summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-06-03 13:46:11 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-06-03 13:46:11 +0100
commit1261c69dd0e4d12cb7f491074d0e062b865f872f (patch)
tree62791e4de968c853f1083451c58f0f1b9da2e907 /Wrappers
parentc21dc77179d2b8eb71b0bfeaa6e6e73f847fec67 (diff)
parent74dd85988e86ebd441c5b0848f6d7b58f22b3dff (diff)
downloadframework-1261c69dd0e4d12cb7f491074d0e062b865f872f.tar.gz
framework-1261c69dd0e4d12cb7f491074d0e062b865f872f.tar.bz2
framework-1261c69dd0e4d12cb7f491074d0e062b865f872f.tar.xz
framework-1261c69dd0e4d12cb7f491074d0e062b865f872f.zip
merge
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/framework/framework.py2
-rw-r--r--Wrappers/Python/demos/PDHG_examples/ColorbayDemo.py268
2 files changed, 269 insertions, 1 deletions
diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py
index 3840f2c..e906ca6 100755
--- a/Wrappers/Python/ccpi/framework/framework.py
+++ b/Wrappers/Python/ccpi/framework/framework.py
@@ -821,7 +821,7 @@ class DataContainer(object):
if self.shape == other.shape:
# return (self*other).sum()
if method == 'numpy':
- return numpy.dot(self.as_array().ravel(), other.as_array())
+ return numpy.dot(self.as_array().ravel(), other.as_array().ravel())
elif method == 'reduce':
# see https://github.com/vais-ral/CCPi-Framework/pull/273
# notice that Python seems to be smart enough to use
diff --git a/Wrappers/Python/demos/PDHG_examples/ColorbayDemo.py b/Wrappers/Python/demos/PDHG_examples/ColorbayDemo.py
new file mode 100644
index 0000000..a735323
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_examples/ColorbayDemo.py
@@ -0,0 +1,268 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+
+from ccpi.framework import ImageGeometry, ImageData, AcquisitionGeometry, AcquisitionData, BlockDataContainer
+
+import numpy as numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG, CGLS
+from ccpi.optimisation.algs import CGLS as CGLS_old
+
+from ccpi.optimisation.operators import BlockOperator, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
+ MixedL21Norm, BlockFunction
+
+from ccpi.astra.operators import AstraProjectorMC
+from scipy.io import loadmat
+import h5py
+
+#%%
+
+phantom = 'powder'
+
+if phantom == 'carbon':
+ pathname = '/media/newhd/shared/Data/ColourBay/spectral_data_sets/CarbonPd/'
+ filename = 'carbonPd_full_sinogram_stripes_removed.mat'
+ X = loadmat(pathname + filename)
+ X = numpy.transpose(X['SS'],(3,1,2,0))
+ X = X[80:100] # delete this to take all channels
+
+elif phantom == 'powder':
+ pathname = '/media/newhd/shared/DataProcessed/'
+ filename = 'S_180.mat'
+ path = pathname + filename
+ arrays = {}
+ f = h5py.File(path)
+ for k, v in f.items():
+ arrays[k] = numpy.array(v)
+ XX = arrays['S']
+ X = numpy.transpose(XX,(0,2,1,3))
+ X = X[0:20]
+
+
+
+#%% Setup Geometry of Colorbay
+
+num_channels = X.shape[0]
+num_pixels_h = X.shape[3]
+num_pixels_v = X.shape[2]
+num_angles = X.shape[1]
+
+# Display a single projection in a single channel
+plt.imshow(X[5,5,:,:])
+plt.title('Example of a projection image in one channel' )
+plt.show()
+
+# Set angles to use
+angles = numpy.linspace(-numpy.pi,numpy.pi,num_angles,endpoint=False)
+
+# Define full 3D acquisition geometry and data container.
+# Geometric info is taken from the txt-file in the same dir as the mat-file
+ag = AcquisitionGeometry('cone',
+ '3D',
+ angles,
+ pixel_num_h=num_pixels_h,
+ pixel_size_h=0.25,
+ pixel_num_v=num_pixels_v,
+ pixel_size_v=0.25,
+ dist_source_center=233.0,
+ dist_center_detector=245.0,
+ channels=num_channels)
+data = AcquisitionData(X, geometry=ag)
+
+# Reduce to central slice by extracting relevant parameters from data and its
+# geometry. Perhaps create function to extract central slice automatically?
+data2d = data.subset(vertical=40)
+ag2d = AcquisitionGeometry('cone',
+ '2D',
+ ag.angles,
+ pixel_num_h=ag.pixel_num_h,
+ pixel_size_h=ag.pixel_size_h,
+ pixel_num_v=1,
+ pixel_size_v=ag.pixel_size_h,
+ dist_source_center=ag.dist_source_center,
+ dist_center_detector=ag.dist_center_detector,
+ channels=ag.channels)
+data2d.geometry = ag2d
+
+# Set up 2D Image Geometry.
+# First need the geometric magnification to scale the voxel size relative
+# to the detector pixel size.
+mag = (ag.dist_source_center + ag.dist_center_detector)/ag.dist_source_center
+ig2d = ImageGeometry(voxel_num_x=ag2d.pixel_num_h,
+ voxel_num_y=ag2d.pixel_num_h,
+ voxel_size_x=ag2d.pixel_size_h/mag,
+ voxel_size_y=ag2d.pixel_size_h/mag,
+ channels=X.shape[0])
+
+# Create GPU multichannel projector/backprojector operator with ASTRA.
+Aall = AstraProjectorMC(ig2d,ag2d,'gpu')
+
+# Compute and simple backprojction and display one channel as image.
+Xbp = Aall.adjoint(data2d)
+plt.imshow(Xbp.subset(channel=5).array)
+plt.show()
+
+#%% CGLS
+
+x_init = ig2d.allocate()
+cgls1 = CGLS(x_init=x_init, operator=Aall, data=data2d)
+cgls1.max_iteration = 100
+cgls1.update_objective_interval = 1
+cgls1.run(5,verbose=True)
+
+plt.imshow(cgls1.get_output().subset(channel=5).array)
+plt.title('CGLS')
+plt.show()
+
+#%% Tikhonov
+
+alpha = 2.5
+Grad = Gradient(ig2d, correlation=Gradient.CORRELATION_SPACE) # use also CORRELATION_SPACECHANNEL
+
+# Form Tikhonov as a Block CGLS structure
+op_CGLS = BlockOperator( Aall, alpha * Grad, shape=(2,1))
+block_data = BlockDataContainer(data2d, Grad.range_geometry().allocate())
+
+cgls2 = CGLS(x_init=x_init, operator=op_CGLS, data=block_data)
+cgls2.max_iteration = 100
+cgls2.update_objective_interval = 1
+
+cgls2.run(10,verbose=True)
+
+plt.imshow(cgls2.get_output().subset(channel=5).array)
+plt.title('Tikhonov')
+plt.show()
+
+#%% Total Variation
+
+# Regularisation Parameter
+#alpha_TV = 0.08 # for carbon
+alpha_TV = 0.08 # for powder
+
+# Create operators
+op1 = Gradient(ig2d, correlation=Gradient.CORRELATION_SPACE)
+op2 = Aall
+
+# Create BlockOperator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+# Create functions
+f1 = alpha_TV * MixedL21Norm()
+f2 = 0.5 * L2NormSquared(b=data2d)
+f = BlockFunction(f1, f2)
+g = ZeroFunction()
+
+# Compute operator Norm
+normK = 8.70320267279591 # Run one time no need to compute again takes time
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 100
+pdhg.run(1000, verbose =True)
+
+
+#%% Show sinograms
+channel_ind = [10,15,15]
+
+plt.figure(figsize=(15,15))
+
+plt.subplot(4,3,1)
+plt.imshow(data2d.subset(channel = channel_ind[0]).as_array())
+plt.title('Channel {}'.format(channel_ind[0]))
+plt.colorbar()
+
+plt.subplot(4,3,2)
+plt.imshow(data2d.subset(channel = channel_ind[1]).as_array())
+plt.title('Channel {}'.format(channel_ind[1]))
+plt.colorbar()
+
+plt.subplot(4,3,3)
+plt.imshow(data2d.subset(channel = channel_ind[2]).as_array())
+plt.title('Channel {}'.format(channel_ind[2]))
+plt.colorbar()
+
+###############################################################################
+# Show CGLS
+plt.subplot(4,3,4)
+plt.imshow(cgls1.get_output().subset(channel = channel_ind[0]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,5)
+plt.imshow(cgls1.get_output().subset(channel = channel_ind[1]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,6)
+plt.imshow(cgls1.get_output().subset(channel = channel_ind[2]).as_array())
+plt.colorbar()
+
+###############################################################################
+# Show Tikhonov
+
+plt.subplot(4,3,7)
+plt.imshow(cgls2.get_output().subset(channel = channel_ind[0]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,8)
+plt.imshow(cgls2.get_output().subset(channel = channel_ind[1]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,9)
+plt.imshow(cgls2.get_output().subset(channel = channel_ind[2]).as_array())
+plt.colorbar()
+
+
+###############################################################################
+# Show Total variation
+
+plt.subplot(4,3,10)
+plt.imshow(pdhg.get_output().subset(channel = channel_ind[0]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,11)
+plt.imshow(pdhg.get_output().subset(channel = channel_ind[1]).as_array())
+plt.colorbar()
+
+plt.subplot(4,3,12)
+plt.imshow(pdhg.get_output().subset(channel = channel_ind[2]).as_array())
+plt.colorbar()
+
+
+###############################################################################
+
+
+
+
+
+
+
+
+
+
+
+