diff options
-rwxr-xr-x | Wrappers/Python/wip/fix_test.py | 49 |
1 files changed, 37 insertions, 12 deletions
diff --git a/Wrappers/Python/wip/fix_test.py b/Wrappers/Python/wip/fix_test.py index 316606e..7f0124f 100755 --- a/Wrappers/Python/wip/fix_test.py +++ b/Wrappers/Python/wip/fix_test.py @@ -61,15 +61,15 @@ class Norm1(Function): opt = {'memopt': True} # Problem data. -m = 4 +m = 10 n = 10 np.random.seed(1) Amat = np.asarray( np.random.randn(m, n), dtype=numpy.float32) #Amat = np.asarray(np.eye(m), dtype=np.float32) * 2 A = LinearOperatorMatrix(Amat) bmat = np.asarray( np.random.randn(m), dtype=numpy.float32) -bmat *= 0 -bmat += 2 +#bmat *= 0 +#bmat += 2 print ("bmat", bmat.shape) print ("A", A.A) #bmat.shape = (bmat.shape[0], 1) @@ -78,8 +78,8 @@ print ("A", A.A) # Change n to equal to m. vgb = VectorGeometry(m) vgx = VectorGeometry(n) -b = vgb.allocate(2, dtype=numpy.float32) -# b.fill(bmat) +b = vgb.allocate(0, dtype=numpy.float32) +b.fill(bmat) #b = DataContainer(bmat) # Regularization parameter @@ -98,11 +98,11 @@ a = VectorData(x_init.as_array(), deep_copy=True) assert id(x_init.as_array()) != id(a.as_array()) -#%% -f.L = LinearOperator.PowerMethod(A, 25, x_init)[0] -print ('f.L', f.L) + +#f.L = LinearOperator.PowerMethod(A, 25, x_init)[0] +#print ('f.L', f.L) rate = (1 / f.L) / 6 -f.L *= 12 +#f.L *= 12 # Initial guess #x_init = DataContainer(np.zeros((n, 1))) @@ -145,16 +145,16 @@ fa.update_objective_interval = int( fa.max_iteration / 10 ) fa.run(fa.max_iteration, callback = None, verbose=True) gd = GradientDescent(x_init=x_init, objective_function=f, rate = rate ) -gd.max_iteration = 100 +gd.max_iteration = 5000 gd.update_objective_interval = int( gd.max_iteration / 10 ) gd.run(gd.max_iteration, callback = None, verbose=True) cgls = CGLS(x_init= x_initcgls, operator=A, data=b) cgls.max_iteration = 1000 -cgls.update_objective_interval = 2 +cgls.update_objective_interval = 100 #cgls.should_stop = stop_criterion(cgls) -cgls.run(10, callback = callback, verbose=True) +cgls.run(1000, callback = callback, verbose=True) # Print for comparison print("FISTA least squares plus 1-norm solution and objective value:") @@ -165,3 +165,28 @@ print ("data ", b.as_array()) print ('FISTA ', A.direct(fa.get_output()).as_array()) print ('GradientDescent', A.direct(gd.get_output()).as_array()) print ('CGLS ', A.direct(cgls.get_output()).as_array()) + + +#%% + +import cvxpy as cp +# Construct the problem. +x = cp.Variable(n) +objective = cp.Minimize(cp.sum_squares(A.A*x - bmat)) +prob = cp.Problem(objective) +# The optimal objective is returned by prob.solve(). +result = prob.solve(solver = cp.MOSEK) + +print ('CGLS ', cgls.get_output().as_array()) +print ('CVX ', x.value) + +print ('FISTA ', fa.get_output().as_array()) +print ('GD ', gd.get_output().as_array()) + + +#%% + + + + + |