summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Gaussian.py225
-rw-r--r--Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Poisson.py212
-rw-r--r--Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_SaltPepper.py213
-rw-r--r--Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D.py173
-rw-r--r--Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_gaussian.py212
-rw-r--r--Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py230
-rwxr-xr-xWrappers/Python/demos/PDHG_examples/Tomo/phantom.matbin5583 -> 0 bytes
7 files changed, 0 insertions, 1265 deletions
diff --git a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Gaussian.py b/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Gaussian.py
deleted file mode 100644
index 9d00ee1..0000000
--- a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Gaussian.py
+++ /dev/null
@@ -1,225 +0,0 @@
-#========================================================================
-# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).
-
-# Copyright 2017 UKRI-STFC
-# Copyright 2017 University of Manchester
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#=========================================================================
-"""
-
-Total Variation Denoising using PDHG algorithm:
-
-
-Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2}
-
- \alpha: Regularization parameter
-
- \nabla: Gradient operator
-
- g: Noisy Data with Gaussian Noise
-
- Method = 0 ( PDHG - split ) : K = [ \nabla,
- Identity]
-
-
- Method = 1 (PDHG - explicit ): K = \nabla
-
-"""
-
-from ccpi.framework import ImageData, ImageGeometry
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction
-
-from ccpi.framework import TestData
-import os, sys
-loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-
-# Load Data
-N = 200
-M = 300
-
-
-# user can change the size of the input data
-# you can choose between
-# TestData.PEPPERS 2D + Channel
-# TestData.BOAT 2D
-# TestData.CAMERA 2D
-# TestData.RESOLUTION_CHART 2D
-# TestData.SIMPLE_PHANTOM_2D 2D
-data = loader.load(TestData.BOAT, size=(N,M), scale=(0,1))
-
-ig = data.geometry
-ag = ig
-
-# Create Noisy data. Add Gaussian noise
-np.random.seed(10)
-noisy_data = ImageData( data.as_array() + np.random.normal(0, 0.1, size=data.shape) )
-
-print ("min {} max {}".format(data.as_array().min(), data.as_array().max()))
-
-# Show Ground Truth and Noisy Data
-plt.figure()
-plt.subplot(1,3,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(1,3,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(1,3,3)
-plt.imshow((data - noisy_data).as_array())
-plt.title('diff')
-plt.colorbar()
-
-plt.show()
-
-# Regularisation Parameter
-alpha = .1
-
-method = '0'
-
-if method == '0':
-
- # Create operators
- op1 = Gradient(ig, correlation=Gradient.CORRELATION_SPACE)
- op2 = Identity(ig, ag)
-
- # Create BlockOperator
- operator = BlockOperator(op1, op2, shape=(2,1) )
-
- # Create functions
- f1 = alpha * MixedL21Norm()
- f2 = 0.5 * L2NormSquared(b = noisy_data)
- f = BlockFunction(f1, f2)
-
- g = ZeroFunction()
-
-else:
-
- # Without the "Block Framework"
- operator = Gradient(ig)
- f = alpha * MixedL21Norm()
- g = 0.5 * L2NormSquared(b = noisy_data)
-
-# Compute Operator Norm
-normK = operator.norm()
-
-# Primal & Dual stepsizes
-sigma = 1
-tau = 1/(sigma*normK**2)
-
-# Setup and Run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
-pdhg.max_iteration = 10000
-pdhg.update_objective_interval = 100
-pdhg.run(1000, verbose=True)
-
-# Show Results
-plt.figure()
-plt.subplot(1,3,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.clim(0,1)
-plt.subplot(1,3,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.clim(0,1)
-plt.subplot(1,3,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.clim(0,1)
-plt.colorbar()
-plt.show()
-
-plt.plot(np.linspace(0,N,M), noisy_data.as_array()[int(N/2),:], label = 'Noisy data')
-plt.plot(np.linspace(0,N,M), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,M), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
-
-
-#%% Check with CVX solution
-
-from ccpi.optimisation.operators import SparseFiniteDiff
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-
-if cvx_not_installable:
-
- ##Construct problem
- u = Variable(ig.shape)
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- # Define Total Variation as a regulariser
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
- fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
-
- # choose solver
- if 'MOSEK' in installed_solvers():
- solver = MOSEK
- else:
- solver = SCS
-
- obj = Minimize( regulariser + fidelity)
- prob = Problem(obj)
- result = prob.solve(verbose = True, solver = MOSEK)
-
- diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(u.value)
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,M), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,M), u.value[int(N/2),:], label = 'CVX')
- plt.plot(np.linspace(0,N,M), data.as_array()[int(N/2),:], label = 'Truth')
-
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
-
diff --git a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Poisson.py
deleted file mode 100644
index 1d887c1..0000000
--- a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_Poisson.py
+++ /dev/null
@@ -1,212 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-
-Total Variation Denoising using PDHG algorithm:
-
-Problem: min_x, x>0 \alpha * ||\nabla x||_{2,1} + \int x - g * log(x)
-
- \alpha: Regularization parameter
-
- \nabla: Gradient operator
-
- g: Noisy Data with Poisson Noise
-
-
- Method = 0 ( PDHG - split ) : K = [ \nabla,
- Identity]
-
-
- Method = 1 (PDHG - explicit ): K = \nabla
-
-"""
-
-from ccpi.framework import ImageData, ImageGeometry
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
-from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, IndicatorBox, \
- MixedL21Norm, BlockFunction
-
-from skimage.util import random_noise
-
-# Create phantom for TV Poisson denoising
-N = 100
-
-data = np.zeros((N,N))
-data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-data = ImageData(data)
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-ag = ig
-
-# Create noisy data. Apply Poisson noise
-n1 = random_noise(data.as_array(), mode = 'poisson', seed = 10)
-noisy_data = ImageData(n1)
-
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(10,10))
-plt.subplot(2,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(2,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-
-# Regularisation Parameter
-alpha = 2
-
-method = '0'
-
-if method == '0':
-
- # Create operators
- op1 = Gradient(ig)
- op2 = Identity(ig, ag)
-
- # Create BlockOperator
- operator = BlockOperator(op1, op2, shape=(2,1) )
-
- # Create functions
-
- f1 = alpha * MixedL21Norm()
- f2 = KullbackLeibler(noisy_data)
- f = BlockFunction(f1, f2)
- g = IndicatorBox(lower=0)
-
-else:
-
- # Without the "Block Framework"
- operator = Gradient(ig)
- f = alpha * MixedL21Norm()
- g = KullbackLeibler(noisy_data)
-
-
-# Compute operator Norm
-normK = operator.norm()
-
-# Primal & Dual stepsizes
-sigma = 1
-tau = 1/(sigma*normK**2)
-
-# Setup and Run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
-pdhg.max_iteration = 3000
-pdhg.update_objective_interval = 200
-pdhg.run(3000, verbose=True)
-
-
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(3,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(3,1,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.colorbar()
-plt.show()
-##
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
-
-
-#%% Check with CVX solution
-
-from ccpi.optimisation.operators import SparseFiniteDiff
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-
-if cvx_not_installable:
-
- ##Construct problem
- u1 = Variable(ig.shape)
- q = Variable()
- w = Variable()
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- # Define Total Variation as a regulariser
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u1), DY.matrix() * vec(u1)]), 2, axis = 0))
- fidelity = sum(kl_div(noisy_data.as_array(), u1))
-
- constraints = [q>=fidelity, u1>=0]
-
- solver = ECOS
- obj = Minimize( regulariser + q)
- prob = Problem(obj, constraints)
- result = prob.solve(verbose = True, solver = solver)
-
-
- diff_cvx = numpy.abs( pdhg.get_output().as_array() - u1.value )
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(u1.value)
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX')
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
-
-
-
-
-
diff --git a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_SaltPepper.py b/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_SaltPepper.py
deleted file mode 100644
index c5709c3..0000000
--- a/Wrappers/Python/demos/PDHG_examples/TV_Denoising/PDHG_TV_Denoising_SaltPepper.py
+++ /dev/null
@@ -1,213 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-
-Total Variation Denoising using PDHG algorithm:
-
-
-Problem: min_x, x>0 \alpha * ||\nabla x||_{2,1} + ||x-g||_{1}
-
- \alpha: Regularization parameter
-
- \nabla: Gradient operator
-
- g: Noisy Data with Salt & Pepper Noise
-
-
- Method = 0 ( PDHG - split ) : K = [ \nabla,
- Identity]
-
-
- Method = 1 (PDHG - explicit ): K = \nabla
-
-
-"""
-
-from ccpi.framework import ImageData, ImageGeometry
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L1Norm, \
- MixedL21Norm, BlockFunction
-
-from skimage.util import random_noise
-
-# Create phantom for TV Salt & Pepper denoising
-N = 100
-
-data = np.zeros((N,N))
-data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-data = ImageData(data)
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-ag = ig
-
-# Create noisy data. Apply Salt & Pepper noise
-n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2)
-noisy_data = ImageData(n1)
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(15,15))
-plt.subplot(2,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(2,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-# Regularisation Parameter
-alpha = 2
-
-method = '0'
-
-if method == '0':
-
- # Create operators
- op1 = Gradient(ig)
- op2 = Identity(ig, ag)
-
- # Create BlockOperator
- operator = BlockOperator(op1, op2, shape=(2,1) )
-
- # Create functions
- f1 = alpha * MixedL21Norm()
- f2 = L1Norm(b = noisy_data)
- f = BlockFunction(f1, f2)
-
- g = ZeroFunction()
-
-else:
-
- # Without the "Block Framework"
- operator = Gradient(ig)
- f = alpha * MixedL21Norm()
- g = L1Norm(b = noisy_data)
-
-
-# Compute operator Norm
-normK = operator.norm()
-
-# Primal & dual stepsizes
-sigma = 1
-tau = 1/(sigma*normK**2)
-opt = {'niter':2000, 'memopt': True}
-
-# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
-pdhg.max_iteration = 2000
-pdhg.update_objective_interval = 50
-pdhg.run(2000)
-
-
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(3,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(3,1,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.colorbar()
-plt.show()
-##
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
-
-
-##%% Check with CVX solution
-
-from ccpi.optimisation.operators import SparseFiniteDiff
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-
-if cvx_not_installable:
-
- ##Construct problem
- u = Variable(ig.shape)
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- # Define Total Variation as a regulariser
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
- fidelity = pnorm( u - noisy_data.as_array(),1)
-
- # choose solver
- if 'MOSEK' in installed_solvers():
- solver = MOSEK
- else:
- solver = SCS
-
- obj = Minimize( regulariser + fidelity)
- prob = Problem(obj)
- result = prob.solve(verbose = True, solver = solver)
-
- diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value )
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(u.value)
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0]))
-
-
-
-
-
diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D.py b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D.py
deleted file mode 100644
index f179e95..0000000
--- a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D.py
+++ /dev/null
@@ -1,173 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-
-Total Variation 2D Tomography Reconstruction using PDHG algorithm:
-
-
-Problem: min_u \alpha * ||\nabla u||_{2,1} + \frac{1}{2}||Au - g||^{2}
- min_u, u>0 \alpha * ||\nabla u||_{2,1} + \int A u - g log (Au + \eta)
-
- \nabla: Gradient operator
- A: System Matrix
- g: Noisy sinogram
- \eta: Background noise
-
- \alpha: Regularization parameter
-
-"""
-
-from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction, KullbackLeibler, IndicatorBox
-
-from ccpi.astra.ops import AstraProjectorSimple
-from ccpi.framework import TestData
-from PIL import Image
-import os, sys
-if int(numpy.version.version.split('.')[1]) > 12:
- from skimage.util import random_noise
-else:
- from demoutil import random_noise
-
-import scipy.io
-
-# user supplied input
-if len(sys.argv) > 1:
- which_noise = int(sys.argv[1])
-else:
- which_noise = 1
-
-# Load 256 shepp-logan
-data256 = scipy.io.loadmat('phantom.mat')['phantom256']
-data = ImageData(numpy.array(Image.fromarray(data256).resize((256,256))))
-N, M = data.shape
-ig = ImageGeometry(voxel_num_x=N, voxel_num_y=M)
-
-# Add it to testdata or use tomophantom
-#loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-#data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(50, 50))
-#ig = data.geometry
-
-# Create acquisition data and geometry
-detectors = N
-angles = np.linspace(0, np.pi, 180)
-ag = AcquisitionGeometry('parallel','2D',angles, detectors)
-
-# Select device
-device = '0'
-#device = input('Available device: GPU==1 / CPU==0 ')
-if device=='1':
- dev = 'gpu'
-else:
- dev = 'cpu'
-
-Aop = AstraProjectorSimple(ig, ag, dev)
-sin = Aop.direct(data)
-
-# Create noisy data. Apply Gaussian noise
-noises = ['gaussian', 'poisson']
-noise = noises[which_noise]
-
-if noise == 'poisson':
- scale = 5
- eta = 0
- noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag)
-elif noise == 'gaussian':
- n1 = np.random.normal(0, 1, size = ag.shape)
- noisy_data = AcquisitionData(n1 + sin.as_array(), ag)
-else:
- raise ValueError('Unsupported Noise ', noise)
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(10,10))
-plt.subplot(1,2,2)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(1,2,1)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-# Create operators
-op1 = Gradient(ig)
-op2 = Aop
-
-# Create BlockOperator
-operator = BlockOperator(op1, op2, shape=(2,1) )
-
-# Compute operator Norm
-normK = operator.norm()
-
-# Create functions
-if noise == 'poisson':
- alpha = 3
- f2 = KullbackLeibler(noisy_data)
- g = IndicatorBox(lower=0)
- sigma = 1
- tau = 1/(sigma*normK**2)
-
-elif noise == 'gaussian':
- alpha = 20
- f2 = 0.5 * L2NormSquared(b=noisy_data)
- g = ZeroFunction()
- sigma = 10
- tau = 1/(sigma*normK**2)
-
-f1 = alpha * MixedL21Norm()
-f = BlockFunction(f1, f2)
-
-# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
-pdhg.max_iteration = 2000
-pdhg.update_objective_interval = 200
-pdhg.run(2000)
-
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(3,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(3,1,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.colorbar()
-plt.show()
-plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,ig.shape[1],ig.shape[1]), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_gaussian.py b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_gaussian.py
deleted file mode 100644
index bd1bb69..0000000
--- a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_gaussian.py
+++ /dev/null
@@ -1,212 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-
-Total Variation 2D Tomography Reconstruction using PDHG algorithm:
-
-
-Problem: min_x, x>0 \alpha * ||\nabla x||_{2,1} + \frac{1}{2}||Ax - g||^{2}
-
- \nabla: Gradient operator
-
- A: Projection Matrix
- g: Noisy sinogram corrupted with Gaussian Noise
-
- \alpha: Regularization parameter
-
-"""
-
-from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction
-
-from ccpi.astra.ops import AstraProjectorSimple
-
-
-
-# Create phantom for TV 2D tomography
-N = 100
-x = np.zeros((N,N))
-x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-
-data = ImageData(x)
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-
-detectors = N
-angles = np.linspace(0, np.pi, N)
-
-ag = AcquisitionGeometry('parallel','2D',angles, detectors)
-
-device = input('Available device: GPU==1 / CPU==0 ')
-
-if device=='1':
- dev = 'gpu'
-else:
- dev = 'cpu'
-
-Aop = AstraProjectorSimple(ig, ag, dev)
-sin = Aop.direct(data)
-
-# Create noisy data. Apply Poisson noise
-n1 = np.random.normal(0, 3, size=ag.shape)
-noisy_data = AcquisitionData(n1 + sin.as_array(), ag)
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(10,10))
-plt.subplot(2,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(2,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-# Regularisation Parameter
-alpha = 50
-
-# Create operators
-op1 = Gradient(ig)
-op2 = Aop
-
-# Create BlockOperator
-operator = BlockOperator(op1, op2, shape=(2,1) )
-
-# Create functions
-
-f1 = alpha * MixedL21Norm()
-f2 = 0.5 * L2NormSquared(b=noisy_data)
-f = BlockFunction(f1, f2)
-
-g = ZeroFunction()
-
-# Compute operator Norm
-normK = operator.norm()
-
-# Primal & dual stepsizes
-sigma = 10
-tau = 1/(sigma*normK**2)
-
-# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
-pdhg.max_iteration = 2000
-pdhg.update_objective_interval = 200
-pdhg.run(2000)
-
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(3,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(3,1,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.colorbar()
-plt.show()
-##
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
-
-
-#%% Check with CVX solution
-
-from ccpi.optimisation.operators import SparseFiniteDiff
-import astra
-import numpy
-
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-
-if cvx_not_installable:
-
- ##Construct problem
- u = Variable(N*N)
-
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
-
- # create matrix representation for Astra operator
- vol_geom = astra.create_vol_geom(N, N)
- proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
-
- proj_id = astra.create_projector('strip', proj_geom, vol_geom)
-
- matrix_id = astra.projector.matrix(proj_id)
-
- ProjMat = astra.matrix.get(matrix_id)
-
- tmp = noisy_data.as_array().ravel()
-
- fidelity = 0.5 * sum_squares(ProjMat * u - tmp)
-
- solver = MOSEK
- obj = Minimize( regulariser + fidelity)
- prob = Problem(obj)
- result = prob.solve(verbose = True, solver = solver)
-
- diff_cvx = numpy.abs( pdhg.get_output().as_array() - np.reshape(u.value, (N,N) ))
-
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(pdhg.get_output().as_array())
- plt.title('PDHG solution')
- plt.colorbar()
- plt.subplot(3,1,2)
- plt.imshow(np.reshape(u.value, (N, N)))
- plt.title('CVX solution')
- plt.colorbar()
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), np.reshape(u.value, (N,N) )[int(N/2),:], label = 'CVX')
- plt.legend()
- plt.title('Middle Line Profiles')
- plt.show()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) \ No newline at end of file
diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py b/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py
deleted file mode 100644
index e7e33cb..0000000
--- a/Wrappers/Python/demos/PDHG_examples/Tomo/PDHG_TV_Tomo2D_poisson.py
+++ /dev/null
@@ -1,230 +0,0 @@
-#========================================================================
-# Copyright 2019 Science Technology Facilities Council
-# Copyright 2019 University of Manchester
-#
-# This work is part of the Core Imaging Library developed by Science Technology
-# Facilities Council and University of Manchester
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0.txt
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-#=========================================================================
-
-"""
-
-Total Variation Denoising using PDHG algorithm:
-
-
-Problem: min_x, x>0 \alpha * ||\nabla x||_{2,1} + int A x -g log(Ax + \eta)
-
- \nabla: Gradient operator
-
- A: Projection Matrix
- g: Noisy sinogram corrupted with Poisson Noise
-
- \eta: Background Noise
- \alpha: Regularization parameter
-
-"""
-
-from ccpi.framework import AcquisitionGeometry, AcquisitionData
-
-import numpy as np
-import numpy
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Gradient
-from ccpi.optimisation.functions import KullbackLeibler, \
- MixedL21Norm, BlockFunction, IndicatorBox
-
-from ccpi.astra.ops import AstraProjectorSimple
-from ccpi.framework import TestData
-import os, sys
-
-
-
-loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
-
-# Load Data
-N = 50
-M = 50
-data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,M), scale=(0,1))
-
-ig = data.geometry
-ag = ig
-
-#Create Acquisition Data and apply poisson noise
-
-detectors = N
-angles = np.linspace(0, np.pi, N)
-
-ag = AcquisitionGeometry('parallel','2D',angles, detectors)
-
-device = input('Available device: GPU==1 / CPU==0 ')
-
-if device=='1':
- dev = 'gpu'
-else:
- dev = 'cpu'
-
-Aop = AstraProjectorSimple(ig, ag, 'cpu')
-sin = Aop.direct(data)
-
-# Create noisy data. Apply Poisson noise
-scale = 0.5
-eta = 0
-n1 = np.random.poisson(eta + sin.as_array())
-
-noisy_data = AcquisitionData(n1, ag)
-
-# Show Ground Truth and Noisy Data
-plt.figure(figsize=(10,10))
-plt.subplot(2,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(2,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.show()
-
-
-#%%
-# Regularisation Parameter
-alpha = 2
-
-# Create operators
-op1 = Gradient(ig)
-op2 = Aop
-
-# Create BlockOperator
-operator = BlockOperator(op1,op2, shape=(2,1) )
-
-# Create functions
-
-f1 = alpha * MixedL21Norm()
-f2 = KullbackLeibler(noisy_data)
-f = BlockFunction(f1, f2)
-
-g = IndicatorBox(lower=0)
-
-
-# Compute operator Norm
-normK = operator.norm()
-
-# Primal & dual stepsizes
-sigma = 1
-tau = 1/(sigma*normK**2)
-
-
-# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
-pdhg.max_iteration = 3000
-pdhg.update_objective_interval = 500
-pdhg.run(3000, verbose = True)
-
-plt.figure(figsize=(15,15))
-plt.subplot(3,1,1)
-plt.imshow(data.as_array())
-plt.title('Ground Truth')
-plt.colorbar()
-plt.subplot(3,1,2)
-plt.imshow(noisy_data.as_array())
-plt.title('Noisy Data')
-plt.colorbar()
-plt.subplot(3,1,3)
-plt.imshow(pdhg.get_output().as_array())
-plt.title('TV Reconstruction')
-plt.colorbar()
-plt.show()
-##
-plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth')
-plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction')
-plt.legend()
-plt.title('Middle Line Profiles')
-plt.show()
-
-
-#%% Check with CVX solution
-#
-#from ccpi.optimisation.operators import SparseFiniteDiff
-#import astra
-#import numpy
-#
-#try:
-# from cvxpy import *
-# cvx_not_installable = True
-#except ImportError:
-# cvx_not_installable = False
-#
-#
-#if cvx_not_installable:
-#
-#
-# ##Construct problem
-# u = Variable(N*N)
-# q = Variable()
-#
-# DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
-# DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-#
-# regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
-#
-# # create matrix representation for Astra operator
-#
-# vol_geom = astra.create_vol_geom(N, N)
-# proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
-#
-# proj_id = astra.create_projector('strip', proj_geom, vol_geom)
-#
-# matrix_id = astra.projector.matrix(proj_id)
-#
-# ProjMat = astra.matrix.get(matrix_id)
-#
-# tmp = noisy_data.as_array().ravel()
-#
-# fidelity = sum(kl_div(tmp, ProjMat * u))
-#
-# constraints = [q>=fidelity, u>=0]
-# solver = SCS
-# obj = Minimize( regulariser + q)
-# prob = Problem(obj, constraints)
-# result = prob.solve(verbose = True, solver = solver)
-#
-# diff_cvx = np.abs(pdhg.get_output().as_array() - np.reshape(u.value, (N, N)))
-#
-# plt.figure(figsize=(15,15))
-# plt.subplot(3,1,1)
-# plt.imshow(pdhg.get_output().as_array())
-# plt.title('PDHG solution')
-# plt.colorbar()
-# plt.subplot(3,1,2)
-# plt.imshow(np.reshape(u.value, (N, N)))
-# plt.title('CVX solution')
-# plt.colorbar()
-# plt.subplot(3,1,3)
-# plt.imshow(diff_cvx)
-# plt.title('Difference')
-# plt.colorbar()
-# plt.show()
-#
-# plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG')
-# plt.plot(np.linspace(0,N,N), np.reshape(u.value, (N, N))[int(N/2),:], label = 'CVX')
-# plt.legend()
-# plt.title('Middle Line Profiles')
-# plt.show()
-#
-# print('Primal Objective (CVX) {} '.format(obj.value))
-# print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) \ No newline at end of file
diff --git a/Wrappers/Python/demos/PDHG_examples/Tomo/phantom.mat b/Wrappers/Python/demos/PDHG_examples/Tomo/phantom.mat
deleted file mode 100755
index c465bbe..0000000
--- a/Wrappers/Python/demos/PDHG_examples/Tomo/phantom.mat
+++ /dev/null
Binary files differ