summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-04-23 12:38:45 +0100
committerEdoardo Pasca <edo.paskino@gmail.com>2019-04-23 12:38:45 +0100
commit541bbba333d0fd36e0a7a050879d40e6bd279306 (patch)
tree89af589299dbaef17ac614df2c355e07c0273f7d /Wrappers
parent9734788e8bc5088040ca8958db3ce9811a845758 (diff)
downloadframework-541bbba333d0fd36e0a7a050879d40e6bd279306.tar.gz
framework-541bbba333d0fd36e0a7a050879d40e6bd279306.tar.bz2
framework-541bbba333d0fd36e0a7a050879d40e6bd279306.tar.xz
framework-541bbba333d0fd36e0a7a050879d40e6bd279306.zip
add tomography type of example with ccpi projector
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py273
1 files changed, 273 insertions, 0 deletions
diff --git a/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py b/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py
new file mode 100644
index 0000000..ea1ad08
--- /dev/null
+++ b/Wrappers/Python/demos/pdhg_TV_tomography2Dccpi.py
@@ -0,0 +1,273 @@
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Feb 22 14:53:03 2019
+
+@author: evangelos
+"""
+
+from ccpi.framework import ImageData, ImageGeometry, BlockDataContainer, \
+ AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG, PDHG_old
+
+from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
+ MixedL21Norm, BlockFunction, ScaledFunction
+
+#from ccpi.astra.ops import AstraProjectorSimple
+from ccpi.plugins.ops import CCPiProjectorSimple
+#from skimage.util import random_noise
+from timeit import default_timer as timer
+
+#%%
+
+#%%###############################################################################
+# Create phantom for TV tomography
+
+#import os
+#import tomophantom
+#from tomophantom import TomoP2D
+#from tomophantom.supp.qualitymetrics import QualityTools
+
+#model = 1 # select a model number from the library
+#N = 150 # set dimension of the phantom
+## one can specify an exact path to the parameters file
+## path_library2D = '../../../PhantomLibrary/models/Phantom2DLibrary.dat'
+#path = os.path.dirname(tomophantom.__file__)
+#path_library2D = os.path.join(path, "Phantom2DLibrary.dat")
+##This will generate a N_size x N_size phantom (2D)
+#phantom_2D = TomoP2D.Model(model, N, path_library2D)
+#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+#data = ImageData(phantom_2D, geometry=ig)
+
+N = 150
+#x = np.zeros((N,N))
+
+vert = 4
+ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, voxel_num_z=vert)
+data = ig.allocate()
+Phantom = data
+# Populate image data by looping over and filling slices
+i = 0
+while i < vert:
+ if vert > 1:
+ x = Phantom.subset(vertical=i).array
+ else:
+ x = Phantom.array
+ x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+ x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.98
+ if vert > 1 :
+ Phantom.fill(x, vertical=i)
+ i += 1
+
+
+#%%
+#detectors = N
+#angles = np.linspace(0,np.pi,100)
+angles_num = 100
+det_w = 1.0
+det_num = N
+
+angles = np.linspace(0,np.pi,angles_num,endpoint=False,dtype=np.float32)*\
+ 180/np.pi
+
+# Inputs: Geometry, 2D or 3D, angles, horz detector pixel count,
+# horz detector pixel size, vert detector pixel count,
+# vert detector pixel size.
+ag = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ N,
+ det_w,
+ vert,
+ det_w)
+
+from ccpi.reconstruction.parallelbeam import alg as pbalg
+#from ccpi.plugins.processors import setupCCPiGeometries
+def setupCCPiGeometries(ig, ag, counter):
+
+ #vg = ImageGeometry(voxel_num_x=voxel_num_x,voxel_num_y=voxel_num_y, voxel_num_z=voxel_num_z)
+ #Phantom_ccpi = ImageData(geometry=vg,
+ # dimension_labels=['horizontal_x','horizontal_y','vertical'])
+ ##.subset(['horizontal_x','horizontal_y','vertical'])
+ ## ask the ccpi code what dimensions it would like
+ Phantom_ccpi = ig.allocate(dimension_labels=[ImageGeometry.HORIZONTAL_X,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.VERTICAL])
+
+ voxel_per_pixel = 1
+ angles = ag.angles
+ geoms = pbalg.pb_setup_geometry_from_image(Phantom_ccpi.as_array(),
+ angles,
+ voxel_per_pixel )
+
+ pg = AcquisitionGeometry('parallel',
+ '3D',
+ angles,
+ geoms['n_h'], 1.0,
+ geoms['n_v'], 1.0 #2D in 3D is a slice 1 pixel thick
+ )
+
+ center_of_rotation = Phantom_ccpi.get_dimension_size('horizontal_x') / 2
+ #ad = AcquisitionData(geometry=pg,dimension_labels=['angle','vertical','horizontal'])
+ ad = pg.allocate(dimension_labels=[AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL])
+ geoms_i = pbalg.pb_setup_geometry_from_acquisition(ad.as_array(),
+ angles,
+ center_of_rotation,
+ voxel_per_pixel )
+
+ counter+=1
+
+ if counter < 4:
+ print (geoms, geoms_i)
+ if (not ( geoms_i == geoms )):
+ print ("not equal and {} {} {}".format(counter, geoms['output_volume_z'], geoms_i['output_volume_z']))
+ X = max(geoms['output_volume_x'], geoms_i['output_volume_x'])
+ Y = max(geoms['output_volume_y'], geoms_i['output_volume_y'])
+ Z = max(geoms['output_volume_z'], geoms_i['output_volume_z'])
+ return setupCCPiGeometries(X,Y,Z,angles, counter)
+ else:
+ print ("happy now {} {} {}".format(counter, geoms['output_volume_z'], geoms_i['output_volume_z']))
+
+ return geoms
+ else:
+ return geoms_i
+
+
+
+#voxel_num_x, voxel_num_y, voxel_num_z, angles, counter
+print ("###############################################")
+print (ig)
+print (ag)
+g = setupCCPiGeometries(ig, ag, 0)
+print (g)
+print ("###############################################")
+print ("###############################################")
+#ag = AcquisitionGeometry('parallel','2D',angles, detectors)
+#Aop = AstraProjectorSimple(ig, ag, 'cpu')
+Aop = CCPiProjectorSimple(ig, ag, 'cpu')
+sin = Aop.direct(data)
+
+plt.imshow(sin.subset(vertical=0).as_array())
+plt.title('Sinogram')
+plt.colorbar()
+plt.show()
+
+
+#%%
+# Add Gaussian noise to the sinogram data
+np.random.seed(10)
+n1 = np.random.random(sin.shape)
+
+noisy_data = sin + ImageData(5*n1)
+
+plt.imshow(noisy_data.subset(vertical=0).as_array())
+plt.title('Noisy Sinogram')
+plt.colorbar()
+plt.show()
+
+
+#%% Works only with Composite Operator Structure of PDHG
+
+#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
+
+# Create operators
+op1 = Gradient(ig)
+op2 = Aop
+
+# Form Composite Operator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+alpha = 50
+f = BlockFunction( alpha * MixedL21Norm(), \
+ 0.5 * L2NormSquared(b = noisy_data) )
+g = ZeroFunction()
+
+normK = Aop.norm()
+
+# Compute operator Norm
+normK = operator.norm()
+
+## Primal & dual stepsizes
+diag_precon = False
+
+if diag_precon:
+
+ def tau_sigma_precond(operator):
+
+ tau = 1/operator.sum_abs_row()
+ sigma = 1/ operator.sum_abs_col()
+
+ return tau, sigma
+
+ tau, sigma = tau_sigma_precond(operator)
+
+else:
+ sigma = 1
+ tau = 1/(sigma*normK**2)
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+opt = {'niter':2000}
+opt1 = {'niter':2000, 'memopt': True}
+
+
+pdhg1 = PDHG(f=f,g=g, operator=operator, tau=tau, sigma=sigma)
+pdhg1.max_iteration = 2000
+pdhg1.update_objective_interval = 200
+pdhg2 = PDHG(f=f,g=g, operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg2.max_iteration = 2000
+pdhg2.update_objective_interval = 200
+t1 = timer()
+#res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
+pdhg1.run(200)
+res = pdhg1.get_output().subset(vertical=0)
+t2 = timer()
+
+t3 = timer()
+#res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
+pdhg2.run(200)
+res1 = pdhg2.get_output().subset(vertical=0)
+t4 = timer()
+#
+print ("No memopt in {}s, memopt in {}s ".format(t2-t1, t4 -t3))
+
+#%%
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(res.as_array())
+plt.title('no memopt')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(res1.as_array())
+plt.title('memopt')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow((res1 - res).abs().as_array())
+plt.title('diff')
+plt.colorbar()
+plt.show()
+#
+plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'memopt')
+plt.plot(np.linspace(0,N,N), res.as_array()[int(N/2),:], label = 'no memopt')
+plt.legend()
+plt.show()
+#
+print ("Time: No memopt in {}s, \n Time: Memopt in {}s ".format(t2-t1, t4 -t3))
+diff = (res1 - res).abs().as_array().max()
+#
+print(" Max of abs difference is {}".format(diff))
+