summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-05-01 10:58:34 +0100
committerEdoardo Pasca <edo.paskino@gmail.com>2019-05-01 10:58:34 +0100
commitf0204684c5d9c731fcc9a49ffab2a49638a38ef1 (patch)
tree0484d53a01b562fe331f54765a8055173867b9f6 /Wrappers
parentd31953ea65de8608bbe2aa594d47a7b9d4bbfa47 (diff)
downloadframework-f0204684c5d9c731fcc9a49ffab2a49638a38ef1.tar.gz
framework-f0204684c5d9c731fcc9a49ffab2a49638a38ef1.tar.bz2
framework-f0204684c5d9c731fcc9a49ffab2a49638a38ef1.tar.xz
framework-f0204684c5d9c731fcc9a49ffab2a49638a38ef1.zip
update demo
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py201
1 files changed, 71 insertions, 130 deletions
diff --git a/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py b/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py
index 9de48a5..854f645 100644
--- a/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py
+++ b/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py
@@ -20,11 +20,17 @@ from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
MixedL21Norm, BlockFunction, ScaledFunction
-#from ccpi.astra.ops import AstraProjectorSimple
-#from ccpi.plugins.ops import CCPiProjectorSimple
from ccpi.plugins.operators import CCPiProjectorSimple
-#from skimage.util import random_noise
from timeit import default_timer as timer
+from ccpi.reconstruction.parallelbeam import alg as pbalg
+import os
+
+try:
+ import tomophantom
+ from tomophantom import TomoP3D
+ no_tomophantom = False
+except ImportError as ie:
+ no_tomophantom = True
#%%
@@ -52,32 +58,11 @@ N = 75
vert = 4
ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, voxel_num_z=vert)
-data = ig.allocate()
-Phantom = data
-# Populate image data by looping over and filling slices
-i = 0
-while i < vert:
- if vert > 1:
- x = Phantom.subset(vertical=i).array
- else:
- x = Phantom.array
- x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
- x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.98
- if vert > 1 :
- Phantom.fill(x, vertical=i)
- i += 1
-
-#%%
-#detectors = N
-#angles = np.linspace(0,np.pi,100)
-#angles_num = 100
-angles_num = N
+angles_num = 100
det_w = 1.0
det_num = N
-angles = np.linspace(0,np.pi,angles_num,endpoint=False,dtype=np.float32)*\
- 180/np.pi
angles = np.linspace(-90.,90.,N, dtype=np.float32)
# Inputs: Geometry, 2D or 3D, angles, horz detector pixel count,
# horz detector pixel size, vert detector pixel count,
@@ -90,73 +75,59 @@ ag = AcquisitionGeometry('parallel',
vert,
det_w)
-from ccpi.reconstruction.parallelbeam import alg as pbalg
-from ccpi.plugins.processors import setupCCPiGeometries
-def ssetupCCPiGeometries(ig, ag, counter):
+#no_tomophantom = True
+if no_tomophantom:
+ data = ig.allocate()
+ Phantom = data
+ # Populate image data by looping over and filling slices
+ i = 0
+ while i < vert:
+ if vert > 1:
+ x = Phantom.subset(vertical=i).array
+ else:
+ x = Phantom.array
+ x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+ x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.98
+ if vert > 1 :
+ Phantom.fill(x, vertical=i)
+ i += 1
- #vg = ImageGeometry(voxel_num_x=voxel_num_x,voxel_num_y=voxel_num_y, voxel_num_z=voxel_num_z)
- #Phantom_ccpi = ImageData(geometry=vg,
- # dimension_labels=['horizontal_x','horizontal_y','vertical'])
- ##.subset(['horizontal_x','horizontal_y','vertical'])
- ## ask the ccpi code what dimensions it would like
- Phantom_ccpi = ig.allocate(dimension_labels=[ImageGeometry.HORIZONTAL_X,
- ImageGeometry.HORIZONTAL_Y,
- ImageGeometry.VERTICAL])
+ Aop = CCPiProjectorSimple(ig, ag, 'cpu')
+ sin = Aop.direct(data)
+else:
+
+ model = 13 # select a model number from the library
+ N_size = N # Define phantom dimensions using a scalar value (cubic phantom)
+ path = os.path.dirname(tomophantom.__file__)
+ path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
+ #This will generate a N_size x N_size x N_size phantom (3D)
+ phantom_tm = TomoP3D.Model(model, N_size, path_library3D)
- voxel_per_pixel = 1
- angles = ag.angles
- geoms = pbalg.pb_setup_geometry_from_image(Phantom_ccpi.as_array(),
- angles,
- voxel_per_pixel )
+ #%%
+ Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal)
+ Vert_det = N_size # detector row count (vertical) (no reason for it to be > N)
+ #angles_num = int(0.5*np.pi*N_size); # angles number
+ #angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees
- pg = AcquisitionGeometry('parallel',
- '3D',
- angles,
- geoms['n_h'], 1.0,
- geoms['n_v'], 1.0 #2D in 3D is a slice 1 pixel thick
- )
+ print ("Building 3D analytical projection data with TomoPhantom")
+ projData3D_analyt = TomoP3D.ModelSino(model,
+ N_size,
+ Horiz_det,
+ Vert_det,
+ angles,
+ path_library3D)
- center_of_rotation = Phantom_ccpi.get_dimension_size('horizontal_x') / 2
- #ad = AcquisitionData(geometry=pg,dimension_labels=['angle','vertical','horizontal'])
- ad = pg.allocate(dimension_labels=[AcquisitionGeometry.ANGLE,
- AcquisitionGeometry.VERTICAL,
- AcquisitionGeometry.HORIZONTAL])
- geoms_i = pbalg.pb_setup_geometry_from_acquisition(ad.as_array(),
- angles,
- center_of_rotation,
- voxel_per_pixel )
+ # tomophantom outputs in [vert,angles,horiz]
+ # we want [angle,vert,horiz]
+ data = np.transpose(projData3D_analyt, [1,0,2])
+ ag.pixel_num_h = Horiz_det
+ ag.pixel_num_v = Vert_det
+ sin = ag.allocate()
+ sin.fill(data)
+ ig.voxel_num_y = Vert_det
- counter+=1
+ Aop = CCPiProjectorSimple(ig, ag, 'cpu')
- if counter < 4:
- print (geoms, geoms_i)
- if (not ( geoms_i == geoms )):
- print ("not equal and {} {} {}".format(counter, geoms['output_volume_z'], geoms_i['output_volume_z']))
- X = max(geoms['output_volume_x'], geoms_i['output_volume_x'])
- Y = max(geoms['output_volume_y'], geoms_i['output_volume_y'])
- Z = max(geoms['output_volume_z'], geoms_i['output_volume_z'])
- return setupCCPiGeometries(X,Y,Z,angles, counter)
- else:
- print ("happy now {} {} {}".format(counter, geoms['output_volume_z'], geoms_i['output_volume_z']))
-
- return geoms
- else:
- return geoms_i
-
-
-
-#voxel_num_x, voxel_num_y, voxel_num_z, angles, counter
-print ("###############################################")
-print (ig)
-print (ag)
-g = setupCCPiGeometries(ig, ag, 0)
-print (g)
-print ("###############################################")
-print ("###############################################")
-#ag = AcquisitionGeometry('parallel','2D',angles, detectors)
-#Aop = AstraProjectorSimple(ig, ag, 'cpu')
-Aop = CCPiProjectorSimple(ig, ag, 'cpu')
-sin = Aop.direct(data)
plt.imshow(sin.subset(vertical=0).as_array())
plt.title('Sinogram')
@@ -228,70 +199,40 @@ opt1 = {'niter':niter, 'memopt': True}
-pdhg1 = PDHG(f=f,g=g, operator=operator, tau=tau, sigma=sigma, memopt=True, max_iteration=niter)
+pdhg1 = PDHG(f=f,g=g, operator=operator, tau=tau, sigma=sigma, max_iteration=niter)
#pdhg1.max_iteration = 2000
pdhg1.update_objective_interval = 100
-pdhg2 = PDHG(f=f,g=g, operator=operator, tau=tau, sigma=sigma, memopt=False)
-pdhg2.max_iteration = 2000
-pdhg2.update_objective_interval = 100
t1_old = timer()
resold, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
t2_old = timer()
-print ("memopt = False, shouldn't matter")
pdhg1.run(niter)
print (sum(pdhg1.timing))
res = pdhg1.get_output().subset(vertical=0)
-print (pdhg1.objective)
-t3 = timer()
-#res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
-print ("memopt = True, shouldn't matter")
-pdhg2.run(niter)
-print (sum(pdhg2.timing))
-res1 = pdhg2.get_output().subset(vertical=0)
-t4 = timer()
-#
-print ("No memopt in {}s, memopt in {}/{}s old {}s".format(sum(pdhg1.timing),
- sum(pdhg2.timing),t4-t3, t2_old-t1_old))
-
-t1_old = timer()
-resold1, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
-t2_old = timer()
#%%
plt.figure()
-plt.subplot(2,3,1)
+plt.subplot(1,4,1)
plt.imshow(res.as_array())
-plt.title('no memopt')
-plt.colorbar()
-plt.subplot(2,3,2)
-plt.imshow(res1.as_array())
-plt.title('memopt')
+plt.title('Algorithm')
plt.colorbar()
-plt.subplot(2,3,3)
-plt.imshow((res1 - resold1.subset(vertical=0)).abs().as_array())
-plt.title('diff')
-plt.colorbar()
-plt.subplot(2,3,4)
+plt.subplot(1,4,2)
plt.imshow(resold.subset(vertical=0).as_array())
-plt.title('old nomemopt')
+plt.title('function')
plt.colorbar()
-plt.subplot(2,3,5)
-plt.imshow(resold1.subset(vertical=0).as_array())
-plt.title('old memopt')
-plt.colorbar()
-plt.subplot(2,3,6)
-plt.imshow((resold1 - resold).subset(vertical=0).as_array())
-plt.title('diff old')
+plt.subplot(1,4,3)
+plt.imshow((res - resold.subset(vertical=0)).abs().as_array())
+plt.title('diff')
plt.colorbar()
-#plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'memopt')
-#plt.plot(np.linspace(0,N,N), res.as_array()[int(N/2),:], label = 'no memopt')
-#plt.legend()
+plt.subplot(1,4,4)
+plt.plot(np.linspace(0,N,N), res.as_array()[int(N/2),:], label = 'Algorithm')
+plt.plot(np.linspace(0,N,N), resold.subset(vertical=0).as_array()[int(N/2),:], label = 'function')
+plt.legend()
plt.show()
#
-print ("Time: No memopt in {}s, \n Time: Memopt in {}s ".format(sum(pdhg1.timing), t4 -t3))
-diff = (res1 - res).abs().as_array().max()
+print ("Time: No memopt in {}s, \n Time: Memopt in {}s ".format(sum(pdhg1.timing), t2_old -t1_old))
+diff = (res - resold.subset(vertical=0)).abs().as_array().max()
#
print(" Max of abs difference is {}".format(diff))