diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-04-16 15:28:55 +0100 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2019-04-16 15:28:55 +0100 |
commit | 9a8c03aff07d63f2c635c75fade0da835eb1fb98 (patch) | |
tree | 99903ef1e3c0e263d246d77ae189a49549e8167e /Wrappers | |
parent | 9d03383a707a7be94b42ac339d52b991cf5d5bc1 (diff) | |
download | framework-9a8c03aff07d63f2c635c75fade0da835eb1fb98.tar.gz framework-9a8c03aff07d63f2c635c75fade0da835eb1fb98.tar.bz2 framework-9a8c03aff07d63f2c635c75fade0da835eb1fb98.tar.xz framework-9a8c03aff07d63f2c635c75fade0da835eb1fb98.zip |
fix new implementation of PowerMethod
fixes different values found in #224
Diffstat (limited to 'Wrappers')
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py | 39 |
1 files changed, 11 insertions, 28 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py index bc18f9b..f304cc6 100755 --- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py @@ -24,59 +24,42 @@ class LinearOperator(Operator): raise NotImplementedError
@staticmethod
- def PowerMethod(operator, iterations, x0=None):
+ def PowerMethod(operator, iterations, x_init=None):
'''Power method to calculate iteratively the Lipschitz constant'''
- # Initialise random
- if x0 is None:
- #x0 = op.create_image_data()
+ # Initialise random
+ if x_init is None:
x0 = operator.domain_geometry().allocate(ImageGeometry.RANDOM_INT)
-
+ else:
+ x0 = x_init.copy()
+
x1 = operator.domain_geometry().allocate()
y_tmp = operator.range_geometry().allocate()
s = numpy.zeros(iterations)
# Loop
for it in numpy.arange(iterations):
- #x1 = operator.adjoint(operator.direct(x0))
operator.direct(x0,out=y_tmp)
operator.adjoint(y_tmp,out=x1)
x1norm = x1.norm()
- #s[it] = (x1*x0).sum() / (x0.squared_norm())
s[it] = x1.dot(x0) / x0.squared_norm()
- #x0 = (1.0/x1norm)*x1
- #x1 *= (1.0 / x1norm)
- #x0.fill(x1)
x1.multiply((1.0/x1norm), out=x0)
return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
@staticmethod
- def PowerMethodNonsquare(op,numiters , x0=None):
- # Initialise random
- # Jakob's
- # inputsize , outputsize = op.size()
- #x0 = ImageContainer(numpy.random.randn(*inputsize)
- # Edo's
- #vg = ImageGeometry(voxel_num_x=inputsize[0],
- # voxel_num_y=inputsize[1],
- # voxel_num_z=inputsize[2])
- #
- #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x'])
- #print (x0)
- #x0.fill(numpy.random.randn(*x0.shape))
+ def PowerMethodNonsquare(op,numiters , x_init=None):
+ '''Power method to calculate iteratively the Lipschitz constant'''
- if x0 is None:
- #x0 = op.create_image_data()
+ if x_init is None:
x0 = op.allocate_direct()
x0.fill(numpy.random.randn(*x0.shape))
+ else:
+ x0 = x_init.copy()
s = numpy.zeros(numiters)
# Loop
for it in numpy.arange(numiters):
x1 = op.adjoint(op.direct(x0))
- #x1norm = numpy.sqrt((x1*x1).sum())
x1norm = x1.norm()
- #print ("x0 **********" ,x0)
- #print ("x1 **********" ,x1)
s[it] = (x1*x0).sum() / (x0.squared_norm())
x0 = (1.0/x1norm)*x1
return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
|