diff options
author | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-20 18:47:39 +0100 |
---|---|---|
committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-20 18:47:39 +0100 |
commit | 55691dadd3a8b3755e25f398236e9d9a46e5f8c3 (patch) | |
tree | 88c3f1ffba86d1d6f01bede106de2f60896d255c /Wrappers | |
parent | 1ef1cd2c55ee4dc132f89ccef62961cb9f11d800 (diff) | |
download | framework-55691dadd3a8b3755e25f398236e9d9a46e5f8c3.tar.gz framework-55691dadd3a8b3755e25f398236e9d9a46e5f8c3.tar.bz2 framework-55691dadd3a8b3755e25f398236e9d9a46e5f8c3.tar.xz framework-55691dadd3a8b3755e25f398236e9d9a46e5f8c3.zip |
fixes for TGV
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py | 2 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py | 262 |
2 files changed, 159 insertions, 105 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py index 2c42532..f459334 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py @@ -41,7 +41,7 @@ class FiniteDiff(LinearOperator): #self.voxel_size = kwargs.get('voxel_size',1) # this wrongly assumes a homogeneous voxel size - self.voxel_size = self.gm_domain.voxel_size_x +# self.voxel_size = self.gm_domain.voxel_size_x def direct(self, x, out=None): diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py index 3fc43b8..25af156 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py @@ -21,94 +21,105 @@ class SymmetrizedGradient(Gradient): ''' Domain of SymGrad is the Range of Gradient ''' + self.gm_domain = self.gm_range self.bnd_cond = bnd_cond self.channels = self.gm_range.get_item(0).channels - if self.correlation=='Space': - if self.channels>1: - pass - else: -# # 2D image ---> Dx v1, Dyv2, Dx - tmp = self.gm_domain.geometries + (self.gm_domain.get_item(0),) - self.gm_range = BlockGeometry(*tmp ) - self.ind1 = range(self.gm_domain.get_item(0).length) - self.ind2 = range(self.gm_domain.get_item(0).length-1, -1, -1) -# self.order = myorder = [0,1,2 3] - - elif self.correlation=='SpaceChannels': - if self.channels>1: - pass - else: - raise ValueError('No channels to correlate') + tmp_gm = len(self.gm_domain.geometries)*self.gm_domain.geometries + + self.gm_range = BlockGeometry(*tmp_gm) + + self.FD = FiniteDiff(self.gm_domain, direction = 0, bnd_cond = self.bnd_cond) + + if self.gm_domain.shape[0]==2: + self.order_ind = [0,2,1,3] + else: + self.order_ind = [0,3,6,1,4,7,2,5,8] + + +# if self.correlation=='Space': +# if self.channels>1: +# pass +# else: +## # 2D image ---> Dx v1, Dyv2, Dx +# tmp = self.gm_domain.geometries + (self.gm_domain.get_item(0),) +# self.gm_range = BlockGeometry(*tmp ) +# self.ind1 = range(self.gm_domain.get_item(0).length) +# self.ind2 = range(self.gm_domain.get_item(0).length-1, -1, -1) +## self.order = myorder = [0,1,2 3] +# +# elif self.correlation=='SpaceChannels': +# if self.channels>1: +# pass +# else: +# raise ValueError('No channels to correlate') def direct(self, x, out=None): -# tmp = numpy.zeros(self.gm_range) -# tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) -# tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) -# tmp[2] = 0.5 * (FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) + -# FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) ) -# -# return type(x)(tmp) - - tmp = [[None]*2]*2 - for i in range(2): - for j in range(2): - tmp[i][j]=FiniteDiff(self.gm_domain.get_item(0), direction = i, bnd_cond = self.bnd_cond).adjoint(x.get_item(j)) - tmp = numpy.array(tmp) - z = 0.5 * (tmp.T + tmp) - z = z.to - - return BlockDataContainer(*z.tolist()) + if out is None: + + tmp = [] + for i in range(self.gm_domain.shape[0]): + for j in range(x.shape[0]): + self.FD.direction = i + tmp.append(self.FD.adjoint(x.get_item(j))) + + tmp1 = [tmp[i] for i in self.order_ind] + + res = [0.5 * sum(x) for x in zip(tmp, tmp1)] + + return BlockDataContainer(*res) + def adjoint(self, x, out=None): - pass - - res = [] - for i in range(2): - tmp = ImageData(np.zeros(x.get_item(0))) - for j in range(2): - tmp += FiniteDiff(self.gm_domain.get_item(0), direction = i, bnd_cond = self.bnd_cond).direct(x.get_item(j)) - res.append(tmp) - return res - - -# for - -# tmp = numpy.zeros(self.gm_domain) -# -# tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[0]) + \ -# FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) -# -# tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) + \ -# FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[1]) -# -# return type(x)(tmp) + if out is None: - def alloc_domain_dim(self): - return ImageData(numpy.zeros(self.gm_domain)) - - def alloc_range_dim(self): - return ImageData(numpy.zeros(self.range_dim)) - - def domain_dim(self): + tmp = [None]*self.gm_domain.shape[0] + i = 0 + + for k in range(self.gm_domain.shape[0]): + tmp1 = 0 + for j in range(self.gm_domain.shape[0]): + self.FD.direction = j + tmp1 += self.FD.direct(x[i]) + i+=1 + tmp[k] = tmp1 + return BlockDataContainer(*tmp) + +# i = 0 +# +# tmp = self.gm_domain.allocate() +# for k in range(tmp.shape[0]): +# tmp1 = 0 +# for j in range(tmp.shape[0]): +# self.FD.direction = j +# tmp1 += self.FD.direct(x[i]) +# i+=1 +# tmp.get_item(k).fill(tmp1) +# return tmp + + else: + pass + + + def domain_geometry(self): return self.gm_domain - def range_dim(self): + def range_geometry(self): return self.gm_range def norm(self): -# return np.sqrt(4*len(self.domainDim())) - #TODO this takes time for big ImageData - # for 2D ||grad|| = sqrt(8), 3D ||grad|| = sqrt(12) - x0 = ImageData(np.random.random_sample(self.domain_dim())) - self.s1, sall, svec = LinearOperator.PowerMethod(self, 25, x0) - return self.s1 + + #TODO need dot method for BlockDataContainer + return numpy.sqrt(4*self.gm_domain.shape[0]) +# x0 = self.gm_domain.allocate('random_int') +# self.s1, sall, svec = LinearOperator.PowerMethod(self, 10, x0) +# return self.s1 @@ -124,57 +135,100 @@ if __name__ == '__main__': K = 2 ig1 = ImageGeometry(N, M) - ig2 = ImageGeometry(N, M, channels=K) + ig2 = ImageGeometry(N, M, K) E1 = SymmetrizedGradient(ig1, correlation = 'Space', bnd_cond='Neumann') - E2 = SymmetrizedGradient(ig2, correlation = 'SpaceChannels', bnd_cond='Periodic') + E2 = SymmetrizedGradient(ig2, correlation = 'Space', bnd_cond='Periodic') - print(E1.domain_geometry().shape) - print(E2.domain_geometry().shape) + print(E1.domain_geometry().shape, E1.range_geometry().shape) + print(E2.domain_geometry().shape, E2.range_geometry().shape) - u1 = E1.gm_domain.allocate('random_int') - u2 = E2.gm_domain.allocate('random_int') + u1 = E1.gm_domain.allocate('random_int') + a1 = ig1.allocate('random_int') + a2 = ig1.allocate('random_int') + a3 = ig1.allocate('random_int') + w1 = BlockDataContainer(*[a1, a2, a3]) + w11 = BlockDataContainer(*[a1, a2, a2, a3]) + + sym_direct = [None]*3 + + sym_direct[0] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0]) + sym_direct[1] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1]) + sym_direct[2] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[0]) + \ + FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[1])) + + sym_direct1 = [None]*4 + + sym_direct1[0] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[0]) + + sym_direct1[1] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1]) + \ + FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0])) + + sym_direct1[2] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1]) + \ + FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0])) + + sym_direct1[3] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[1]) + + + sym_adjoint = [None]*2 + + sym_adjoint[0] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w1[0]) + \ + FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w1[2]) + sym_adjoint[1] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w1[2]) + \ + FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w1[1]) + + sym_adjoint1 = [None]*2 + + sym_adjoint1[0] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w11[0]) + \ + FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w11[1]) + sym_adjoint1[1] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w11[2]) + \ + FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w11[3]) + - res = E1.direct(u1) + LHS = (sym_direct[0] * w1[0] + \ + sym_direct[1] * w1[1] + \ + 2*sym_direct[2] * w1[2]).sum() - res1 = E1.adjoint(res) + RHS = (u1[0]*sym_adjoint[0] + u1[1]*sym_adjoint[1]).sum() -# Dx = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann') -# Dy = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann') -# -# B = BlockOperator(Dy, Dx) -# V = BlockDataContainer(u1,u2) -# -# res = B.adjoint(V) + print(LHS, RHS) -# ig = (N,M) -# ig2 = (2,) + ig -# ig3 = (3,) + ig -# u1 = ig.allocate('random_int') -# w1 = E.gm_range.allocate('random_int') -# DataContainer(np.random.randint(10, size=ig3)) + LHS = (sym_direct1[0] * w11[0] + \ + sym_direct1[1] * w11[1] + \ + sym_direct1[2] * w11[2] + \ + sym_direct1[3] * w11[3] ).sum() + RHS = (u1[0]*sym_adjoint1[0] + u1[1]*sym_adjoint1[1]).sum() + print(LHS, RHS) -# d1 = E.direct(u1) -# d2 = E.adjoint(w1) -# LHS = (d1.as_array()[0]*w1.as_array()[0] + \ -# d1.as_array()[1]*w1.as_array()[1] + \ -# 2*d1.as_array()[2]*w1.as_array()[2]).sum() -# -# RHS = (u1.as_array()[0]*d2.as_array()[0] + \ -# u1.as_array()[1]*d2.as_array()[1]).sum() -# -# -# print(LHS, RHS, E.norm()) -# -# + a1 = (E1.direct(u1) * w11).sum() + b1 = (u1 * E1.adjoint(w11)).sum() + print(a1, b1) + + + u2 = E2.gm_domain.allocate('random_int') + + aa1 = ig2.allocate('random_int') + aa2 = ig2.allocate('random_int') + aa3 = ig2.allocate('random_int') + aa4 = ig2.allocate('random_int') + aa5 = ig2.allocate('random_int') + aa6 = ig2.allocate('random_int') + w2 = BlockDataContainer(*[aa1, aa2, aa3, \ + aa2, aa4, aa5, \ + aa3, aa5, aa6]) + tmp1 = E2.direct(u2) + tmp2 = E2.adjoint(w2) + c1 = (tmp1 * w2).sum() + d1 = (u2 * tmp2).sum() + print(c1, d1) @@ -182,4 +236,4 @@ if __name__ == '__main__': -
\ No newline at end of file +
\ No newline at end of file |