diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-03-11 13:35:29 -0400 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2019-03-11 13:35:29 -0400 |
commit | b6c6f1187a6c337698401f348c938d6b6dfb29fd (patch) | |
tree | a9913f9f207cf88ab4aeaff593b45e7a86610293 /Wrappers | |
parent | 42f1020414fc9e722484f626e07f5eaf3f689a92 (diff) | |
download | framework-b6c6f1187a6c337698401f348c938d6b6dfb29fd.tar.gz framework-b6c6f1187a6c337698401f348c938d6b6dfb29fd.tar.bz2 framework-b6c6f1187a6c337698401f348c938d6b6dfb29fd.tar.xz framework-b6c6f1187a6c337698401f348c938d6b6dfb29fd.zip |
create and reconstruct tomophantom dataset
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/wip/CreatePhantom.py | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/CreatePhantom.py b/Wrappers/Python/wip/CreatePhantom.py new file mode 100644 index 0000000..4bf6ea4 --- /dev/null +++ b/Wrappers/Python/wip/CreatePhantom.py @@ -0,0 +1,242 @@ +import numpy +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.artifacts import ArtifactsClass as Artifact +import os + +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import CGLS +from ccpi.plugins.ops import CCPiProjectorSimple +from ccpi.optimisation.ops import PowerMethodNonsquare +from ccpi.optimisation.ops import TomoIdentity +from ccpi.optimisation.funcs import Norm2sq, Norm1 +from ccpi.framework import ImageGeometry, AcquisitionGeometry, ImageData, AcquisitionData +from ccpi.optimisation.algorithms import GradientDescent +from ccpi.framework import BlockDataContainer +from ccpi.optimisation.operators import BlockOperator + + +model = 13 # select a model number from tomophantom library +N_size = 64 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") + +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) + +# detector column count (horizontal) +detector_horiz = int(numpy.sqrt(2)*N_size) +# detector row count (vertical) (no reason for it to be > N) +detector_vert = N_size +# number of projection angles +angles_num = int(0.5*numpy.pi*N_size) +# angles are expressed in degrees +angles = numpy.linspace(0.0, 179.9, angles_num, dtype='float32') + + +acquisition_data_array = TomoP3D.ModelSino(model, N_size, + detector_horiz, detector_vert, + angles, + path_library3D) + +tomophantom_acquisition_axes_order = ['vertical', 'angle', 'horizontal'] + +artifacts = Artifact(acquisition_data_array) + + +tp_acq_data = AcquisitionData(artifacts.noise(0.2, 'Gaussian'), + dimension_labels=tomophantom_acquisition_axes_order) +#print ("size", acquisition_data.shape) +print ("horiz", detector_horiz) +print ("vert", detector_vert) +print ("angles", angles_num) + +tp_acq_geometry = AcquisitionGeometry(geom_type='parallel', dimension='3D', + angles=angles, + pixel_num_h=detector_horiz, + pixel_num_v=detector_vert, + channels=1, + ) + +acq_data = tp_acq_geometry.allocate() +#print (tp_acq_geometry) +print ("AcquisitionData", acq_data.shape) +print ("TomoPhantom", tp_acq_data.shape, tp_acq_data.dimension_labels) + +default_acquisition_axes_order = ['angle', 'vertical', 'horizontal'] + +acq_data2 = tp_acq_data.subset(dimensions=default_acquisition_axes_order) +print ("AcquisitionData", acq_data2.shape, acq_data2.dimension_labels) +print ("AcquisitionData {} TomoPhantom {}".format(id(acq_data2.as_array()), + id(acquisition_data_array))) + +fig = plt.figure() +plt.subplot(1,2,1) +plt.imshow(acquisition_data_array[20]) +plt.title('Sinogram') +plt.subplot(1,2,2) +plt.imshow(tp_acq_data.as_array()[20]) +plt.title('Sinogram + noise') +plt.show() + +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to CCPi projector. + +ig = ImageGeometry(voxel_num_x=detector_horiz, + voxel_num_y=detector_horiz, + voxel_num_z=detector_vert) +A = CCPiProjectorSimple(ig, tp_acq_geometry) +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and some noise + +#b = A.direct(Phantom) +b = acq_data2 + +#z = A.adjoint(b) + + +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set. Note that 100 iterations for +# some of the methods is a very low number and 1000 or 10000 iterations may be +# needed if one wants to obtain a converged solution. +x_init = ImageData(geometry=ig, + dimension_labels=['horizontal_x','horizontal_y','vertical']) +X_init = BlockDataContainer(x_init) +B = BlockDataContainer(b, + ImageData(geometry=ig, dimension_labels=['horizontal_x','horizontal_y','vertical'])) + +# setup a tomo identity +Ibig = 4e1 * TomoIdentity(geometry=ig) +Ismall = 1e-3 * TomoIdentity(geometry=ig) +Iok = 7.6e0 * TomoIdentity(geometry=ig) + +# composite operator +Kbig = BlockOperator(A, Ibig, shape=(2,1)) +Ksmall = BlockOperator(A, Ismall, shape=(2,1)) +Kok = BlockOperator(A, Iok, shape=(2,1)) + +#out = K.direct(X_init) +#x0 = x_init.copy() +#x0.fill(numpy.random.randn(*x0.shape)) +#lipschitz = PowerMethodNonsquare(A, 5, x0) +#print("lipschitz", lipschitz) + +#%% + +simplef = Norm2sq(A, b, memopt=False) +#simplef.L = lipschitz[0]/3000. +simplef.L = 0.00003 + +f = Norm2sq(Kbig,B) +f.L = 0.00003 + +fsmall = Norm2sq(Ksmall,B) +fsmall.L = 0.00003 + +fok = Norm2sq(Kok,B) +fok.L = 0.00003 + +print("setup gradient descent") +gd = GradientDescent( x_init=x_init, objective_function=simplef, + rate=simplef.L) +gd.max_iteration = 5 +simplef2 = Norm2sq(A, b, memopt=True) +#simplef.L = lipschitz[0]/3000. +simplef2.L = 0.00003 +print("setup gradient descent") +gd2 = GradientDescent( x_init=x_init, objective_function=simplef2, + rate=simplef2.L) +gd2.max_iteration = 5 + +Kbig.direct(X_init) +Kbig.adjoint(B) +print("setup CGLS") +cg = CGLS() +cg.set_up(X_init, Kbig, B ) +cg.max_iteration = 10 + +print("setup CGLS") +cgsmall = CGLS() +cgsmall.set_up(X_init, Ksmall, B ) +cgsmall.max_iteration = 10 + + +print("setup CGLS") +cgs = CGLS() +cgs.set_up(x_init, A, b ) +cgs.max_iteration = 10 + +print("setup CGLS") +cgok = CGLS() +cgok.set_up(X_init, Kok, B ) +cgok.max_iteration = 10 +# # +#out.__isub__(B) +#out2 = K.adjoint(out) + +#(2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b ) + + +for _ in gd: + print ("GradientDescent iteration {} {}".format(gd.iteration, gd.get_last_loss())) +#gd2.run(5,verbose=True) +print("CGLS block lambda big") +cg.run(10, lambda it,val: print ("CGLS big iteration {} objective {}".format(it,val))) + +print("CGLS standard") +cgs.run(10, lambda it,val: print ("CGLS standard iteration {} objective {}".format(it,val))) + +print("CGLS block lambda small") +cgsmall.run(10, lambda it,val: print ("CGLS small iteration {} objective {}".format(it,val))) +print("CGLS block lambdaok") +cgok.run(10, verbose=True) +# # for _ in cg: +# print ("iteration {} {}".format(cg.iteration, cg.get_current_loss())) +# # +# # fig = plt.figure() +# # plt.imshow(cg.get_output().get_item(0,0).subset(vertical=0).as_array()) +# # plt.title('Composite CGLS') +# # plt.show() +# # +# # for _ in cgs: +# print ("iteration {} {}".format(cgs.iteration, cgs.get_current_loss())) +# # +Phantom = ImageData(phantom_tm) + +theslice=40 + +fig = plt.figure() +plt.subplot(2,3,1) +plt.imshow(numpy.flip(Phantom.subset(vertical=theslice).as_array(),axis=0), cmap='gray') +plt.clim(0,0.7) +plt.title('Simulated Phantom') +plt.subplot(2,3,2) +plt.imshow(gd.get_output().subset(vertical=theslice).as_array(), cmap='gray') +plt.clim(0,0.7) +plt.title('Simple Gradient Descent') +plt.subplot(2,3,3) +plt.imshow(cgs.get_output().subset(vertical=theslice).as_array(), cmap='gray') +plt.clim(0,0.7) +plt.title('Simple CGLS') +plt.subplot(2,3,5) +plt.imshow(cg.get_output().get_item(0).subset(vertical=theslice).as_array(), cmap='gray') +plt.clim(0,0.7) +plt.title('Composite CGLS\nbig lambda') +plt.subplot(2,3,6) +plt.imshow(cgsmall.get_output().get_item(0).subset(vertical=theslice).as_array(), cmap='gray') +plt.clim(0,0.7) +plt.title('Composite CGLS\nsmall lambda') +plt.subplot(2,3,4) +plt.imshow(cgok.get_output().get_item(0).subset(vertical=theslice).as_array(), cmap='gray') +plt.clim(0,0.7) +plt.title('Composite CGLS\nok lambda') +plt.show() + + +#Ibig = 7e1 * TomoIdentity(geometry=ig) +#Kbig = BlockOperator(A, Ibig, shape=(2,1)) +#cg2 = CGLS(x_init=X_init, operator=Kbig, data=B) +#cg2.max_iteration = 10 +#cg2.run(10, verbose=True) |