summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-02-17 00:26:43 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2019-02-17 00:26:43 +0000
commit6de950b093a7b3602d615e7eb3786d9469ced930 (patch)
treea65d8ef61595dfab6de9d90824ce733dd1387770 /Wrappers
parent03c03ea81068b62c95882c769230bf8c4c63337b (diff)
downloadframework-6de950b093a7b3602d615e7eb3786d9469ced930.tar.gz
framework-6de950b093a7b3602d615e7eb3786d9469ced930.tar.bz2
framework-6de950b093a7b3602d615e7eb3786d9469ced930.tar.xz
framework-6de950b093a7b3602d615e7eb3786d9469ced930.zip
removed __getitem__ added get_item added shape
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/CompositeOperator.py267
1 files changed, 170 insertions, 97 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py b/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py
index 6a14262..ad307b7 100755
--- a/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/CompositeOperator.py
@@ -7,6 +7,7 @@ Created on Thu Feb 14 12:36:40 2019
#from ccpi.optimisation.ops import Operator
import numpy
from numbers import Number
+import functools
class Operator(object):
'''Operator that maps from a space X -> Y'''
def is_linear(self):
@@ -40,9 +41,25 @@ class LinearOperator(Operator):
class CompositeDataContainer(object):
'''Class to hold a composite operator'''
- def __init__(self, *args):
+ def __init__(self, *args, shape=None):
+ '''containers must be passed row by row'''
self.containers = args
self.index = 0
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+# for i in range(shape[0]):
+# b.append([])
+# for j in range(shape[1]):
+# b[-1].append(args[i*shape[1]+j])
+# indices.append(i*shape[1]+j)
+# self.containers = b
+
def __iter__(self):
return self
def next(self):
@@ -67,7 +84,13 @@ class CompositeDataContainer(object):
raise ValueError('List/ numpy array can only contain numbers')
return len(self.containers) == len(other)
return len(self.containers) == len(other.containers)
- def __getitem__(self, index):
+ def get_item(self, row, col=0):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+
+ index = row*self.shape[1]+col
return self.containers[index]
def add(self, other, out=None, *args, **kwargs):
@@ -128,7 +151,7 @@ class CompositeDataContainer(object):
## reductions
def sum(self, out=None, *args, **kwargs):
- return [ el.sum(*args, **kwargs) for el in self.containers]
+ return numpy.asarray([ el.sum(*args, **kwargs) for el in self.containers])
def copy(self):
'''alias of clone'''
@@ -236,6 +259,9 @@ class CompositeDataContainer(object):
# __rdiv__
def __itruediv__(self, other):
return self.__idiv__(other)
+ def norm(self):
+ y = numpy.asarray([el.norm() for el in self.containers])
+ return numpy.reshape(y, self.shape)
import time
from ccpi.optimisation.funcs import ZeroFun
@@ -348,19 +374,65 @@ class GradientDescent(Algorithm):
class CompositeOperator(Operator):
'''Class to hold a composite operator'''
- def __init__(self, *args):
+ def __init__(self, *args, shape=None):
self.operators = args
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+ def get_item(self, row, col):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+ index = row*self.shape[1]+col
+ return self.operators[index]
+
def norm(self):
- return [op.norm() for op in self.operators]
+ norm = [op.norm() for op in self.operators]
+ b = []
+ for i in range(self.shape[0]):
+ b.append([])
+ for j in range(self.shape[1]):
+ b[-1].append(norm[i*self.shape[1]+j])
+ return numpy.asarray(b)
def direct(self, x, out=None):
- return CompositeDataContainer(*[op.direct(X) for op,X in zip(self.operators, x)])
+ shape = self.get_output_shape(x.shape)
+ res = []
+ for row in range(self.shape[0]):
+ for col in range(self.shape[1]):
+ if col == 0:
+ prod = self.get_item(row,col).direct(x.get_item(col))
+ else:
+ prod += self.get_item(row,col).direct(x.get_item(col))
+ res.append(prod)
+ print ("len res" , len(res))
+ return CompositeDataContainer(*res, shape=shape)
def adjoint(self, x, out=None):
- return CompositeDataContainer(*[op.adjoint(X) for op,X in zip(self.operators, x)])
-
-
+ shape = self.get_output_shape(x.shape)
+ res = []
+ for row in range(self.shape[0]):
+ for col in range(self.shape[1]):
+ if col == 0:
+ prod = self.get_item(row,col).adjoint(x.get_item(col))
+ else:
+ prod += self.get_item(row,col).adjoint(x.get_item(col))
+ res.append(prod)
+ return CompositeDataContainer(*res, shape=shape)
+
+ def get_output_shape(self, xshape):
+ print ("operator shape {} data shape {}".format(self.shape, xshape))
+ if self.shape[1] != xshape[0]:
+ raise ValueError('Incompatible shapes {} {}'.format(self.shape, xshape))
+ print ((self.shape[0], xshape[-1]))
+ return (self.shape[0], xshape[-1])
if __name__ == '__main__':
#from ccpi.optimisation.Algorithms import GradientDescent
from ccpi.plugins.ops import CCPiProjectorSimple
@@ -385,155 +457,155 @@ if __name__ == '__main__':
print (a[0][0].shape)
#cp2 = CompositeDataContainer(*a)
cp2 = cp0.add(cp1)
- assert (cp2[0].as_array()[0][0][0] == 2.)
- assert (cp2[1].as_array()[0][0][0] == 4.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
cp2 = cp0 + cp1
- assert (cp2[0].as_array()[0][0][0] == 2.)
- assert (cp2[1].as_array()[0][0][0] == 4.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
cp2 = cp0 + 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 1. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 2., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
cp2 = cp0 + [1 ,2]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 1. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 3., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 3., decimal = 5)
cp2 += cp1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , +3. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , +6., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
cp2 += 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , +4. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , +7., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +7., decimal = 5)
cp2 += [-2,-1]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 2. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 6., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 6., decimal = 5)
cp2 = cp0.subtract(cp1)
- assert (cp2[0].as_array()[0][0][0] == -2.)
- assert (cp2[1].as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
cp2 = cp0 - cp1
- assert (cp2[0].as_array()[0][0][0] == -2.)
- assert (cp2[1].as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
cp2 = cp0 - 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -1. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 0, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0, decimal = 5)
cp2 = cp0 - [1 ,2]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -1. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -1., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -1., decimal = 5)
cp2 -= cp1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -3. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -4., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
cp2 -= 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -4. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -5., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -5., decimal = 5)
cp2 -= [-2,-1]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -2. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -4., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
cp2 = cp0.multiply(cp1)
- assert (cp2[0].as_array()[0][0][0] == 0.)
- assert (cp2[1].as_array()[0][0][0] == 3.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
cp2 = cp0 * cp1
- assert (cp2[0].as_array()[0][0][0] == 0.)
- assert (cp2[1].as_array()[0][0][0] == 3.)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
cp2 = cp0 * 2
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 2, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2, decimal = 5)
cp2 = cp0 * [3 ,2]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 2., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
cp2 *= cp1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0 , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , +6., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
cp2 *= 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , +6., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
cp2 *= [-2,-1]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -6., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -6., decimal = 5)
cp2 = cp0.divide(cp1)
- assert (cp2[0].as_array()[0][0][0] == 0.)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], 1./3., decimal=4)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
cp2 = cp0/cp1
- assert (cp2[0].as_array()[0][0][0] == 0.)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], 1./3., decimal=4)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
cp2 = cp0 / 2
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 0.5, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
cp2 = cp0 / [3 ,2]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 0.5, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
cp2 += 1
cp2 /= cp1
# TODO fix inplace division
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 1./2 , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 1.5/3., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1./2 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1.5/3., decimal = 5)
cp2 /= 1
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0.5 , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 0.5, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0.5 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
cp2 /= [-2,-1]
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , -0.5/2. , decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , -0.5, decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -0.5/2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -0.5, decimal = 5)
####
cp2 = cp0.power(cp1)
- assert (cp2[0].as_array()[0][0][0] == 0.)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], 1., decimal=4)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
cp2 = cp0**cp1
- assert (cp2[0].as_array()[0][0][0] == 0.)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], 1., decimal=4)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
cp2 = cp0 ** 2
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0] , 0., decimal=5)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0] , 1., decimal = 5)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0., decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1., decimal = 5)
cp2 = cp0.maximum(cp1)
- assert (cp2[0].as_array()[0][0][0] == cp1[0].as_array()[0][0][0])
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], cp2[1].as_array()[0][0][0], decimal=4)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == cp1.get_item(0,0).as_array()[0][0][0])
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], cp2.get_item(1,0).as_array()[0][0][0], decimal=4)
cp2 = cp0.abs()
- numpy.testing.assert_almost_equal(cp2[0].as_array()[0][0][0], 0., decimal=4)
- numpy.testing.assert_almost_equal(cp2[1].as_array()[0][0][0], 1., decimal=4)
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0], 0., decimal=4)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
cp2 = cp0.subtract(cp1)
s = cp2.sign()
- numpy.testing.assert_almost_equal(s[0].as_array()[0][0][0], -1., decimal=4)
- numpy.testing.assert_almost_equal(s[1].as_array()[0][0][0], -1., decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], -1., decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], -1., decimal=4)
cp2 = cp0.add(cp1)
s = cp2.sqrt()
- numpy.testing.assert_almost_equal(s[0].as_array()[0][0][0], numpy.sqrt(2), decimal=4)
- numpy.testing.assert_almost_equal(s[1].as_array()[0][0][0], numpy.sqrt(4), decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], numpy.sqrt(2), decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], numpy.sqrt(4), decimal=4)
s = cp0.sum()
numpy.testing.assert_almost_equal(s[0], 0, decimal=4)
s0 = 1
s1 = 1
- for i in cp0[0].shape:
+ for i in cp0.get_item(0,0).shape:
s0 *= i
- for i in cp0[1].shape:
+ for i in cp0.get_item(1,0).shape:
s1 *= i
- numpy.testing.assert_almost_equal(s[1], cp0[0].as_array()[0][0][0]*s0 +cp0[1].as_array()[0][0][0]*s1, decimal=4)
+ numpy.testing.assert_almost_equal(s[1], cp0.get_item(0,0).as_array()[0][0][0]*s0 +cp0.get_item(1,0).as_array()[0][0][0]*s1, decimal=4)
# Set up phantom size N x N x vert by creating ImageGeometry, initialising the
# ImageData object with this geometry and empty array and finally put some
@@ -622,9 +694,7 @@ if __name__ == '__main__':
# needed if one wants to obtain a converged solution.
x_init = ImageData(geometry=ig,
dimension_labels=['horizontal_x','horizontal_y','vertical'])
- x_init1 = ImageData(geometry=ig,
- dimension_labels=['horizontal_x','horizontal_y','vertical'])
- X_init = CompositeDataContainer(x_init, x_init1)
+ X_init = CompositeDataContainer(x_init)
B = CompositeDataContainer(b,
ImageData(geometry=ig, dimension_labels=['horizontal_x','horizontal_y','vertical']))
@@ -636,15 +706,18 @@ if __name__ == '__main__':
out = K.direct(X_init)
-# f = Norm2sq(K,B)
-# f.L = 0.001
-#
-# gd = GradientDescent()
-# gd.set_up(X_init, f, 0.001 )
-# gd.max_iteration = 2
-#
-# for _ in gd:
-# pass
-#
-#
-# \ No newline at end of file
+ f = Norm2sq(K,B)
+ f.L = 0.001
+
+ gd = GradientDescent()
+ gd.set_up(X_init, f, 0.001 )
+ gd.max_iteration = 2
+
+ out.__isub__(B)
+ out2 = K.adjoint(out)
+
+ #(2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
+
+ for _ in gd:
+ print ("iteration {} {}".format(gd.iteration, gd.get_current_loss()))
+ \ No newline at end of file