diff options
author | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-23 09:44:23 +0100 |
---|---|---|
committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-23 09:44:23 +0100 |
commit | cde94fb76d7d3d25801b68663b3a6dc1a066f986 (patch) | |
tree | 506d14259a5fa3029b03b9f0662aba581c548454 /Wrappers | |
parent | cbdd0dabf0bfd98e957d31465d48d16f1ae2b14b (diff) | |
download | framework-cde94fb76d7d3d25801b68663b3a6dc1a066f986.tar.gz framework-cde94fb76d7d3d25801b68663b3a6dc1a066f986.tar.bz2 framework-cde94fb76d7d3d25801b68663b3a6dc1a066f986.tar.xz framework-cde94fb76d7d3d25801b68663b3a6dc1a066f986.zip |
add symGrad test
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/wip/test_symGrad_method1.py | 178 |
1 files changed, 178 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/test_symGrad_method1.py b/Wrappers/Python/wip/test_symGrad_method1.py new file mode 100644 index 0000000..36adee1 --- /dev/null +++ b/Wrappers/Python/wip/test_symGrad_method1.py @@ -0,0 +1,178 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Feb 22 14:53:03 2019 + +@author: evangelos +""" + +from ccpi.framework import ImageData, ImageGeometry, BlockDataContainer + +import numpy as np +import numpy +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG, PDHG_old + +from ccpi.optimisation.operators import BlockOperator, Identity, \ + Gradient, SymmetrizedGradient, ZeroOperator +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ + MixedL21Norm, BlockFunction + +from skimage.util import random_noise + +from timeit import default_timer as timer +#def dt(steps): +# return steps[-1] - steps[-2] + +# Create phantom for TGV Gaussian denoising + +N = 3 + +data = np.zeros((N,N)) + +x1 = np.linspace(0, int(N/2), N) +x2 = np.linspace(int(N/2), 0., N) +xv, yv = np.meshgrid(x1, x2) + +xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T + +data = xv +data = data/data.max() + +plt.imshow(data) +plt.show() + +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Add Gaussian noise +n1 = random_noise(data, mode = 'gaussian', mean=0, var = 0.005, seed=10) +noisy_data = ImageData(n1) + + +plt.imshow(noisy_data.as_array()) +plt.title('Noisy data') +plt.show() + +alpha, beta = 0.2, 1 + +#method = input("Enter structure of PDHG (0=Composite or 1=NotComposite): ") +method = '1' + + +# Create operators +op11 = Gradient(ig) +op12 = Identity(op11.range_geometry()) + +op22 = SymmetrizedGradient(op11.domain_geometry()) + +op21 = ZeroOperator(ig, op22.range_geometry()) + + +op31 = Identity(ig, ag) +op32 = ZeroOperator(op22.domain_geometry(), ag) + +operator1 = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) ) + + +f1 = alpha * MixedL21Norm() +f2 = beta * MixedL21Norm() +f3 = ZeroFunction() +f_B3 = BlockFunction(f1, f2, f3) +g_B3 = ZeroFunction() + + + +# Create operators +op11 = Gradient(ig) +op12 = Identity(op11.range_geometry()) + +op22 = SymmetrizedGradient(op11.domain_geometry()) + +op21 = ZeroOperator(ig, op22.range_geometry()) + +operator2 = BlockOperator(op11, -1*op12, \ + op21, op22, \ + shape=(2,2) ) + +#f1 = alpha * MixedL21Norm() +#f2 = beta * MixedL21Norm() +f_B2 = BlockFunction(f1, f2) +g_B2 = 0.5 * L2NormSquared(b = noisy_data) + + +#%% + +x_old1 = operator1.domain_geometry().allocate('random_int') +y_old1 = operator1.range_geometry().allocate() + +xbar1 = x_old1.copy() +x_tmp1 = x_old1.copy() +x1 = x_old1.copy() + +y_tmp1 = y_old1.copy() +y1 = y_tmp1.copy() + +x_old2 = x_old1.copy() +y_old2 = operator2.range_geometry().allocate() + +xbar2 = x_old2.copy() +x_tmp2 = x_old2.copy() +x2 = x_old2.copy() + +y_tmp2 = y_old2.copy() +y2 = y_tmp2.copy() + +sigma = 0.4 +tau = 0.4 + +y_tmp1 = y_old1 + sigma * operator1.direct(xbar1) +y_tmp2 = y_old2 + sigma * operator2.direct(xbar2) + +numpy.testing.assert_array_equal(y_tmp1[0][0].as_array(), y_tmp2[0][0].as_array()) +numpy.testing.assert_array_equal(y_tmp1[0][1].as_array(), y_tmp2[0][1].as_array()) +numpy.testing.assert_array_equal(y_tmp1[1][0].as_array(), y_tmp2[1][0].as_array()) +numpy.testing.assert_array_equal(y_tmp1[1][1].as_array(), y_tmp2[1][1].as_array()) + + +y1 = f_B3.proximal_conjugate(y_tmp1, sigma) +y2 = f_B2.proximal_conjugate(y_tmp2, sigma) + +numpy.testing.assert_array_equal(y1[0][0].as_array(), y2[0][0].as_array()) +numpy.testing.assert_array_equal(y1[0][1].as_array(), y2[0][1].as_array()) +numpy.testing.assert_array_equal(y1[1][0].as_array(), y2[1][0].as_array()) +numpy.testing.assert_array_equal(y1[1][1].as_array(), y2[1][1].as_array()) + + +x_tmp1 = x_old1 - tau * operator1.adjoint(y1) +x_tmp2 = x_old2 - tau * operator2.adjoint(y2) + +numpy.testing.assert_array_equal(x_tmp1[0].as_array(), x_tmp2[0].as_array()) + + + + + + + + + + + +############################################################################## +#x_1 = operator1.domain_geometry().allocate('random_int') +# +#x_2 = BlockDataContainer(x_1[0], x_1[1]) +# +#res1 = operator1.direct(x_1) +#res2 = operator2.direct(x_2) +# +#print(res1[0][0].as_array(), res2[0][0].as_array()) +#print(res1[0][1].as_array(), res2[0][1].as_array()) +# +#print(res1[1][0].as_array(), res2[1][0].as_array()) +#print(res1[1][1].as_array(), res2[1][1].as_array()) +# +##res1 = op11.direct(x1[0]) - op12.direct(x1[1]) +##res2 = op21.direct(x1[0]) - op22.direct(x1[1]) |