diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-12-06 17:37:35 +0000 |
---|---|---|
committer | Gemma Fardell <47746591+gfardell@users.noreply.github.com> | 2019-12-06 17:37:35 +0000 |
commit | 3d3a0958fad475c6b0493ad85459e1c04ba4ba62 (patch) | |
tree | 53189dbb211ce7fbdaa6ee12e97d43e33e24d99c /Wrappers | |
parent | 1cb06ae408e413890f21e0776bed785a1111377b (diff) | |
download | framework-3d3a0958fad475c6b0493ad85459e1c04ba4ba62.tar.gz framework-3d3a0958fad475c6b0493ad85459e1c04ba4ba62.tar.bz2 framework-3d3a0958fad475c6b0493ad85459e1c04ba4ba62.tar.xz framework-3d3a0958fad475c6b0493ad85459e1c04ba4ba62.zip |
C lib (#458)
C library implemented with optimised axpy fucntions and gradient operator in c
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/CMakeLists.txt | 88 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/framework/framework.py | 84 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py | 257 | ||||
-rw-r--r-- | Wrappers/Python/recipe/bld.bat (renamed from Wrappers/Python/conda-recipe/bld.bat) | 0 | ||||
-rw-r--r-- | Wrappers/Python/recipe/build.sh (renamed from Wrappers/Python/conda-recipe/build.sh) | 0 | ||||
-rw-r--r-- | Wrappers/Python/recipe/conda_build_config.yaml (renamed from Wrappers/Python/conda-recipe/conda_build_config.yaml) | 0 | ||||
-rw-r--r-- | Wrappers/Python/recipe/meta.yaml (renamed from Wrappers/Python/conda-recipe/meta.yaml) | 0 | ||||
-rw-r--r-- | Wrappers/Python/setup-cil.py.in | 70 | ||||
-rwxr-xr-x | Wrappers/Python/test/test_DataContainer.py | 13 | ||||
-rwxr-xr-x | Wrappers/Python/test/test_Gradient.py | 146 | ||||
-rw-r--r-- | Wrappers/Python/test/test_Operator.py | 3 |
11 files changed, 626 insertions, 35 deletions
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt new file mode 100644 index 0000000..f325265 --- /dev/null +++ b/Wrappers/Python/CMakeLists.txt @@ -0,0 +1,88 @@ +option (BUILD_PYTHON_WRAPPER "Build Python Wrapper" ON) + +if (BUILD_PYTHON_WRAPPER) + find_package(PythonInterp REQUIRED) + + set(PYTHON_DEST_DIR "" CACHE PATH "Directory of the Python wrappers") + if (PYTHON_DEST_DIR) + set(PYTHON_DEST "${PYTHON_DEST_DIR}") + else() + set(PYTHON_DEST "${CMAKE_INSTALL_PREFIX}/python") + endif() + message(STATUS "Python wrappers will be installed in " ${PYTHON_DEST}) + + message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") + + set(CMAKE_BUILD_TYPE "Release") + + find_package(PythonLibs) + if (PYTHONINTERP_FOUND) + message(STATUS "Found PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}") + message(STATUS "Python version ${PYTHON_VERSION_STRING}") + endif() + if (PYTHONLIBS_FOUND) + message(STATUS "Found PYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS}") + message(STATUS "Found PYTHON_LIBRARIES=${PYTHON_LIBRARIES}") + endif() + + if (PYTHONINTERP_FOUND) + message("Python found " ${PYTHON_EXECUTABLE}) + set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup-cil.py.in") + set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup.py") + #set(DEPS "${CMAKE_CURRENT_SOURCE_DIR}/module/__init__.py") + set (DEPS "${CMAKE_BINARY_DIR}/") + set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp") + + #configure_file(${SETUP_PY_IN} ${SETUP_PY}) + + message("Core binary dir " ${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE}) + + if (CONDA_BUILD) + add_custom_command(OUTPUT ${OUTPUT} + #COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} + COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} + COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION} + #PREFIX=${CMAKE_SOURCE_DIR}/src/Core + #LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/Core + #LIBRARY_LIB=${CMAKE_BINARY_DIR}/src/Core + ${PYTHON_EXECUTABLE} ${SETUP_PY} -vv install + #echo "EDO" + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} + DEPENDS cilacc) + + else() + if (WIN32) + add_custom_command(OUTPUT ${OUTPUT} + COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} + COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION} + PREFIX=${CMAKE_SOURCE_DIR}/src/ + LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/include + LIBRARY_LIB=${CMAKE_BINARY_DIR}/${CMAKE_BUILD_TYPE} + ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace + COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} + DEPENDS cilacc) + else() + add_custom_command(OUTPUT ${OUTPUT} + COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} + COMMAND ${CMAKE_COMMAND} -E env PREFIX=${CMAKE_SOURCE_DIR}/src/ + LIBRARY_INC=${CMAKE_SOURCE_DIR}/src/include + LIBRARY_LIB=${CMAKE_BINARY_DIR}/ + ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace + COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} + DEPENDS cilacc + ) + endif() + #set (PYTHON_DEST ${CMAKE_INSTALL_PREFIX}/python/) + install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ + DESTINATION ${PYTHON_DEST}) + #file(TOUCH ${PYTHON_DEST}/edo/__init__.py) + + endif() + + + add_custom_target(PythonWrapper ALL DEPENDS ${OUTPUT}) + #install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)") + endif() + +endif()
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py index 01ce7ef..1ab1d1e 100755 --- a/Wrappers/Python/ccpi/framework/framework.py +++ b/Wrappers/Python/ccpi/framework/framework.py @@ -26,6 +26,26 @@ from datetime import timedelta, datetime import warnings from functools import reduce from numbers import Number +import ctypes, platform + +# dll = os.path.abspath(os.path.join( +# os.path.abspath(os.path.dirname(__file__)), +# 'libfdiff.dll') +# ) + +# check for the extension +if platform.system() == 'Linux': + dll = 'libcilacc.so' +elif platform.system() == 'Windows': + dll = 'cilacc.dll' +elif platform.system() == 'Darwin': + dll = 'libcilacc.dylib' +else: + raise ValueError('Not supported platform, ', platform.system()) + +#print ("dll location", dll) +cilacc = ctypes.cdll.LoadLibrary(dll) + def find_key(dic, val): """return the key of dictionary dic given the value""" @@ -802,7 +822,69 @@ class DataContainer(object): def minimum(self,x2, out=None, *args, **kwargs): return self.pixel_wise_binary(numpy.minimum, x2=x2, out=out, *args, **kwargs) - + @staticmethod + def axpby(a,x,b,y,out,dtype=numpy.float32): + '''performs axpby with cilacc C library + + Does the operation .. math:: a*x+b*y and stores the result in out + + :param a: scalar + :param x: DataContainer + :param b: scalar + :param y: DataContainer + :param out: DataContainer to store the result + :param dtype: optional, data type of the DataContainers + ''' + + c_float_p = ctypes.POINTER(ctypes.c_float) + c_double_p = ctypes.POINTER(ctypes.c_double) + # get the reference to the data + ndx = x.as_array() + ndy = y.as_array() + ndout = out.as_array() + + if ndx.dtype != dtype: + ndx = ndx.astype(dtype) + if ndy.dtype != dtype: + ndy = ndy.astype(dtype) + + if dtype == numpy.float32: + x_p = ndx.ctypes.data_as(c_float_p) + y_p = ndy.ctypes.data_as(c_float_p) + out_p = ndout.ctypes.data_as(c_float_p) + f = cilacc.saxpby + + elif dtype == numpy.float64: + ndx = ndx.astype(numpy.float64) + b = b.astype(numpy.float64) + x_p = ndx.ctypes.data_as(c_double_p) + y_p = ndy.ctypes.data_as(c_double_p) + out_p = ndout.ctypes.data_as(c_double_p) + f = cilacc.daxpby + else: + raise TypeError('Unsupported type {}. Expecting numpy.float32 or numpy.float64'.format(dtype)) + + #out = numpy.empty_like(a) + + + # int psaxpby(float * x, float * y, float * out, float a, float b, long size) + cilacc.saxpby.argtypes = [ctypes.POINTER(ctypes.c_float), # pointer to the first array + ctypes.POINTER(ctypes.c_float), # pointer to the second array + ctypes.POINTER(ctypes.c_float), # pointer to the third array + ctypes.c_float, # type of A (float) + ctypes.c_float, # type of B (float) + ctypes.c_long] # type of size of first array + cilacc.daxpby.argtypes = [ctypes.POINTER(ctypes.c_double), # pointer to the first array + ctypes.POINTER(ctypes.c_double), # pointer to the second array + ctypes.POINTER(ctypes.c_double), # pointer to the third array + ctypes.c_double, # type of A (c_double) + ctypes.c_double, # type of B (c_double) + ctypes.c_long] # type of size of first array + + if f(x_p, y_p, out_p, a, b, ndx.size) != 0: + raise RuntimeError('axpby execution failed') + + ## unary operations def pixel_wise_unary(self, pwop, *args, **kwargs): out = kwargs.get('out', None) diff --git a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py index 3c32a93..8e07802 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py +++ b/Wrappers/Python/ccpi/optimisation/operators/GradientOperator.py @@ -21,15 +21,37 @@ from __future__ import print_function from __future__ import unicode_literals from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator +from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff from ccpi.framework import ImageData, ImageGeometry, BlockGeometry, BlockDataContainer import numpy -from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff +import warnings -#%% +NEUMANN = 'Neumann' +PERIODIC = 'Periodic' +C = 'c' +NUMPY = 'numpy' +CORRELATION_SPACE = "Space" +CORRELATION_SPACECHANNEL = "SpaceChannels" class Gradient(LinearOperator): + + """This is a class to compute the first-order forward/backward differences on ImageData + :param gm_domain: Set up the domain of the function + :type gm_domain: `ImageGeometry` + :param bnd_cond: Set the boundary conditions to use 'Neumann' or 'Periodic', defaults to 'Neumann' + :type bnd_cond: str, optional + :param \**kwargs: + See below + + :Keyword Arguments: + * *correlation* (``str``) -- + 'Space' or 'SpaceChannels', defaults to 'Space' + * *backend* (``str``) -- + 'c' or 'numpy', defaults to 'c' if correlation is 'SpaceChannels' or channels = 1 + """ + r'''Gradient Operator: .. math:: \nabla : X -> Y Computes first-order forward/backward differences @@ -39,29 +61,82 @@ class Gradient(LinearOperator): Example (2D): u\in X, \nabla(u) = [\partial_{y} u, \partial_{x} u] u^{*}\in Y, \nabla^{*}(u^{*}) = \partial_{y} v1 + \partial_{x} v2 - Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x'] - Grad_order = ['channels', 'direction_y', 'direction_x'] - Grad_order = ['direction_z', 'direction_y', 'direction_x'] - Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x'] - - ''' + + #kept here for backwards compatability + CORRELATION_SPACE = CORRELATION_SPACE + CORRELATION_SPACECHANNEL = CORRELATION_SPACECHANNEL + + def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs): + """Constructor method + """ + super(Gradient, self).__init__() + + backend = kwargs.get('backend',C) + + correlation = kwargs.get('correlation',CORRELATION_SPACE) + + if correlation == CORRELATION_SPACE and gm_domain.channels > 1: + #numpy implementation only for now + backend = NUMPY + warnings.warn("Warning: correlation='Space' on multi-channel dataset will use `numpy` backend") + + if backend == NUMPY: + self.operator = Gradient_numpy(gm_domain, bnd_cond=bnd_cond, **kwargs) + else: + self.operator = Gradient_C(gm_domain, bnd_cond=bnd_cond) + + + def direct(self, x, out=None): + """Computes the first-order forward differences + + :param x: Image data + :type x: `ImageData` + :param out: pre-allocated output memory to store result + :type out: `BlockDataContainer`, optional + :return: result data if not passed as parameter + :rtype: `BlockDataContainer` + """ + return self.operator.direct(x, out=out) + + + def adjoint(self, x, out=None): + """Computes the first-order backward differences + + :param x: Gradient images for each dimension in ImageGeometry domain + :type x: `BlockDataContainer` + :param out: pre-allocated output memory to store result + :type out: `ImageData`, optional + :return: result data if not passed as parameter + :rtype: `ImageData` + """ + return self.operator.adjoint(x, out=out) + + def domain_geometry(self): + '''Returns domain_geometry of Gradient''' + + return self.operator.gm_domain - - CORRELATION_SPACE = "Space" - CORRELATION_SPACECHANNEL = "SpaceChannels" + def range_geometry(self): + + '''Returns range_geometry of Gradient''' + + return self.operator.gm_range +class Gradient_numpy(LinearOperator): + def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs): - super(Gradient, self).__init__() + super(Gradient_numpy, self).__init__() self.gm_domain = gm_domain # Domain of Grad Operator - self.correlation = kwargs.get('correlation',Gradient.CORRELATION_SPACE) + self.correlation = kwargs.get('correlation',CORRELATION_SPACE) - if self.correlation==Gradient.CORRELATION_SPACE: - if self.gm_domain.channels>1: + if self.correlation==CORRELATION_SPACE: + if self.gm_domain.channels > 1: self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length-1)] ) + if self.gm_domain.length == 4: # 3D + Channel # expected Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x'] @@ -70,6 +145,7 @@ class Gradient(LinearOperator): # 2D + Channel # expected Grad_order = ['channels', 'direction_y', 'direction_x'] expected_order = [ImageGeometry.CHANNEL, ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X] + order = self.gm_domain.get_order_by_label(self.gm_domain.dimension_labels, expected_order) self.ind = order[1:] #self.ind = numpy.arange(1,self.gm_domain.length) @@ -83,10 +159,12 @@ class Gradient(LinearOperator): else: # 2D expected_order = [ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X] + self.ind = self.gm_domain.get_order_by_label(self.gm_domain.dimension_labels, expected_order) # self.ind = numpy.arange(self.gm_domain.length) - elif self.correlation==Gradient.CORRELATION_SPACECHANNEL: - if self.gm_domain.channels>1: + + elif self.correlation==CORRELATION_SPACECHANNEL: + if self.gm_domain.channels > 1: self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length)]) self.ind = range(self.gm_domain.length) else: @@ -189,6 +267,146 @@ class Gradient(LinearOperator): res.append(spMat.sum_abs_col()) return BlockDataContainer(*res) +import ctypes, platform + +# check for the extension +if platform.system() == 'Linux': + dll = 'libcilacc.so' +elif platform.system() == 'Windows': + dll = 'cilacc.dll' +elif platform.system() == 'Darwin': + dll = 'libcilacc.dylib' +else: + raise ValueError('Not supported platform, ', platform.system()) + +#print ("dll location", dll) +cilacc = ctypes.cdll.LoadLibrary(dll) + +#FD = ctypes.CDLL(dll) + +c_float_p = ctypes.POINTER(ctypes.c_float) + +cilacc.openMPtest.restypes = ctypes.c_int32 + +cilacc.fdiff4D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_long, + ctypes.c_long, + ctypes.c_long, + ctypes.c_long, + ctypes.c_int32, + ctypes.c_int32] + +cilacc.fdiff3D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_long, + ctypes.c_long, + ctypes.c_long, + ctypes.c_int32, + ctypes.c_int32] + +cilacc.fdiff2D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_long, + ctypes.c_long, + ctypes.c_int32, + ctypes.c_int32] + + +class Gradient_C(LinearOperator): + + '''Finite Difference Operator: + + Computes first-order forward/backward differences + on 2D, 3D, 4D ImageData + under Neumann/Periodic boundary conditions''' + + def __init__(self, gm_domain, gm_range=None, bnd_cond = NEUMANN): + + super(Gradient_C, self).__init__() + + self.gm_domain = gm_domain + self.gm_range = gm_range + + #default is 'Neumann' + self.bnd_cond = 0 + + if bnd_cond == PERIODIC: + self.bnd_cond = 1 + + # Domain Geometry = Range Geometry if not stated + if self.gm_range is None: + self.gm_range = BlockGeometry(*[gm_domain for _ in range(len(gm_domain.shape))]) + + + if len(gm_domain.shape) == 4: + self.fd = cilacc.fdiff4D + elif len(gm_domain.shape) == 3: + self.fd = cilacc.fdiff3D + elif len(gm_domain.shape) == 2: + self.fd = cilacc.fdiff2D + else: + raise ValueError('Number of dimensions not supported, expected 2, 3 or 4, got {}'.format(len(gm_domain.shape))) + + + @staticmethod + def datacontainer_as_c_pointer(x): + ndx = x.as_array() + return ndx, ndx.ctypes.data_as(c_float_p) + + def direct(self, x, out=None): + ndx , x_p = Gradient_C.datacontainer_as_c_pointer(x) + + return_val = False + if out is None: + out = self.gm_range.allocate(None) + return_val = True + + arg1 = [Gradient_C.datacontainer_as_c_pointer(out.get_item(i))[1] for i in range(self.gm_range.shape[0])] + arg2 = [el for el in x.shape] + args = arg1 + arg2 + [self.bnd_cond, 1] + self.fd(x_p, *args) + + if return_val is True: + return out + + + def adjoint(self, x, out=None): + + return_val = False + if out is None: + out = self.gm_domain.allocate(None) + return_val = True + + ndout, out_p = Gradient_C.datacontainer_as_c_pointer(out) + + arg1 = [Gradient_C.datacontainer_as_c_pointer(x.get_item(i))[1] for i in range(self.gm_range.shape[0])] + arg2 = [el for el in out.shape] + args = arg1 + arg2 + [self.bnd_cond, 0] + + self.fd(out_p, *args) + + if return_val is True: + return out + + def domain_geometry(self): + + '''Returns domain_geometry of Gradient''' + + return self.gm_domain + + def range_geometry(self): + + '''Returns range_geometry of Gradient''' + + return self.gm_range + if __name__ == '__main__': @@ -302,8 +520,5 @@ if __name__ == '__main__': G.direct(u, out = res) G.adjoint(w, out = res1) - print( (res*w).sum(), (u*res1).sum() ) - + print( (res*w).sum(), (u*res1).sum() ) - - diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/recipe/bld.bat index 97a4e62..97a4e62 100644 --- a/Wrappers/Python/conda-recipe/bld.bat +++ b/Wrappers/Python/recipe/bld.bat diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/recipe/build.sh index 43e85d5..43e85d5 100644 --- a/Wrappers/Python/conda-recipe/build.sh +++ b/Wrappers/Python/recipe/build.sh diff --git a/Wrappers/Python/conda-recipe/conda_build_config.yaml b/Wrappers/Python/recipe/conda_build_config.yaml index e5e168b..e5e168b 100644 --- a/Wrappers/Python/conda-recipe/conda_build_config.yaml +++ b/Wrappers/Python/recipe/conda_build_config.yaml diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/recipe/meta.yaml index 9d03220..9d03220 100644 --- a/Wrappers/Python/conda-recipe/meta.yaml +++ b/Wrappers/Python/recipe/meta.yaml diff --git a/Wrappers/Python/setup-cil.py.in b/Wrappers/Python/setup-cil.py.in new file mode 100644 index 0000000..d1cf7fc --- /dev/null +++ b/Wrappers/Python/setup-cil.py.in @@ -0,0 +1,70 @@ +# -*- coding: utf-8 -*- +# CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL). + +# Copyright 2017 UKRI-STFC +# Copyright 2017 University of Manchester + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from distutils.core import setup +import os +import sys + + +cil_version=os.environ['CIL_VERSION'] +if cil_version == '': + print("Please set the environmental variable CIL_VERSION") + sys.exit(1) + +setup( + name="ccpi-framework", + version=cil_version, + packages=['ccpi' , 'ccpi.io', + 'ccpi.framework', 'ccpi.optimisation', + 'ccpi.optimisation.operators', + 'ccpi.optimisation.algorithms', + 'ccpi.optimisation.functions', + 'ccpi.processors', + 'ccpi.utilities', 'ccpi.utilities.jupyter', + 'ccpi.contrib','ccpi.contrib.optimisation', + 'ccpi.contrib.optimisation.algorithms'], + data_files = [('share/ccpi', ['data/boat.tiff', + 'data/peppers.tiff', + 'data/camera.png', + 'data/resolution_chart.tiff', + 'data/shapes.png', + 'data/24737_fd_normalised.nxs'])], + + # Project uses reStructuredText, so ensure that the docutils get + # installed or upgraded on the target machine + #install_requires=['docutils>=0.3'], + +# package_data={ +# # If any package contains *.txt or *.rst files, include them: +# '': ['*.txt', '*.rst'], +# # And include any *.msg files found in the 'hello' package, too: +# 'hello': ['*.msg'], +# }, + # zip_safe = False, + + # metadata for upload to PyPI + author="CCPi developers", + maintainer="Edoardo Pasca", + maintainer_email="edoardo.pasca@stfc.ac.uk", + description='CCPi Core Imaging Library - Python Framework Module', + license="Apache v2.0", + keywords="Python Framework", + url="http://www.ccpi.ac.uk/CIL", # project home page, if any + + # could also include long_description, download_url, classifiers, etc. +) diff --git a/Wrappers/Python/test/test_DataContainer.py b/Wrappers/Python/test/test_DataContainer.py index 9b9a8dd..d2d5b05 100755 --- a/Wrappers/Python/test/test_DataContainer.py +++ b/Wrappers/Python/test/test_DataContainer.py @@ -732,6 +732,19 @@ class TestDataContainer(unittest.TestCase): u.multiply(2, out=u) c = b * 2 numpy.testing.assert_array_equal(u.as_array(), c) + + def test_axpby(self): + print ("test axpby") + ig = ImageGeometry(10,10) + d1 = ig.allocate(1) + d2 = ig.allocate(2) + out = ig.allocate(None) + # equals to 2 * [1] + 1 * [2] = [4] + DataContainer.axpby(2,d1,1,d2,out) + res = numpy.ones_like(d1.as_array()) * 4. + numpy.testing.assert_array_equal(res, out.as_array()) + + diff --git a/Wrappers/Python/test/test_Gradient.py b/Wrappers/Python/test/test_Gradient.py index 5dc8137..5aeede0 100755 --- a/Wrappers/Python/test/test_Gradient.py +++ b/Wrappers/Python/test/test_Gradient.py @@ -23,6 +23,7 @@ from ccpi.framework import BlockDataContainer import functools from ccpi.optimisation.operators import Gradient, Identity, BlockOperator +from ccpi.optimisation.operators import LinearOperator class TestGradient(unittest.TestCase): def test_Gradient(self): @@ -36,17 +37,17 @@ class TestGradient(unittest.TestCase): ig3 = ImageGeometry(voxel_num_x = M, voxel_num_y = N, channels = channels) ig4 = ImageGeometry(voxel_num_x = M, voxel_num_y = N, channels = channels, voxel_num_z= K) - G1 = Gradient(ig1, correlation = 'Space') + G1 = Gradient(ig1, correlation = 'Space', backend='numpy') print(G1.range_geometry().shape, '2D no channels') - G4 = Gradient(ig3, correlation = 'SpaceChannels') - print(G4.range_geometry().shape, '2D with channels corr') - G5 = Gradient(ig3, correlation = 'Space') + G4 = Gradient(ig3, correlation = 'SpaceChannels', backend='numpy') + print(G4.range_geometry().shape, '2D with channels corr') + G5 = Gradient(ig3, correlation = 'Space', backend='numpy') print(G5.range_geometry().shape, '2D with channels no corr') - G6 = Gradient(ig4, correlation = 'Space') + G6 = Gradient(ig4, correlation = 'Space', backend='numpy') print(G6.range_geometry().shape, '3D with channels no corr') - G7 = Gradient(ig4, correlation = 'SpaceChannels') + G7 = Gradient(ig4, correlation = 'SpaceChannels', backend='numpy') print(G7.range_geometry().shape, '3D with channels with corr') @@ -77,8 +78,8 @@ class TestGradient(unittest.TestCase): #check direct/adjoint for space/channels correlation ig_channel = ImageGeometry(voxel_num_x = 2, voxel_num_y = 3, channels = 2) - G_no_channel = Gradient(ig_channel, correlation = 'Space') - G_channel = Gradient(ig_channel, correlation = 'SpaceChannels') + G_no_channel = Gradient(ig_channel, correlation = 'Space', backend='numpy') + G_channel = Gradient(ig_channel, correlation = 'SpaceChannels', backend='numpy') u3 = ig_channel.allocate('random_int') res_no_channel = G_no_channel.direct(u3) @@ -95,7 +96,7 @@ class TestGradient(unittest.TestCase): ig2D = ImageGeometry(voxel_num_x = 2, voxel_num_y = 3) u4 = ig2D.allocate('random_int') - G2D = Gradient(ig2D) + G2D = Gradient(ig2D, backend='numpy') res = G2D.direct(u4) print(res[0].as_array()) print(res[1].as_array()) @@ -105,12 +106,133 @@ class TestGradient(unittest.TestCase): arr = ig.allocate('random_int' ) # check direct of Gradient and sparse matrix - G = Gradient(ig) + G = Gradient(ig, backend='numpy') norm1 = G.norm(iterations=300) print ("should be sqrt(8) {} {}".format(numpy.sqrt(8), norm1)) numpy.testing.assert_almost_equal(norm1, numpy.sqrt(8), decimal=1) ig4 = ImageGeometry(M,N, channels=3) - G4 = Gradient(ig4, correlation=Gradient.CORRELATION_SPACECHANNEL) + G4 = Gradient(ig4, correlation="SpaceChannels", backend='numpy') norm4 = G4.norm(iterations=300) - print ("should be sqrt(12) {} {}".format(numpy.sqrt(12), norm4)) + print("should be sqrt(12) {} {}".format(numpy.sqrt(12), norm4)) self.assertTrue((norm4 - numpy.sqrt(12))/norm4 < 0.2) + + def test_GradientOperator_4D(self): + + nc, nz, ny, nx = 3, 4, 5, 6 + size = nc * nz * ny * nx + dim = [nc, nz, ny, nx] + + ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc) + + arr = numpy.arange(size).reshape(dim).astype(numpy.float32)**2 + + data = ig.allocate() + data.fill(arr) + + #neumann + grad_py = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy') + gold_direct = grad_py.direct(data) + gold_adjoint = grad_py.adjoint(gold_direct) + + grad_c = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c') + out_direct = grad_c.direct(data) + out_adjoint = grad_c.adjoint(out_direct) + + #print("GradientOperator, 4D, bnd_cond='Neumann', direct") + numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array()) + + #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint") + numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array()) + + #periodic + grad_py = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='numpy') + gold_direct = grad_py.direct(data) + gold_adjoint = grad_py.adjoint(gold_direct) + + grad_c = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='c') + out_direct = grad_c.direct(data) + out_adjoint = grad_c.adjoint(out_direct) + + #print("Gradient, 4D, bnd_cond='Periodic', direct") + numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array()) + + #print("Gradient, 4D, bnd_cond='Periodic', adjoint") + numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array()) + + def test_Gradient_4D_allocate(self): + + nc, nz, ny, nx = 3, 4, 5, 6 + size = nc * nz * ny * nx + dim = [nc, nz, ny, nx] + + ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc) + + + arr = numpy.arange(size).reshape(dim).astype(numpy.float32)**2 + + data = ig.allocate() + data.fill(arr) + + #numpy + grad1 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy') + gold_direct = grad1.direct(data) + gold_adjoint = grad1.adjoint(gold_direct) + + grad2 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy') + out_direct = grad2.range_geometry().allocate() + out_adjoint = grad2.domain_geometry().allocate() + grad2.direct(data, out=out_direct) + grad2.adjoint(out_direct, out=out_adjoint) + + #print("GradientOperator, 4D, bnd_cond='Neumann', direct") + numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array()) + + #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint") + numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array()) + + #c + grad1 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c') + gold_direct = grad1.direct(data) + gold_adjoint = grad1.adjoint(gold_direct) + + grad2 = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c') + out_direct = grad2.range_geometry().allocate() + out_adjoint = grad2.domain_geometry().allocate() + grad2.direct(data, out=out_direct) + grad2.adjoint(out_direct, out=out_adjoint) + + #print("GradientOperator, 4D, bnd_cond='Neumann', direct") + numpy.testing.assert_array_equal(out_direct.get_item(0).as_array(), gold_direct.get_item(0).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(1).as_array(), gold_direct.get_item(1).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(2).as_array(), gold_direct.get_item(2).as_array()) + numpy.testing.assert_array_equal(out_direct.get_item(3).as_array(), gold_direct.get_item(3).as_array()) + + #print("GradientOperator, 4D, bnd_cond='Neumann', adjoint") + numpy.testing.assert_array_equal(out_adjoint.as_array(), gold_adjoint.as_array()) + + def test_Gradient_linearity(self): + + nc, nz, ny, nx = 3, 4, 5, 6 + ig = ImageGeometry(voxel_num_x=nx, voxel_num_y=ny, voxel_num_z=nz, channels=nc) + + grad = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='c') + self.assertTrue(LinearOperator.dot_test(grad)) + + grad = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='c') + self.assertTrue(LinearOperator.dot_test(grad)) + + grad = Gradient(ig, bnd_cond='Neumann', correlation='SpaceChannels', backend='numpy') + self.assertTrue(LinearOperator.dot_test(grad)) + + grad = Gradient(ig, bnd_cond='Periodic', correlation='SpaceChannels', backend='numpy') + self.assertTrue(LinearOperator.dot_test(grad)) +
\ No newline at end of file diff --git a/Wrappers/Python/test/test_Operator.py b/Wrappers/Python/test/test_Operator.py index 3372b9b..96c48da 100644 --- a/Wrappers/Python/test/test_Operator.py +++ b/Wrappers/Python/test/test_Operator.py @@ -494,12 +494,13 @@ class TestBlockOperator(unittest.TestCase): print("Z1", Z1[0][1].as_array()) print("RES1", RES1[0][1].as_array()) def test_timedifference(self): + print ("test_timedifference") M, N ,W = 100, 512, 512 ig = ImageGeometry(M, N, W) arr = ig.allocate('random_int') - G = Gradient(ig) + G = Gradient(ig, backend='numpy') Id = Identity(ig) B = BlockOperator(G, Id) |