint(10, size=ig3))
+
+ E = SymmetrizedGradient(ig2,ig3)
+
+ d1 = E.direct(u1)
+ d2 = E.adjoint(w1)
+
+ LHS = (d1.as_array()[0]*w1.as_array()[0] + \
+ d1.as_array()[1]*w1.as_array()[1] + \
+ 2*d1.as_array()[2]*w1.as_array()[2]).sum()
+
+ RHS = (u1.as_array()[0]*d2.as_array()[0] + \
+ u1.as_array()[1]*d2.as_array()[1]).sum()
+
+
+ print(LHS, RHS, E.norm())
+
+
+#
+
+
+
+
+
+
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py
new file mode 100644
index 0000000..a7c5f09
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/ZeroOperator.py
@@ -0,0 +1,39 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:25:53 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.framework import ImageData
+from ccpi.optimisation.operators import Operator
+
+class ZeroOp(Operator):
+
+ def __init__(self, gm_domain, gm_range):
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ super(ZeroOp, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return ImageData(np.zeros(self.gm_range))
+ else:
+ return ImageData(np.zeros(self.gm_range))
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return ImageData(np.zeros(self.gm_domain))
+ else:
+ return ImageData(np.zeros(self.gm_domain))
+
+ def norm(self):
+ return 0
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__init__.py b/Wrappers/Python/ccpi/optimisation/operators/__init__.py
index cc307e0..1e86efc 100755
--- a/Wrappers/Python/ccpi/optimisation/operators/__init__.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/__init__.py
@@ -10,3 +10,11 @@ from .LinearOperator import LinearOperator
from .ScaledOperator import ScaledOperator
from .BlockOperator import BlockOperator
from .BlockScaledOperator import BlockScaledOperator
+
+
+from .FiniteDifferenceOperator import FiniteDiff
+from .GradientOperator import Gradient
+from .SymmetrizedGradientOperator import SymmetrizedGradient
+from .IdentityOperator import Identity
+from .ZeroOperator import ZeroOp
+
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index 630e33e..87930b5 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -34,7 +34,8 @@ setup(
packages=['ccpi' , 'ccpi.io',
'ccpi.framework', 'ccpi.optimisation',
'ccpi.optimisation.operators',
- 'ccpi.optimisation.algorithms'],
+ 'ccpi.optimisation.algorithms',
+ 'ccpi.optimisation.functions'],
# Project uses reStructuredText, so ensure that the docutils get
# installed or upgraded on the target machine