summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Wrappers/Python/ccpi/framework.py1
-rw-r--r--Wrappers/Python/ccpi/optimisation/Algorithms.py362
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/CompositeOperator.py819
-rw-r--r--Wrappers/Python/setup.py2
4 files changed, 1183 insertions, 1 deletions
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 0c23628..dab2dd9 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -741,6 +741,7 @@ class DataContainer(object):
return numpy.sqrt(self.squared_norm())
+
class ImageData(DataContainer):
'''DataContainer for holding 2D or 3D DataContainer'''
def __init__(self,
diff --git a/Wrappers/Python/ccpi/optimisation/Algorithms.py b/Wrappers/Python/ccpi/optimisation/Algorithms.py
new file mode 100644
index 0000000..0a5cac6
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/Algorithms.py
@@ -0,0 +1,362 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import numpy
+import time
+from ccpi.optimisation.funcs import ZeroFun
+
+class Algorithm(object):
+ '''Base class for iterative algorithms
+
+ provides the minimal infrastructure.
+ Algorithms are iterables so can be easily run in a for loop. They will
+ stop as soon as the stop cryterion is met.
+ The user is required to implement the set_up, __init__, update and
+ should_stop and update_objective methods
+ '''
+
+ def __init__(self):
+ self.iteration = 0
+ self.stop_cryterion = 'max_iter'
+ self.__max_iteration = 0
+ self.__loss = []
+ self.memopt = False
+ self.timing = []
+ def set_up(self, *args, **kwargs):
+ raise NotImplementedError()
+ def update(self):
+ raise NotImplementedError()
+
+ def should_stop(self):
+ '''default stopping cryterion: number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def __iter__(self):
+ return self
+ def next(self):
+ '''python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ if self.should_stop():
+ raise StopIteration()
+ else:
+ time0 = time.time()
+ self.update()
+ self.timing.append( time.time() - time0 )
+ # TODO update every N iterations
+ self.update_objective()
+ self.iteration += 1
+ def get_output(self):
+ '''Returns the solution found'''
+ return self.x
+ def get_current_loss(self):
+ '''Returns the current value of the loss function'''
+ return self.__loss[-1]
+ def get_current_objective(self):
+ return self.get_current_loss()
+ def update_objective(self):
+ raise NotImplementedError()
+ @property
+ def loss(self):
+ return self.__loss
+ @property
+ def objective(self):
+ return self.__loss
+ @property
+ def max_iteration(self):
+ return self.__max_iteration
+ @max_iteration.setter
+ def max_iteration(self, value):
+ assert isinstance(value, int)
+ self.__max_iteration = value
+ def run(self, iterations, callback=None):
+ '''run n iterations and update the user with the callback if specified'''
+ self.max_iteration += iterations
+ for _ in self:
+ if callback is not None:
+ callback(self.iteration, self.get_current_loss())
+
+class GradientDescent(Algorithm):
+ '''Implementation of a simple Gradient Descent algorithm
+ '''
+
+ def __init__(self, **kwargs):
+ '''initialisation can be done at creation time if all
+ proper variables are passed or later with set_up'''
+ super(GradientDescent, self).__init__()
+ self.x = None
+ self.rate = 0
+ self.objective_function = None
+ self.regulariser = None
+ args = ['x_init', 'objective_function', 'rate']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(x_init=kwargs['x_init'],
+ objective_function=kwargs['objective_function'],
+ rate=kwargs['rate'])
+
+ def should_stop(self):
+ '''stopping cryterion, currently only based on number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def set_up(self, x_init, objective_function, rate):
+ '''initialisation of the algorithm'''
+ self.x = x_init.copy()
+ if self.memopt:
+ self.x_update = x_init.copy()
+ self.objective_function = objective_function
+ self.rate = rate
+ self.loss.append(objective_function(x_init))
+
+ def update(self):
+ '''Single iteration'''
+ if self.memopt:
+ self.objective_function.gradient(self.x, out=self.x_update)
+ self.x_update *= -self.rate
+ self.x += self.x_update
+ else:
+ self.x += -self.rate * self.objective_function.grad(self.x)
+
+ def update_objective(self):
+ self.loss.append(self.objective_function(self.x))
+
+
+
+class FISTA(Algorithm):
+ '''Fast Iterative Shrinkage-Thresholding Algorithm
+
+ Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding
+ algorithm for linear inverse problems.
+ SIAM journal on imaging sciences,2(1), pp.183-202.
+
+ Parameters:
+ x_init: initial guess
+ f: data fidelity
+ g: regularizer
+ h:
+ opt: additional algorithm
+ '''
+
+ def __init__(self, **kwargs):
+ '''initialisation can be done at creation time if all
+ proper variables are passed or later with set_up'''
+ super(FISTA, self).__init__()
+ self.f = None
+ self.g = None
+ self.invL = None
+ self.t_old = 1
+ args = ['x_init', 'f', 'g', 'opt']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(x_init=kwargs['x_init'],
+ f=kwargs['f'],
+ g=kwargs['g'],
+ opt=kwargs['opt'])
+
+ def set_up(self, x_init, f=None, g=None, opt=None):
+
+ # default inputs
+ if f is None:
+ self.f = ZeroFun()
+ else:
+ self.f = f
+ if g is None:
+ g = ZeroFun()
+ else:
+ self.g = g
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000, 'memopt':False}
+
+ self.max_iteration = opt['iter'] if 'iter' in opt.keys() else 1000
+ self.tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+ self.memopt = memopt
+
+ # initialization
+ if memopt:
+ self.y = x_init.clone()
+ self.x_old = x_init.clone()
+ self.x = x_init.clone()
+ self.u = x_init.clone()
+ else:
+ self.x_old = x_init.copy()
+ self.y = x_init.copy()
+
+ #timing = numpy.zeros(max_iter)
+ #criter = numpy.zeros(max_iter)
+
+
+ self.invL = 1/f.L
+
+ self.t_old = 1
+
+ def update(self):
+ # algorithm loop
+ #for it in range(0, max_iter):
+
+ if self.memopt:
+ # u = y - invL*f.grad(y)
+ # store the result in x_old
+ self.f.gradient(self.y, out=self.u)
+ self.u.__imul__( -self.invL )
+ self.u.__iadd__( self.y )
+ # x = g.prox(u,invL)
+ self.g.proximal(self.u, self.invL, out=self.x)
+
+ self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2)))
+
+ # y = x + (t_old-1)/t*(x-x_old)
+ self.x.subtract(self.x_old, out=self.y)
+ self.y.__imul__ ((self.t_old-1)/self.t)
+ self.y.__iadd__( self.x )
+
+ self.x_old.fill(self.x)
+ self.t_old = self.t
+
+
+ else:
+ u = self.y - self.invL*self.f.grad(self.y)
+
+ self.x = self.g.prox(u,self.invL)
+
+ self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2)))
+
+ self.y = self.x + (self.t_old-1)/self.t*(self.x-self.x_old)
+
+ self.x_old = self.x.copy()
+ self.t_old = self.t
+
+ def update_objective(self):
+ self.loss.append( self.f(self.x) + self.g(self.x) )
+
+class FBPD(Algorithm):
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
+ constraint = None
+ data_fidelity = None
+ regulariser = None
+ def __init__(self, **kwargs):
+ pass
+ def set_up(self, x_init, operator=None, constraint=None, data_fidelity=None,\
+ regulariser=None, opt=None):
+
+ # default inputs
+ if constraint is None:
+ self.constraint = ZeroFun()
+ else:
+ self.constraint = constraint
+ if data_fidelity is None:
+ data_fidelity = ZeroFun()
+ else:
+ self.data_fidelity = data_fidelity
+ if regulariser is None:
+ self.regulariser = ZeroFun()
+ else:
+ self.regulariser = regulariser
+
+ # algorithmic parameters
+
+
+ # step-sizes
+ self.tau = 2 / (self.data_fidelity.L + 2)
+ self.sigma = (1/self.tau - self.data_fidelity.L/2) / self.regulariser.L
+
+ self.inv_sigma = 1/self.sigma
+
+ # initialization
+ self.x = x_init
+ self.y = operator.direct(self.x)
+
+
+ def update(self):
+
+ # primal forward-backward step
+ x_old = self.x
+ self.x = self.x - self.tau * ( self.data_fidelity.grad(self.x) + self.operator.adjoint(self.y) )
+ self.x = self.constraint.prox(self.x, self.tau);
+
+ # dual forward-backward step
+ self.y = self.y + self.sigma * self.operator.direct(2*self.x - x_old);
+ self.y = self.y - self.sigma * self.regulariser.prox(self.inv_sigma*self.y, self.inv_sigma);
+
+ # time and criterion
+ self.loss = self.constraint(self.x) + self.data_fidelity(self.x) + self.regulariser(self.operator.direct(self.x))
+
+class CGLS(Algorithm):
+
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ '''
+ def __init__(self, **kwargs):
+ super(CGLS, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ return self.set_up(x_init =kwargs['x_init'],
+ operator=kwargs['operator'],
+ data =kwargs['data'])
+
+ def set_up(self, x_init, operator , data ):
+
+ self.r = data.copy()
+ self.x = x_init.copy()
+
+ self.operator = operator
+ self.d = operator.adjoint(self.r)
+
+ self.normr2 = self.d.norm()
+
+ def should_stop(self):
+ '''stopping cryterion, currently only based on number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def update(self):
+
+ Ad = self.operator.direct(self.d)
+ alpha = self.normr2/Ad.norm()
+ self.x += alpha * self.d
+ self.r -= alpha * Ad
+ s = self.operator.adjoint(self.r)
+
+ normr2_new = s.norm()
+ beta = normr2_new/self.normr2
+ self.normr2 = normr2_new
+ self.d = s + beta*self.d
+
+ def update_objective(self):
+ self.loss.append(self.r.norm())
diff --git a/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py b/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py
new file mode 100755
index 0000000..77abb8c
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py
@@ -0,0 +1,819 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 14 12:36:40 2019
+
+@author: ofn77899
+"""
+#from ccpi.optimisation.ops import Operator
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import AcquisitionData, ImageData
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def __init__(self, **kwargs):
+ self.scalar = 1
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ raise NotImplementedError
+ def size(self):
+ # To be defined for specific class
+ raise NotImplementedError
+ def norm(self):
+ raise NotImplementedError
+ def allocate_direct(self):
+ '''Allocates memory on the Y space'''
+ raise NotImplementedError
+ def allocate_adjoint(self):
+ '''Allocates memory on the X space'''
+ raise NotImplementedError
+ def range_dim(self):
+ raise NotImplementedError
+ def domain_dim(self):
+ raise NotImplementedError
+ def __rmul__(self, other):
+ assert isinstance(other, Number)
+ self.scalar = other
+ return self
+
+class LinearOperator(Operator):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return True
+ def adjoint(self,x, out=None):
+ raise NotImplementedError
+
+# this should go in the framework
+
+class CompositeDataContainer(object):
+ '''Class to hold a composite operator'''
+ __array_priority__ = 1
+ def __init__(self, *args, shape=None):
+ '''containers must be passed row by row'''
+ self.containers = args
+ self.index = 0
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+# for i in range(shape[0]):
+# b.append([])
+# for j in range(shape[1]):
+# b[-1].append(args[i*shape[1]+j])
+# indices.append(i*shape[1]+j)
+# self.containers = b
+
+ def __iter__(self):
+ return self
+ def next(self):
+ '''python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ try:
+ out = self[self.index]
+ except IndexError as ie:
+ raise StopIteration()
+ self.index+=1
+ return out
+
+ def is_compatible(self, other):
+ '''basic check if the size of the 2 objects fit'''
+ if isinstance(other, Number):
+ return True
+ elif isinstance(other, list):
+ # TODO look elements should be numbers
+ for ot in other:
+ if not isinstance(ot, (Number,\
+ numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ raise ValueError('List/ numpy array can only contain numbers {}'\
+ .format(type(ot)))
+ return len(self.containers) == len(other)
+ elif isinstance(other, numpy.ndarray):
+ return self.shape == other.shape
+ return len(self.containers) == len(other.containers)
+ def get_item(self, row, col=0):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+
+ index = row*self.shape[1]+col
+ return self.containers[index]
+
+ def add(self, other, out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.add(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def subtract(self, other, out=None , *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.subtract(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def multiply(self, other , out=None, *args, **kwargs):
+ self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.multiply(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list):
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ elif isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def divide(self, other , out=None ,*args, **kwargs):
+ self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.divide(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def power(self, other , out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.power(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def maximum(self,other, out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.maximum(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ ## unary operations
+ def abs(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.abs(out, *args, **kwargs) for el in self.containers])
+ def sign(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.sign(out, *args, **kwargs) for el in self.containers])
+ def sqrt(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.sqrt(out, *args, **kwargs) for el in self.containers])
+ def conjugate(self, out=None):
+ return type(self)(*[el.conjugate() for el in self.containers])
+
+ ## reductions
+ def sum(self, out=None, *args, **kwargs):
+ return numpy.asarray([ el.sum(*args, **kwargs) for el in self.containers])
+ def norm(self):
+ y = numpy.asarray([el**2 for el in self.containers])
+ return y.sum()
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+ def clone(self):
+ return type(self)(*[el.copy() for el in self.containers])
+
+ def __add__(self, other):
+ return self.add( other )
+ # __radd__
+
+ def __sub__(self, other):
+ return self.subtract( other )
+ # __rsub__
+
+ def __mul__(self, other):
+ return self.multiply(other)
+ # __rmul__
+
+ def __div__(self, other):
+ return self.divide(other)
+ # __rdiv__
+ def __truediv__(self, other):
+ return self.divide(other)
+
+ def __pow__(self, other):
+ return self.power(other)
+ # reverse operand
+ def __radd__(self, other):
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ '''Reverse multiplication
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ return other.power(self)
+
+ def __iadd__(self, other):
+ if isinstance (other, CompositeDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el += ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el += other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el += ot
+ return self
+ # __radd__
+
+ def __isub__(self, other):
+ if isinstance (other, CompositeDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el -= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el -= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el -= ot
+ return self
+ # __rsub__
+
+ def __imul__(self, other):
+ if isinstance (other, CompositeDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el *= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el *= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el *= ot
+ return self
+ # __imul__
+
+ def __idiv__(self, other):
+ if isinstance (other, CompositeDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el /= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el /= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el /= ot
+ return self
+ # __rdiv__
+ def __itruediv__(self, other):
+ return self.__idiv__(other)
+
+
+
+class CompositeOperator(Operator):
+ '''Class to hold a composite operator'''
+ def __init__(self, *args, shape=None):
+ self.operators = args
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+ def get_item(self, row, col):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+
+ index = row*self.shape[1]+col
+ return self.operators[index]
+
+ def norm(self):
+ norm = [op.norm() for op in self.operators]
+ b = []
+ for i in range(self.shape[0]):
+ b.append([])
+ for j in range(self.shape[1]):
+ b[-1].append(norm[i*self.shape[1]+j])
+ return numpy.asarray(b)
+
+ def direct(self, x, out=None):
+ shape = self.get_output_shape(x.shape)
+ res = []
+ for row in range(self.shape[0]):
+ for col in range(self.shape[1]):
+ if col == 0:
+ prod = self.get_item(row,col).direct(x.get_item(col))
+ else:
+ prod += self.get_item(row,col).direct(x.get_item(col))
+ res.append(prod)
+ return CompositeDataContainer(*res, shape=shape)
+
+ def adjoint(self, x, out=None):
+ shape = self.get_output_shape(x.shape, adjoint=True)
+ res = []
+ for row in range(self.shape[1]):
+ for col in range(self.shape[0]):
+ if col == 0:
+ prod = self.get_item(row,col).adjoint(x.get_item(col))
+ else:
+ prod += self.get_item(row,col).adjoint(x.get_item(col))
+ res.append(prod)
+ return CompositeDataContainer(*res, shape=shape)
+
+ def get_output_shape(self, xshape, adjoint=False):
+ sshape = self.shape[1]
+ oshape = self.shape[0]
+ if adjoint:
+ sshape = self.shape[0]
+ oshape = self.shape[1]
+ if sshape != xshape[0]:
+ raise ValueError('Incompatible shapes {} {}'.format(self.shape, xshape))
+ return (oshape, xshape[-1])
+
+'''
+ def direct(self, x, out=None):
+
+ out = [None]*self.dimension[0]
+ for i in range(self.dimension[0]):
+ z1 = ImageData(np.zeros(self.compMat[i][0].range_dim()))
+ for j in range(self.dimension[1]):
+ z1 += self.compMat[i][j].direct(x[j])
+ out[i] = z1
+
+ return out
+
+
+ def adjoint(self, x, out=None):
+
+ out = [None]*self.dimension[1]
+ for i in range(self.dimension[1]):
+ z2 = ImageData(np.zeros(self.compMat[0][i].domain_dim()))
+ for j in range(self.dimension[0]):
+ z2 += self.compMat[j][i].adjoint(x[j])
+ out[i] = z2
+'''
+from ccpi.optimisation.Algorithms import Algorithm
+from collections.abc import Iterable
+class CGLS(Algorithm):
+
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ '''
+ def __init__(self, **kwargs):
+ super(CGLS, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ return self.set_up(x_init =kwargs['x_init'],
+ operator=kwargs['operator'],
+ data =kwargs['data'])
+
+ def set_up(self, x_init, operator , data ):
+
+ self.r = data.copy()
+ self.x = x_init.copy()
+
+ self.operator = operator
+ self.d = operator.adjoint(self.r)
+
+
+ self.normr2 = (self.d * self.d).sum()
+ if isinstance(self.normr2, Iterable):
+ self.normr2 = sum(self.normr2)
+ #self.normr2 = numpy.sqrt(self.normr2)
+ print ("set_up" , self.normr2)
+
+ def should_stop(self):
+ '''stopping cryterion, currently only based on number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def update(self):
+
+ Ad = self.operator.direct(self.d)
+ norm = (Ad*Ad).sum()
+ if isinstance(norm, Iterable):
+ norm = sum(norm)
+ #norm = numpy.sqrt(norm)
+ print (norm)
+ alpha = self.normr2/norm
+ self.x += (self.d * alpha)
+ self.r -= (Ad * alpha)
+ s = self.operator.adjoint(self.r)
+
+ normr2_new = (s*s).sum()
+ if isinstance(normr2_new, Iterable):
+ normr2_new = sum(normr2_new)
+ #normr2_new = numpy.sqrt(normr2_new)
+ print (normr2_new)
+
+ beta = normr2_new/self.normr2
+ self.normr2 = normr2_new
+ self.d = s + beta*self.d
+
+ def update_objective(self):
+ self.loss.append((self.r*self.r).sum())
+
+ def run(self, iterations, callback=None):
+ self.max_iteration += iterations
+ for _ in self:
+ if callback is not None:
+ callback(self.iteration, self.get_current_loss())
+
+
+if __name__ == '__main__':
+ #from ccpi.optimisation.Algorithms import GradientDescent
+ from ccpi.plugins.ops import CCPiProjectorSimple
+ from ccpi.optimisation.ops import PowerMethodNonsquare
+ from ccpi.optimisation.ops import TomoIdentity
+ from ccpi.optimisation.funcs import Norm2sq, Norm1
+ from ccpi.framework import ImageGeometry, AcquisitionGeometry
+ from ccpi.optimisation.Algorithms import GradientDescent
+ #from ccpi.optimisation.Algorithms import CGLS
+ import matplotlib.pyplot as plt
+
+ ig0 = ImageGeometry(2,3,4)
+ ig1 = ImageGeometry(12,42,55,32)
+
+ data0 = ImageData(geometry=ig0)
+ data1 = ImageData(geometry=ig1) + 1
+
+ data2 = ImageData(geometry=ig0) + 2
+ data3 = ImageData(geometry=ig1) + 3
+
+ cp0 = CompositeDataContainer(data0,data1)
+ cp1 = CompositeDataContainer(data2,data3)
+#
+ a = [ (el, ot) for el,ot in zip(cp0.containers,cp1.containers)]
+ print (a[0][0].shape)
+ #cp2 = CompositeDataContainer(*a)
+ cp2 = cp0.add(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
+
+ cp2 = cp0 + cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
+ cp2 = cp0 + 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = cp0 + [1 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 3., decimal = 5)
+ cp2 += cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 += 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +7., decimal = 5)
+
+ cp2 += [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 6., decimal = 5)
+
+
+ cp2 = cp0.subtract(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
+ cp2 = cp0 - cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
+
+ cp2 = cp0 - 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0, decimal = 5)
+ cp2 = cp0 - [1 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -1., decimal = 5)
+
+ cp2 -= cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
+
+ cp2 -= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -5., decimal = 5)
+
+ cp2 -= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
+
+
+ cp2 = cp0.multiply(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
+ cp2 = cp0 * cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
+
+ cp2 = cp0 * 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2, decimal = 5)
+ cp2 = 2 * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2, decimal = 5)
+ cp2 = cp0 * [3 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = cp0 * numpy.asarray([3 ,2])
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+
+ cp2 = [3,2] * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = numpy.asarray([3,2]) * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = [3,2,3] * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+
+ cp2 *= cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 *= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 *= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -6., decimal = 5)
+
+
+ cp2 = cp0.divide(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
+ cp2 = cp0/cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
+
+ cp2 = cp0 / 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp2 = cp0 / [3 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp2 = cp0 / numpy.asarray([3 ,2])
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp3 = numpy.asarray([3 ,2]) / (cp0+1)
+ numpy.testing.assert_almost_equal(cp3.get_item(0,0).as_array()[0][0][0] , 3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp3.get_item(1,0).as_array()[0][0][0] , 1, decimal = 5)
+
+ cp2 += 1
+ cp2 /= cp1
+ # TODO fix inplace division
+
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1./2 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1.5/3., decimal = 5)
+
+ cp2 /= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0.5 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+
+ cp2 /= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -0.5/2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -0.5, decimal = 5)
+ ####
+
+ cp2 = cp0.power(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+ cp2 = cp0**cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+
+ cp2 = cp0 ** 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0., decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1., decimal = 5)
+
+ cp2 = cp0.maximum(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == cp1.get_item(0,0).as_array()[0][0][0])
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], cp2.get_item(1,0).as_array()[0][0][0], decimal=4)
+
+
+ cp2 = cp0.abs()
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0], 0., decimal=4)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+
+ cp2 = cp0.subtract(cp1)
+ s = cp2.sign()
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], -1., decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], -1., decimal=4)
+
+ cp2 = cp0.add(cp1)
+ s = cp2.sqrt()
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], numpy.sqrt(2), decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], numpy.sqrt(4), decimal=4)
+
+ s = cp0.sum()
+ numpy.testing.assert_almost_equal(s[0], 0, decimal=4)
+ s0 = 1
+ s1 = 1
+ for i in cp0.get_item(0,0).shape:
+ s0 *= i
+ for i in cp0.get_item(1,0).shape:
+ s1 *= i
+
+ numpy.testing.assert_almost_equal(s[1], cp0.get_item(0,0).as_array()[0][0][0]*s0 +cp0.get_item(1,0).as_array()[0][0][0]*s1, decimal=4)
+
+ # Set up phantom size N x N x vert by creating ImageGeometry, initialising the
+ # ImageData object with this geometry and empty array and finally put some
+ # data into its array, and display one slice as image.
+
+ # Image parameters
+ N = 128
+ vert = 4
+
+ # Set up image geometry
+ ig = ImageGeometry(voxel_num_x=N,
+ voxel_num_y=N,
+ voxel_num_z=vert)
+
+ # Set up empty image data
+ Phantom = ImageData(geometry=ig,
+ dimension_labels=['horizontal_x',
+ 'horizontal_y',
+ 'vertical'])
+ Phantom += 0.05
+ # Populate image data by looping over and filling slices
+ i = 0
+ while i < vert:
+ if vert > 1:
+ x = Phantom.subset(vertical=i).array
+ else:
+ x = Phantom.array
+ x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+ x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.94
+ if vert > 1 :
+ Phantom.fill(x, vertical=i)
+ i += 1
+
+
+ perc = 0.02
+ # Set up empty image data
+ noise = ImageData(numpy.random.normal(loc = 0.04 ,
+ scale = perc ,
+ size = Phantom.shape), geometry=ig,
+ dimension_labels=['horizontal_x',
+ 'horizontal_y',
+ 'vertical'])
+ Phantom += noise
+
+ # Set up AcquisitionGeometry object to hold the parameters of the measurement
+ # setup geometry: # Number of angles, the actual angles from 0 to
+ # pi for parallel beam, set the width of a detector
+ # pixel relative to an object pixe and the number of detector pixels.
+ angles_num = 20
+ det_w = 1.0
+ det_num = N
+
+ angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False,dtype=numpy.float32)*\
+ 180/numpy.pi
+
+ # Inputs: Geometry, 2D or 3D, angles, horz detector pixel count,
+ # horz detector pixel size, vert detector pixel count,
+ # vert detector pixel size.
+ ag = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ N,
+ det_w,
+ vert,
+ det_w)
+
+ # Set up Operator object combining the ImageGeometry and AcquisitionGeometry
+ # wrapping calls to CCPi projector.
+ A = CCPiProjectorSimple(ig, ag)
+
+ # Forward and backprojection are available as methods direct and adjoint. Here
+ # generate test data b and some noise
+
+ b = A.direct(Phantom)
+
+
+ #z = A.adjoint(b)
+
+
+ # Using the test data b, different reconstruction methods can now be set up as
+ # demonstrated in the rest of this file. In general all methods need an initial
+ # guess and some algorithm options to be set. Note that 100 iterations for
+ # some of the methods is a very low number and 1000 or 10000 iterations may be
+ # needed if one wants to obtain a converged solution.
+ x_init = ImageData(geometry=ig,
+ dimension_labels=['horizontal_x','horizontal_y','vertical'])
+ X_init = CompositeDataContainer(x_init)
+ B = CompositeDataContainer(b,
+ ImageData(geometry=ig, dimension_labels=['horizontal_x','horizontal_y','vertical']))
+
+ # setup a tomo identity
+ Ibig = 1e5 * TomoIdentity(geometry=ig)
+ Ismall = 1e-5 * TomoIdentity(geometry=ig)
+
+ # composite operator
+ Kbig = CompositeOperator(A, Ibig, shape=(2,1))
+ Ksmall = CompositeOperator(A, Ismall, shape=(2,1))
+
+ #out = K.direct(X_init)
+
+ f = Norm2sq(Kbig,B)
+ f.L = 0.00003
+
+ fsmall = Norm2sq(Ksmall,B)
+ f.L = 0.00003
+
+ simplef = Norm2sq(A, b)
+ simplef.L = 0.00003
+
+ gd = GradientDescent( x_init=x_init, objective_function=simplef,
+ rate=simplef.L)
+ gd.max_iteration = 10
+
+ cg = CGLS()
+ cg.set_up(X_init, Kbig, B )
+ cg.max_iteration = 1
+
+ cgsmall = CGLS()
+ cgsmall.set_up(X_init, Ksmall, B )
+ cgsmall.max_iteration = 1
+
+
+ cgs = CGLS()
+ cgs.set_up(x_init, A, b )
+ cgs.max_iteration = 6
+#
+ #out.__isub__(B)
+ #out2 = K.adjoint(out)
+
+ #(2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
+
+ for _ in gd:
+ print ("iteration {} {}".format(gd.iteration, gd.get_current_loss()))
+
+ cg.run(10, lambda it,val: print ("iteration {} objective {}".format(it,val)))
+
+ cgs.run(10, lambda it,val: print ("iteration {} objective {}".format(it,val)))
+
+ cgsmall.run(10, lambda it,val: print ("iteration {} objective {}".format(it,val)))
+ cgsmall.run(10, lambda it,val: print ("iteration {} objective {}".format(it,val)))
+# for _ in cg:
+# print ("iteration {} {}".format(cg.iteration, cg.get_current_loss()))
+#
+# fig = plt.figure()
+# plt.imshow(cg.get_output().get_item(0,0).subset(vertical=0).as_array())
+# plt.title('Composite CGLS')
+# plt.show()
+#
+# for _ in cgs:
+# print ("iteration {} {}".format(cgs.iteration, cgs.get_current_loss()))
+#
+ fig = plt.figure()
+ plt.subplot(1,5,1)
+ plt.imshow(Phantom.subset(vertical=0).as_array())
+ plt.title('Simulated Phantom')
+ plt.subplot(1,5,2)
+ plt.imshow(gd.get_output().subset(vertical=0).as_array())
+ plt.title('Simple Gradient Descent')
+ plt.subplot(1,5,3)
+ plt.imshow(cgs.get_output().subset(vertical=0).as_array())
+ plt.title('Simple CGLS')
+ plt.subplot(1,5,4)
+ plt.imshow(cg.get_output().get_item(0,0).subset(vertical=0).as_array())
+ plt.title('Composite CGLS\nbig lambda')
+ plt.subplot(1,5,5)
+ plt.imshow(cgsmall.get_output().get_item(0,0).subset(vertical=0).as_array())
+ plt.title('Composite CGLS\nsmall lambda')
+ plt.show() \ No newline at end of file
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index eaf124b..85907eb 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -32,7 +32,7 @@ setup(
name="ccpi-framework",
version=cil_version,
packages=['ccpi' , 'ccpi.io', 'ccpi.optimisation',
- 'ccpi.optimisation.algorithms'],
+ 'ccpi.optimisation.operators', 'ccpi.optimisation.algorithms'],
# Project uses reStructuredText, so ensure that the docutils get
# installed or upgraded on the target machine