summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-08-14 22:26:11 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-08-14 22:26:11 +0100
commitc369a2950801fca4db606f67433b7bebc32fbdf1 (patch)
tree89ce743bf803a19d96829edf07762d7924988e2a /Wrappers
parentab323e0b38b941d2a7aa5b5e705518b770f1d36b (diff)
downloadframework-c369a2950801fca4db606f67433b7bebc32fbdf1.tar.gz
framework-c369a2950801fca4db606f67433b7bebc32fbdf1.tar.bz2
framework-c369a2950801fca4db606f67433b7bebc32fbdf1.tar.xz
framework-c369a2950801fca4db606f67433b7bebc32fbdf1.zip
IMAT data multichannel script started
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/wip/demo_imat_multichan_RGLTK.py198
1 files changed, 198 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py b/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py
new file mode 100644
index 0000000..dae5f3a
--- /dev/null
+++ b/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py
@@ -0,0 +1,198 @@
+# This script demonstrates how to load IMAT fits data
+# into the CIL optimisation framework and run reconstruction methods.
+#
+# This demo loads the summedImg files which are the non-spectral images
+# resulting from summing projections over all spectral channels.
+
+# needs dxchange: conda install -c conda-forge dxchange
+# needs astropy: conda install astropy
+
+
+# All third-party imports.
+import numpy as np
+from scipy.io import loadmat
+import matplotlib.pyplot as plt
+from dxchange.reader import read_fits
+
+# All own imports.
+from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData
+from ccpi.astra.ops import AstraProjectorSimple, AstraProjector3DSimple
+from ccpi.optimisation.algs import CGLS, FISTA
+from ccpi.optimisation.funcs import Norm2sq, Norm1
+from ccpi.plugins.regularisers import ROF_TV, FGP_TV, SB_TV
+
+
+pathname0 = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle0/'
+filenameG = "IMAT00004675_Tomo_test_000_"
+
+n = 512
+totalAngles = 250 # total number of projection angles
+# spectral discretization parameter
+num_average = 120
+numChannels = 2970
+totChannels = round(numChannels/num_average) # total no. of averaged channels
+Projections_stack = np.zeros((num_average,n,n),dtype='uint16')
+ProjAngleChannels = np.zeros((totalAngles,totChannels,n,n),dtype='float32')
+
+counterT = 0
+for i in range(0,2,1):
+ for j in range(0,num_average,1):
+ if counterT < 10:
+ outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'0000',str(counterT))
+ if ((counterT >= 10) & (counterT < 100)):
+ outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'000',str(counterT))
+ if ((counterT >= 100) & (counterT < 1000)):
+ outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'00',str(counterT))
+ if ((counterT >= 1000) & (counterT < 10000)):
+ outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'0',str(counterT))
+ Projections_stack[j,:,:] = read_fits(outfile)
+ counterT = counterT + 1
+ AverageProj=np.mean(Projections_stack,axis=0) # averaged projection
+ProjAngleChannels[0,i,:,:] = AverageProj
+
+
+filename0 = 'IMAT00004675_Tomo_test_000_SummedImg.fits'
+
+data0 = read_fits(pathname0 + filename0)
+
+pathname10 = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle10/'
+filename10 = 'IMAT00004685_Tomo_test_000_SummedImg.fits'
+
+data10 = read_fits(pathname10 + filename10)
+
+# Load a flat field (more are available, should we average over them?)
+flat1 = read_fits('/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/OpenBeam_aft1/IMAT00004932_Tomo_test_000_SummedImg.fits')
+
+# Apply flat field and display after flat-field correction and negative log
+data0_rel = np.zeros(np.shape(flat1), dtype = float)
+nonzero = flat1 > 0
+data0_rel[nonzero] = data0[nonzero] / flat1[nonzero]
+data10_rel = np.zeros(np.shape(flat1), dtype = float)
+data10_rel[nonzero] = data10[nonzero] / flat1[nonzero]
+
+plt.figure()
+plt.imshow(data0_rel)
+plt.colorbar()
+plt.show()
+
+plt.figure()
+plt.imshow(-np.log(data0_rel))
+plt.colorbar()
+plt.show()
+
+plt.figure()
+plt.imshow(data10_rel)
+plt.colorbar()
+plt.show()
+
+plt.figure()
+plt.imshow(-np.log(data10_rel))
+plt.colorbar()
+plt.show()
+
+# Set up for loading all summed images at 250 angles.
+pathname = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle{}/'
+filename = 'IMAT0000{}_Tomo_test_000_SummedImg.fits'
+
+# Dimensions
+num_angles = 250
+imsize = 512
+
+# Initialise array
+data = np.zeros((num_angles,imsize,imsize))
+
+# Load only 0-249, as 250 is at repetition of zero degrees just like image 0
+for i in range(0,250):
+ curimfile = (pathname + filename).format(i, i+4675)
+ data[i,:,:] = read_fits(curimfile)
+
+# Apply flat field and take negative log
+nonzero = flat1 > 0
+for i in range(0,250):
+ data[i,nonzero] = data[i,nonzero]/flat1[nonzero]
+
+eqzero = data == 0
+data[eqzero] = 1
+
+data_rel = -np.log(data)
+
+# Permute order to get: angles, vertical, horizontal, as default in framework.
+data_rel = np.transpose(data_rel,(0,2,1))
+
+# Set angles to use
+angles = np.linspace(-np.pi,np.pi,num_angles,endpoint=False)
+
+# Create 3D acquisition geometry and acquisition data
+ag = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ pixel_num_h=imsize,
+ pixel_num_v=imsize)
+b = AcquisitionData(data_rel, geometry=ag)
+
+# Reduce to single (noncentral) slice by extracting relevant parameters from data and its
+# geometry. Perhaps create function to extract central slice automatically?
+b2d = b.subset(vertical=128)
+ag2d = AcquisitionGeometry('parallel',
+ '2D',
+ ag.angles,
+ pixel_num_h=ag.pixel_num_h)
+b2d.geometry = ag2d
+
+# Create 2D image geometry
+ig2d = ImageGeometry(voxel_num_x=ag2d.pixel_num_h,
+ voxel_num_y=ag2d.pixel_num_h)
+
+# Create GPU projector/backprojector operator with ASTRA.
+Aop = AstraProjectorSimple(ig2d,ag2d,'gpu')
+
+# Demonstrate operator is working by applying simple backprojection.
+z = Aop.adjoint(b2d)
+plt.figure()
+plt.imshow(z.array)
+plt.title('Simple backprojection')
+plt.colorbar()
+plt.show()
+
+# Set initial guess ImageData with zeros for algorithms, and algorithm options.
+x_init = ImageData(np.zeros((imsize,imsize)),
+ geometry=ig2d)
+opt_CGLS = {'tol': 1e-4, 'iter': 20}
+
+# Run CGLS algorithm and display reconstruction.
+x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b2d, opt_CGLS)
+plt.figure()
+plt.imshow(x_CGLS.array)
+plt.title('CGLS')
+plt.colorbar()
+plt.show()
+
+plt.figure()
+plt.semilogy(criter_CGLS)
+plt.title('CGLS Criterion vs iterations')
+plt.show()
+
+
+f = Norm2sq(Aop,b2d,c=0.5)
+
+opt = {'tol': 1e-4, 'iter': 50}
+
+lamtv = 1.0
+# Repeat for FGP variant.
+g_fgp = FGP_TV(lambdaReg = lamtv,
+ iterationsTV=50,
+ tolerance=1e-5,
+ methodTV=0,
+ nonnegativity=0,
+ printing=0,
+ device='cpu')
+
+x_fista_fgp, it1, timing1, criter_fgp = FISTA(x_init, f, g_fgp,opt)
+
+plt.figure()
+plt.subplot(121)
+plt.imshow(x_fista_fgp.array)
+plt.title('FISTA FGP TV')
+plt.subplot(122)
+plt.semilogy(criter_fgp)
+plt.show()