diff options
-rw-r--r-- | Wrappers/Python/wip/Demos/LeastSq_CGLS_FISTA_PDHG.py | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/Demos/LeastSq_CGLS_FISTA_PDHG.py b/Wrappers/Python/wip/Demos/LeastSq_CGLS_FISTA_PDHG.py new file mode 100644 index 0000000..97c71ba --- /dev/null +++ b/Wrappers/Python/wip/Demos/LeastSq_CGLS_FISTA_PDHG.py @@ -0,0 +1,154 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry + +import numpy as np +import numpy +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG, CGLS, FISTA + +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, FunctionOperatorComposition +from ccpi.astra.ops import AstraProjectorSimple + +#%% + +N = 68 +x = np.zeros((N,N)) +x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +data = ImageData(x) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) + +detectors = N +angles = np.linspace(0, np.pi, N, dtype=np.float32) + +ag = AcquisitionGeometry('parallel','2D',angles, detectors) +Aop = AstraProjectorSimple(ig, ag, 'cpu') +sin = Aop.direct(data) + +noisy_data = sin + + +#%% +############################################################################### +## Setup and run the CGLS algorithm + +x_init = ig.allocate() +cgls = CGLS(x_init=x_init, operator=Aop, data=noisy_data) +cgls.max_iteration = 500 +cgls.update_objective_interval = 50 +cgls.run(500, verbose=True) + +#%% +plt.imshow(cgls.get_output().as_array()) +#%% +############################################################################### +## Setup and run the PDHG algorithm + +operator = Aop +f = L2NormSquared(b = noisy_data) +g = ZeroFunction() + +## Compute operator Norm +normK = operator.norm() + +## Primal & dual stepsizes +sigma = 0.1 +tau = 1/(sigma*normK**2) + +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) +pdhg.max_iteration = 2000 +pdhg.update_objective_interval = 50 +pdhg.run(2000) + + +#%% +############################################################################### +## Setup and run the FISTA algorithm + +fidelity = FunctionOperatorComposition(L2NormSquared(b=noisy_data), Aop) +regularizer = ZeroFunction() + +## Setup and run the FISTA algorithm +opt = {'memopt':True} +fista = FISTA(x_init=x_init , f=fidelity, g=regularizer, opt=opt) +fista.max_iteration = 2000 +fista.update_objective_interval = 200 +fista.run(2000, verbose=True) + +#%% Show results + +diff1 = pdhg.get_output() - cgls.get_output() +diff2 = fista.get_output() - cgls.get_output() + +print( diff1.norm()) +print( diff2.norm()) + +plt.figure(figsize=(10,10)) +plt.subplot(2,3,1) +plt.imshow(cgls.get_output().as_array()) +plt.title('CGLS reconstruction') +plt.subplot(2,3,2) +plt.imshow(pdhg.get_output().as_array()) +plt.title('PDHG reconstruction') +plt.subplot(2,3,3) +plt.imshow(fista.get_output().as_array()) +plt.title('FISTA reconstruction') +plt.subplot(2,3,4) +plt.imshow(diff1.abs().as_array()) +plt.title('Diff PDHG vs CGLS') +plt.colorbar() +plt.subplot(2,3,5) +plt.imshow(diff2.abs().as_array()) +plt.title('Diff FISTA vs CGLS') +plt.colorbar() +plt.show() + + + + + + + + + + + + + + + + + + + + + + +# +# +# +# +# +# +# +# |