diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-02-11 17:42:24 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2019-02-11 17:42:24 +0000 |
commit | 64371504bd0bfeea4bba2b1fb3aa064034baadb1 (patch) | |
tree | 1698a73a10b15f6ffe06f5d0b6862d0295d18cf2 /Wrappers | |
parent | 06232063fb183bdd67eb3cb153b8b62c3c511a6f (diff) | |
download | framework-64371504bd0bfeea4bba2b1fb3aa064034baadb1.tar.gz framework-64371504bd0bfeea4bba2b1fb3aa064034baadb1.tar.bz2 framework-64371504bd0bfeea4bba2b1fb3aa064034baadb1.tar.xz framework-64371504bd0bfeea4bba2b1fb3aa064034baadb1.zip |
initial revision
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/Algorithms.py | 298 |
1 files changed, 298 insertions, 0 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/Algorithms.py b/Wrappers/Python/ccpi/optimisation/Algorithms.py new file mode 100644 index 0000000..325ed77 --- /dev/null +++ b/Wrappers/Python/ccpi/optimisation/Algorithms.py @@ -0,0 +1,298 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy +import time +from ccpi.optimisation.funcs import ZeroFun + +class Algorithm(object): + '''Base class for iterative algorithms + + provides the minimal infrastructure. + Algorithms are iterables so can be easily run in a for loop. They will + stop as soon as the stop cryterion is met. + + The user is required to implement the set_up, __init__, update and + should_stop methods + ''' + iteration = 0 + stop_cryterion = 'max_iter' + __max_iteration = 0 + __loss = [] + memopt = False + timing = [] + def __init__(self, *args, **kwargs): + pass + def set_up(self, *args, **kwargs): + raise NotImplementedError() + def update(self): + raise NotImplementedError() + + def should_stop(self): + '''stopping cryterion''' + raise NotImplementedError() + + def __iter__(self): + return self + def next(self): + '''python2 backwards compatibility''' + return self.__next__() + def __next__(self): + if self.should_stop(): + raise StopIteration() + else: + time0 = time.time() + self.update() + self.timing.append( time.time() - time0 ) + self.iteration += 1 + def get_output(self): + '''Returns the solution found''' + return self.x + def get_current_loss(self): + '''Returns the current value of the loss function''' + return self.__loss[-1] + @property + def loss(self): + return self.__loss + @property + def max_iteration(self): + return self.__max_iteration + @max_iteration.setter + def max_iteration(self, value): + assert isinstance(value, int) + self.__max_iteration = value + +class GradientDescent(Algorithm): + '''Implementation of a simple Gradient Descent algorithm + ''' + x = None + rate = 0 + objective_function = None + regulariser = None + def __init__(self, **kwargs): + '''initialisation can be done at creation time if all + proper variables are passed or later with set_up''' + args = ['x_init', 'objective_function', 'rate'] + for k,v in kwargs.items(): + if k in args: + args.pop(args.index(k)) + if len(args) == 0: + return self.set_up(x_init=kwargs['x_init'], + objective_function=kwargs['objective_function'], + rate=kwargs['rate']) + + def should_stop(self): + '''stopping cryterion, currently only based on number of iterations''' + return self.iteration >= self.max_iteration + + def set_up(self, x_init, objective_function, rate): + '''initialisation of the algorithm''' + self.x = x_init.copy() + if self.memopt: + self.x_update = x_init.copy() + self.objective_function = objective_function + self.rate = rate + self.loss.append(objective_function(x_init)) + + def update(self): + '''Single iteration''' + if self.memopt: + self.objective_function.gradient(self.x, out=self.x_update) + self.x_update *= -self.rate + self.x += self.x_update + else: + self.x += -self.rate * self.objective_function.grad(self.x) + + self.loss.append(self.objective_function(self.x)) + + + +class FISTA(Algorithm): + '''Fast Iterative Shrinkage-Thresholding Algorithm + + Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding + algorithm for linear inverse problems. + SIAM journal on imaging sciences,2(1), pp.183-202. + + Parameters: + x_init: initial guess + f: data fidelity + g: regularizer + h: + opt: additional algorithm + ''' + f = None + g = None + invL = None + t_old = 1 + def __init__(self, **kwargs): + '''initialisation can be done at creation time if all + proper variables are passed or later with set_up''' + args = ['x_init', 'f', 'g', 'opt'] + for k,v in kwargs.items(): + if k in args: + args.pop(args.index(k)) + if len(args) == 0: + return self.set_up(x_init=kwargs['x_init'], + f=kwargs['f'], + g=kwargs['g'], + opt=kwargs['opt']) + + def set_up(self, x_init, f=None, g=None, opt=None): + + # default inputs + if f is None: + self.f = ZeroFun() + else: + self.f = f + if g is None: + g = ZeroFun() + else: + self.g = g + + # algorithmic parameters + if opt is None: + opt = {'tol': 1e-4, 'iter': 1000, 'memopt':False} + + self.max_iteration = opt['iter'] if 'iter' in opt.keys() else 1000 + self.tol = opt['tol'] if 'tol' in opt.keys() else 1e-4 + memopt = opt['memopt'] if 'memopt' in opt.keys() else False + self.memopt = memopt + + # initialization + if memopt: + self.y = x_init.clone() + self.x_old = x_init.clone() + self.x = x_init.clone() + self.u = x_init.clone() + else: + self.x_old = x_init.copy() + self.y = x_init.copy() + + #timing = numpy.zeros(max_iter) + #criter = numpy.zeros(max_iter) + + + self.invL = 1/f.L + + self.t_old = 1 + + def should_stop(self): + '''stopping cryterion, currently only based on number of iterations''' + return self.iteration >= self.max_iteration + + def update(self): + # algorithm loop + #for it in range(0, max_iter): + + if self.memopt: + # u = y - invL*f.grad(y) + # store the result in x_old + self.f.gradient(self.y, out=self.u) + self.u.__imul__( -self.invL ) + self.u.__iadd__( self.y ) + # x = g.prox(u,invL) + self.g.proximal(self.u, self.invL, out=self.x) + + self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2))) + + # y = x + (t_old-1)/t*(x-x_old) + self.x.subtract(self.x_old, out=self.y) + self.y.__imul__ ((self.t_old-1)/self.t) + self.y.__iadd__( self.x ) + + self.x_old.fill(self.x) + self.t_old = self.t + + + else: + u = self.y - self.invL*self.f.grad(self.y) + + self.x = self.g.prox(u,self.invL) + + self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2))) + + self.y = self.x + (self.t_old-1)/self.t*(self.x-self.x_old) + + self.x_old = self.x.copy() + self.t_old = self.t + + + self.loss.append( self.f(self.x) + self.g(self.x) ) + + +class FBPD(Algorithm) + '''FBPD Algorithm + + Parameters: + x_init: initial guess + f: constraint + g: data fidelity + h: regularizer + opt: additional algorithm + ''' + constraint = None + data_fidelity = None + regulariser = None + def __init__(self, **kwargs): + pass + def set_up(self, x_init, operator=None, constraint=None, data_fidelity=None,\ + regulariser=None, opt=None): + + # default inputs + if constraint is None: + self.constraint = ZeroFun() + else: + self.constraint = constraint + if data_fidelity is None: + data_fidelity = ZeroFun() + else: + self.data_fidelity = data_fidelity + if regulariser is None: + self.regulariser = ZeroFun() + else: + self.regulariser = regulariser + + # algorithmic parameters + + + # step-sizes + self.tau = 2 / (self.data_fidelity.L + 2) + self.sigma = (1/self.tau - self.data_fidelity.L/2) / self.regulariser.L + + self.inv_sigma = 1/self.sigma + + # initialization + self.x = x_init + self.y = operator.direct(self.x) + + + def update(self): + + # primal forward-backward step + x_old = self.x + self.x = self.x - self.tau * ( self.data_fidelity.grad(self.x) + self.operator.adjoint(self.y) ) + self.x = constraint.prox(self.x, self.tau); + + # dual forward-backward step + self.y = self.y + self.sigma * self.operator.direct(2*self.x - x_old); + self.y = self.y - self.sigma * self.regulariser.prox(self.inv_sigma*self.y, self.inv_sigma); + + # time and criterion + self.loss = self.constraint(self.x) + self.data_fidelity(self.x) + self.regulariser(self.operator.direct(self.x)) + |