diff options
author | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-25 11:17:50 +0100 |
---|---|---|
committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-25 11:17:50 +0100 |
commit | e7bfeab8ef7c723022d0f36a3be945f6b8a056c8 (patch) | |
tree | f482a711cc0e2481f11b2903e742344c955f6f63 /Wrappers | |
parent | f6d46771664363b4448c53c8399c3fe1da425f59 (diff) | |
download | framework-e7bfeab8ef7c723022d0f36a3be945f6b8a056c8.tar.gz framework-e7bfeab8ef7c723022d0f36a3be945f6b8a056c8.tar.bz2 framework-e7bfeab8ef7c723022d0f36a3be945f6b8a056c8.tar.xz framework-e7bfeab8ef7c723022d0f36a3be945f6b8a056c8.zip |
Tikhonov demos
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/wip/Demos/PDHG_Tikhonov_Denoising.py | 176 | ||||
-rw-r--r-- | Wrappers/Python/wip/Demos/PDHG_Tikhonov_Tomo2D.py | 108 |
2 files changed, 284 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Denoising.py b/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Denoising.py new file mode 100644 index 0000000..3f275e2 --- /dev/null +++ b/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Denoising.py @@ -0,0 +1,176 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np +import numpy +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction + +from skimage.util import random_noise + +# Create phantom for TV Salt & Pepper denoising +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 +data = ImageData(data) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Apply Salt & Pepper noise +n1 = random_noise(data.as_array(), mode = 'gaussian', mean=0, var = 0.05, seed=10) +noisy_data = ImageData(n1) + +# Regularisation Parameter +alpha = 4 + +method = '1' + +if method == '0': + + # Create operators + op1 = Gradient(ig) + op2 = Identity(ig, ag) + + # Create BlockOperator + operator = BlockOperator(op1, op2, shape=(2,1) ) + + # Create functions + + f1 = alpha * L2NormSquared() + f2 = 0.5 * L2NormSquared(b = noisy_data) + f = BlockFunction(f1, f2) + g = ZeroFunction() + +else: + + # Without the "Block Framework" + operator = Gradient(ig) + f = alpha * L2NormSquared() + g = 0.5 * L2NormSquared(b = noisy_data) + + +# Compute operator Norm +normK = operator.norm() + +# Primal & dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) +opt = {'niter':2000, 'memopt': True} + +# Setup and run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) +pdhg.max_iteration = 2000 +pdhg.update_objective_interval = 50 +pdhg.run(2000) + + +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('Tikhonov Reconstruction') +plt.colorbar() +plt.show() +## +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +##%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: + from cvxpy import * + cvx_not_installable = True +except ImportError: + cvx_not_installable = False + + +if cvx_not_installable: + + ##Construct problem + u = Variable(ig.shape) + + DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') + DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') + + # Define Total Variation as a regulariser + + regulariser = alpha * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0)) + fidelity = 0.5 * sum_squares(u - noisy_data.as_array()) + + # choose solver + if 'MOSEK' in installed_solvers(): + solver = MOSEK + else: + solver = SCS + + obj = Minimize( regulariser + fidelity) + prob = Problem(obj) + result = prob.solve(verbose = True, solver = solver) + + diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value ) + + plt.figure(figsize=(15,15)) + plt.subplot(3,1,1) + plt.imshow(pdhg.get_output().as_array()) + plt.title('PDHG solution') + plt.colorbar() + plt.subplot(3,1,2) + plt.imshow(u.value) + plt.title('CVX solution') + plt.colorbar() + plt.subplot(3,1,3) + plt.imshow(diff_cvx) + plt.title('Difference') + plt.colorbar() + plt.show() + + plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') + plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX') + plt.legend() + plt.title('Middle Line Profiles') + plt.show() + + print('Primal Objective (CVX) {} '.format(obj.value)) + print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + + diff --git a/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Tomo2D.py b/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Tomo2D.py new file mode 100644 index 0000000..5c03362 --- /dev/null +++ b/Wrappers/Python/wip/Demos/PDHG_Tikhonov_Tomo2D.py @@ -0,0 +1,108 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData + +import numpy as np +import numpy +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Gradient +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction +from skimage.util import random_noise +from ccpi.astra.ops import AstraProjectorSimple + +# Create phantom for TV 2D tomography +N = 75 +x = np.zeros((N,N)) +x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +data = ImageData(x) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) + +detectors = N +angles = np.linspace(0, np.pi, N, dtype=np.float32) + +ag = AcquisitionGeometry('parallel','2D',angles, detectors) +Aop = AstraProjectorSimple(ig, ag, 'cpu') +sin = Aop.direct(data) + +# Create noisy data. Apply Gaussian noise + +np.random.seed(10) +noisy_data = sin + AcquisitionData(np.random.normal(0, 3, sin.shape)) + +# Regularisation Parameter +alpha = 500 + +# Create operators +op1 = Gradient(ig) +op2 = Aop + +# Create BlockOperator +operator = BlockOperator(op1, op2, shape=(2,1) ) + +# Create functions + +f1 = alpha * L2NormSquared() +f2 = 0.5 * L2NormSquared(b=noisy_data) +f = BlockFunction(f1, f2) + +g = ZeroFunction() + +# Compute operator Norm +normK = operator.norm() + +# Primal & dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) + + +# Setup and run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) +pdhg.max_iteration = 5000 +pdhg.update_objective_interval = 50 +pdhg.run(2000) + +#%% +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('Tikhonov Reconstruction') +plt.colorbar() +plt.show() +## +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + |