summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-03-05 16:34:42 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2019-03-05 16:34:42 +0000
commit100f86a2afb6e6da3c2ac0a2d7d9501198d62a67 (patch)
tree4a49b516906c4e0cec040cb77cb200ae6084b519 /Wrappers
parentc0b6cdaf1273c7d75d69d1c283027bb335c67422 (diff)
downloadframework-100f86a2afb6e6da3c2ac0a2d7d9501198d62a67.tar.gz
framework-100f86a2afb6e6da3c2ac0a2d7d9501198d62a67.tar.bz2
framework-100f86a2afb6e6da3c2ac0a2d7d9501198d62a67.tar.xz
framework-100f86a2afb6e6da3c2ac0a2d7d9501198d62a67.zip
code refactoring and unittest for block container
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/framework/BlockDataContainer.py294
-rwxr-xr-xWrappers/Python/ccpi/framework/__init__.py24
-rwxr-xr-x[-rw-r--r--]Wrappers/Python/ccpi/framework/framework.py (renamed from Wrappers/Python/ccpi/framework.py)0
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/BlockOperator.py278
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/LinearOperator.py19
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/Operator.py25
-rwxr-xr-xWrappers/Python/ccpi/optimisation/operators/__init__.py10
-rw-r--r--Wrappers/Python/setup.py3
-rwxr-xr-xWrappers/Python/test/test_BlockDataContainer.py210
9 files changed, 586 insertions, 277 deletions
diff --git a/Wrappers/Python/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
new file mode 100755
index 0000000..9a42a16
--- /dev/null
+++ b/Wrappers/Python/ccpi/framework/BlockDataContainer.py
@@ -0,0 +1,294 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:04:45 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+from numbers import Number
+import functools
+#from ccpi.framework import AcquisitionData, ImageData
+#from ccpi.optimisation.operators import Operator, LinearOperator
+
+class BlockDataContainer(object):
+ '''Class to hold a composite operator'''
+ __array_priority__ = 1
+ def __init__(self, *args, shape=None):
+ '''containers must be passed row by row'''
+ self.containers = args
+ self.index = 0
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+# for i in range(shape[0]):
+# b.append([])
+# for j in range(shape[1]):
+# b[-1].append(args[i*shape[1]+j])
+# indices.append(i*shape[1]+j)
+# self.containers = b
+
+ def __iter__(self):
+ return self
+ def next(self):
+ '''python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ try:
+ out = self[self.index]
+ except IndexError as ie:
+ raise StopIteration()
+ self.index+=1
+ return out
+
+ def is_compatible(self, other):
+ '''basic check if the size of the 2 objects fit'''
+ if isinstance(other, Number):
+ return True
+ elif isinstance(other, list):
+ # TODO look elements should be numbers
+ for ot in other:
+ if not isinstance(ot, (Number,\
+ numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ raise ValueError('List/ numpy array can only contain numbers {}'\
+ .format(type(ot)))
+ return len(self.containers) == len(other)
+ elif isinstance(other, numpy.ndarray):
+ return self.shape == other.shape
+ return len(self.containers) == len(other.containers)
+ def get_item(self, row, col=0):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+
+ index = row*self.shape[1]+col
+ return self.containers[index]
+
+ def add(self, other, out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.add(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def subtract(self, other, out=None , *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.subtract(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def multiply(self, other , out=None, *args, **kwargs):
+ self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.multiply(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list):
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ elif isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def divide(self, other , out=None ,*args, **kwargs):
+ self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.divide(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def power(self, other , out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.power(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ def maximum(self,other, out=None, *args, **kwargs):
+ assert self.is_compatible(other)
+ if isinstance(other, Number):
+ return type(self)(*[ el.maximum(other, out, *args, **kwargs) for el in self.containers])
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
+ return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
+
+ ## unary operations
+ def abs(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.abs(out, *args, **kwargs) for el in self.containers])
+ def sign(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.sign(out, *args, **kwargs) for el in self.containers])
+ def sqrt(self, out=None, *args, **kwargs):
+ return type(self)(*[ el.sqrt(out, *args, **kwargs) for el in self.containers])
+ def conjugate(self, out=None):
+ return type(self)(*[el.conjugate() for el in self.containers])
+
+ ## reductions
+ def sum(self, out=None, *args, **kwargs):
+ return numpy.asarray([ el.sum(*args, **kwargs) for el in self.containers])
+ def squared_norm(self):
+ y = numpy.asarray([el.squared_norm() for el in self.containers])
+ return y.sum()
+ def norm(self):
+ y = numpy.asarray([el.norm() for el in self.containers])
+ return y.sum()
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+ def clone(self):
+ return type(self)(*[el.copy() for el in self.containers])
+
+ def __add__(self, other):
+ return self.add( other )
+ # __radd__
+
+ def __sub__(self, other):
+ return self.subtract( other )
+ # __rsub__
+
+ def __mul__(self, other):
+ return self.multiply(other)
+ # __rmul__
+
+ def __div__(self, other):
+ return self.divide(other)
+ # __rdiv__
+ def __truediv__(self, other):
+ return self.divide(other)
+
+ def __pow__(self, other):
+ return self.power(other)
+ # reverse operand
+ def __radd__(self, other):
+ '''Reverse addition
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ '''Reverse subtraction
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ '''Reverse multiplication
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ '''Reverse division
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ '''Reverse truedivision
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ '''Reverse power
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return other.power(self)
+
+ def __iadd__(self, other):
+ '''Inline addition'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el += ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el += other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el += ot
+ return self
+ # __iadd__
+
+ def __isub__(self, other):
+ '''Inline subtraction'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el -= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el -= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el -= ot
+ return self
+ # __isub__
+
+ def __imul__(self, other):
+ '''Inline multiplication'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el *= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el *= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el *= ot
+ return self
+ # __imul__
+
+ def __idiv__(self, other):
+ '''Inline division'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el /= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el /= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ assert self.is_compatible(other)
+ for el,ot in zip(self.containers, other):
+ el /= ot
+ return self
+ # __rdiv__
+ def __itruediv__(self, other):
+ '''Inline truedivision'''
+ return self.__idiv__(other)
+ \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/framework/__init__.py b/Wrappers/Python/ccpi/framework/__init__.py
new file mode 100755
index 0000000..083f547
--- /dev/null
+++ b/Wrappers/Python/ccpi/framework/__init__.py
@@ -0,0 +1,24 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:00:18 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+
+from .framework import DataContainer
+from .framework import ImageData, AcquisitionData
+from .framework import ImageGeometry, AcquisitionGeometry
+from .framework import find_key, message
+from .framework import DataProcessor
+from .framework import AX, PixelByPixelDataProcessor
+from .BlockDataContainer import BlockDataContainer
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework/framework.py
index dab2dd9..dab2dd9 100644..100755
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework/framework.py
diff --git a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
index b8285b0..145277f 100755
--- a/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/BlockOperator.py
@@ -8,283 +8,9 @@ Created on Thu Feb 14 12:36:40 2019
import numpy
from numbers import Number
import functools
-from ccpi.framework import AcquisitionData, ImageData
+from ccpi.framework import AcquisitionData, ImageData, BlockDataContainer
+from ccpi.optimisation.operators import Operator, LinearOperator
-class Operator(object):
- '''Operator that maps from a space X -> Y'''
- def __init__(self, **kwargs):
- self.scalar = 1
- def is_linear(self):
- '''Returns if the operator is linear'''
- return False
- def direct(self,x, out=None):
- raise NotImplementedError
- def size(self):
- # To be defined for specific class
- raise NotImplementedError
- def norm(self):
- raise NotImplementedError
- def range_dim(self):
- raise NotImplementedError
- def domain_dim(self):
- raise NotImplementedError
- def __rmul__(self, other):
- assert isinstance(other, Number)
- self.scalar = other
- return self
-
-class LinearOperator(Operator):
- '''Operator that maps from a space X -> Y'''
- def is_linear(self):
- '''Returns if the operator is linear'''
- return True
- def adjoint(self,x, out=None):
- raise NotImplementedError
-
-# this should go in the framework
-
-class BlockDataContainer(object):
- '''Class to hold a composite operator'''
- __array_priority__ = 1
- def __init__(self, *args, shape=None):
- '''containers must be passed row by row'''
- self.containers = args
- self.index = 0
- if shape is None:
- shape = (len(args),1)
- self.shape = shape
- n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
- if len(args) != n_elements:
- raise ValueError(
- 'Dimension and size do not match: expected {} got {}'
- .format(n_elements,len(args)))
-# for i in range(shape[0]):
-# b.append([])
-# for j in range(shape[1]):
-# b[-1].append(args[i*shape[1]+j])
-# indices.append(i*shape[1]+j)
-# self.containers = b
-
- def __iter__(self):
- return self
- def next(self):
- '''python2 backwards compatibility'''
- return self.__next__()
- def __next__(self):
- try:
- out = self[self.index]
- except IndexError as ie:
- raise StopIteration()
- self.index+=1
- return out
-
- def is_compatible(self, other):
- '''basic check if the size of the 2 objects fit'''
- if isinstance(other, Number):
- return True
- elif isinstance(other, list):
- # TODO look elements should be numbers
- for ot in other:
- if not isinstance(ot, (Number,\
- numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
- numpy.float, numpy.float16, numpy.float32, numpy.float64, \
- numpy.complex)):
- raise ValueError('List/ numpy array can only contain numbers {}'\
- .format(type(ot)))
- return len(self.containers) == len(other)
- elif isinstance(other, numpy.ndarray):
- return self.shape == other.shape
- return len(self.containers) == len(other.containers)
- def get_item(self, row, col=0):
- if row > self.shape[0]:
- raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
- if col > self.shape[1]:
- raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
-
- index = row*self.shape[1]+col
- return self.containers[index]
-
- def add(self, other, out=None, *args, **kwargs):
- assert self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.add(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.add(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- def subtract(self, other, out=None , *args, **kwargs):
- assert self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.subtract(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.subtract(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- def multiply(self, other , out=None, *args, **kwargs):
- self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.multiply(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list):
- return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- elif isinstance(other, numpy.ndarray):
- return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.multiply(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- def divide(self, other , out=None ,*args, **kwargs):
- self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.divide(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.divide(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- def power(self, other , out=None, *args, **kwargs):
- assert self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.power(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.power(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- def maximum(self,other, out=None, *args, **kwargs):
- assert self.is_compatible(other)
- if isinstance(other, Number):
- return type(self)(*[ el.maximum(other, out, *args, **kwargs) for el in self.containers])
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other)])
- return type(self)(*[ el.maximum(ot, out, *args, **kwargs) for el,ot in zip(self.containers,other.containers)])
-
- ## unary operations
- def abs(self, out=None, *args, **kwargs):
- return type(self)(*[ el.abs(out, *args, **kwargs) for el in self.containers])
- def sign(self, out=None, *args, **kwargs):
- return type(self)(*[ el.sign(out, *args, **kwargs) for el in self.containers])
- def sqrt(self, out=None, *args, **kwargs):
- return type(self)(*[ el.sqrt(out, *args, **kwargs) for el in self.containers])
- def conjugate(self, out=None):
- return type(self)(*[el.conjugate() for el in self.containers])
-
- ## reductions
- def sum(self, out=None, *args, **kwargs):
- return numpy.asarray([ el.sum(*args, **kwargs) for el in self.containers])
- def squared_norm(self):
- y = numpy.asarray([el.squared_norm() for el in self.containers])
- return y.sum()
- def norm(self):
- y = numpy.asarray([el.norm() for el in self.containers])
- return y.sum()
- def copy(self):
- '''alias of clone'''
- return self.clone()
- def clone(self):
- return type(self)(*[el.copy() for el in self.containers])
-
- def __add__(self, other):
- return self.add( other )
- # __radd__
-
- def __sub__(self, other):
- return self.subtract( other )
- # __rsub__
-
- def __mul__(self, other):
- return self.multiply(other)
- # __rmul__
-
- def __div__(self, other):
- return self.divide(other)
- # __rdiv__
- def __truediv__(self, other):
- return self.divide(other)
-
- def __pow__(self, other):
- return self.power(other)
- # reverse operand
- def __radd__(self, other):
- return self + other
- # __radd__
-
- def __rsub__(self, other):
- return (-1 * self) + other
- # __rsub__
-
- def __rmul__(self, other):
- '''Reverse multiplication
-
- to make sure that this method is called rather than the __mul__ of a numpy array
- the class constant __array_priority__ must be set > 0
- https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
- '''
- return self * other
- # __rmul__
-
- def __rdiv__(self, other):
- return pow(self / other, -1)
- # __rdiv__
- def __rtruediv__(self, other):
- return self.__rdiv__(other)
-
- def __rpow__(self, other):
- return other.power(self)
-
- def __iadd__(self, other):
- if isinstance (other, BlockDataContainer):
- for el,ot in zip(self.containers, other.containers):
- el += ot
- elif isinstance(other, Number):
- for el in self.containers:
- el += other
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- self.is_compatible(other)
- for el,ot in zip(self.containers, other):
- el += ot
- return self
- # __radd__
-
- def __isub__(self, other):
- if isinstance (other, BlockDataContainer):
- for el,ot in zip(self.containers, other.containers):
- el -= ot
- elif isinstance(other, Number):
- for el in self.containers:
- el -= other
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- assert self.is_compatible(other)
- for el,ot in zip(self.containers, other):
- el -= ot
- return self
- # __rsub__
-
- def __imul__(self, other):
- if isinstance (other, BlockDataContainer):
- for el,ot in zip(self.containers, other.containers):
- el *= ot
- elif isinstance(other, Number):
- for el in self.containers:
- el *= other
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- assert self.is_compatible(other)
- for el,ot in zip(self.containers, other):
- el *= ot
- return self
- # __imul__
-
- def __idiv__(self, other):
- if isinstance (other, BlockDataContainer):
- for el,ot in zip(self.containers, other.containers):
- el /= ot
- elif isinstance(other, Number):
- for el in self.containers:
- el /= other
- elif isinstance(other, list) or isinstance(other, numpy.ndarray):
- assert self.is_compatible(other)
- for el,ot in zip(self.containers, other):
- el /= ot
- return self
- # __rdiv__
- def __itruediv__(self, other):
- return self.__idiv__(other)
-
class BlockOperator(Operator):
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
new file mode 100755
index 0000000..d0e7804
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
@@ -0,0 +1,19 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:57:52 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.operators import Operator
+
+class LinearOperator(Operator):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return True
+ def adjoint(self,x, out=None):
+ '''returns the adjoint/inverse operation
+
+ only available to linear operators'''
+ raise NotImplementedError
diff --git a/Wrappers/Python/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/ccpi/optimisation/operators/Operator.py
new file mode 100755
index 0000000..ea08b30
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/Operator.py
@@ -0,0 +1,25 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:55:56 2019
+
+@author: ofn77899
+"""
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def __init__(self, **kwargs):
+ self.scalar = 1
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ raise NotImplementedError
+ def size(self):
+ # To be defined for specific class
+ raise NotImplementedError
+ def norm(self):
+ raise NotImplementedError
+ def range_geometry(self):
+ raise NotImplementedError
+ def domain_geometry(self):
+ raise NotImplementedError
diff --git a/Wrappers/Python/ccpi/optimisation/operators/__init__.py b/Wrappers/Python/ccpi/optimisation/operators/__init__.py
new file mode 100755
index 0000000..088f48c
--- /dev/null
+++ b/Wrappers/Python/ccpi/optimisation/operators/__init__.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:56:27 2019
+
+@author: ofn77899
+"""
+
+from .Operator import Operator
+from .LinearOperator import LinearOperator
+from .BlockOperator import BlockOperator
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index 7a55764..630e33e 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -31,7 +31,8 @@ if cil_version == '':
setup(
name="ccpi-framework",
version=cil_version,
- packages=['ccpi' , 'ccpi.io', 'ccpi.optimisation',
+ packages=['ccpi' , 'ccpi.io',
+ 'ccpi.framework', 'ccpi.optimisation',
'ccpi.optimisation.operators',
'ccpi.optimisation.algorithms'],
diff --git a/Wrappers/Python/test/test_BlockDataContainer.py b/Wrappers/Python/test/test_BlockDataContainer.py
new file mode 100755
index 0000000..824abf6
--- /dev/null
+++ b/Wrappers/Python/test/test_BlockDataContainer.py
@@ -0,0 +1,210 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:08:23 2019
+
+@author: ofn77899
+"""
+
+import unittest
+import numpy
+#from ccpi.plugins.ops import CCPiProjectorSimple
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.optimisation.ops import TomoIdentity
+from ccpi.optimisation.funcs import Norm2sq, Norm1
+from ccpi.framework import ImageGeometry, AcquisitionGeometry
+from ccpi.framework import ImageData, AcquisitionData
+#from ccpi.optimisation.algorithms import GradientDescent
+from ccpi.framework import BlockDataContainer
+#from ccpi.optimisation.Algorithms import CGLS
+
+class TestBlockDataContainer(unittest.TestCase):
+ def test_BlockDataContainer(self):
+ print ("test block data container")
+ ig0 = ImageGeometry(2,3,4)
+ ig1 = ImageGeometry(12,42,55,32)
+
+ data0 = ImageData(geometry=ig0)
+ data1 = ImageData(geometry=ig1) + 1
+
+ data2 = ImageData(geometry=ig0) + 2
+ data3 = ImageData(geometry=ig1) + 3
+
+ cp0 = BlockDataContainer(data0,data1)
+ cp1 = BlockDataContainer(data2,data3)
+ #
+ a = [ (el, ot) for el,ot in zip(cp0.containers,cp1.containers)]
+ print (a[0][0].shape)
+ #cp2 = BlockDataContainer(*a)
+ cp2 = cp0.add(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
+
+ cp2 = cp0 + cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 4.)
+ cp2 = cp0 + 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = cp0 + [1 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 3., decimal = 5)
+ cp2 += cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 += 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , +4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +7., decimal = 5)
+
+ cp2 += [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 6., decimal = 5)
+
+
+ cp2 = cp0.subtract(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
+ cp2 = cp0 - cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == -2.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == -2.)
+
+ cp2 = cp0 - 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0, decimal = 5)
+ cp2 = cp0 - [1 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -1. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -1., decimal = 5)
+
+ cp2 -= cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
+
+ cp2 -= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -4. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -5., decimal = 5)
+
+ cp2 -= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -4., decimal = 5)
+
+
+ cp2 = cp0.multiply(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
+ cp2 = cp0 * cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ assert (cp2.get_item(1,0).as_array()[0][0][0] == 3.)
+
+ cp2 = cp0 * 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2, decimal = 5)
+ cp2 = 2 * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2, decimal = 5)
+ cp2 = cp0 * [3 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = cp0 * numpy.asarray([3 ,2])
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+
+ cp2 = [3,2] * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = numpy.asarray([3,2]) * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+ cp2 = [3,2,3] * cp0
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 2., decimal = 5)
+
+ cp2 *= cp1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 *= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , +6., decimal = 5)
+
+ cp2 *= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -6., decimal = 5)
+
+
+ cp2 = cp0.divide(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
+ cp2 = cp0/cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1./3., decimal=4)
+
+ cp2 = cp0 / 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp2 = cp0 / [3 ,2]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp2 = cp0 / numpy.asarray([3 ,2])
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+ cp3 = numpy.asarray([3 ,2]) / (cp0+1)
+ numpy.testing.assert_almost_equal(cp3.get_item(0,0).as_array()[0][0][0] , 3. , decimal=5)
+ numpy.testing.assert_almost_equal(cp3.get_item(1,0).as_array()[0][0][0] , 1, decimal = 5)
+
+ cp2 += 1
+ cp2 /= cp1
+ # TODO fix inplace division
+
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 1./2 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1.5/3., decimal = 5)
+
+ cp2 /= 1
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0.5 , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 0.5, decimal = 5)
+
+ cp2 /= [-2,-1]
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , -0.5/2. , decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , -0.5, decimal = 5)
+ ####
+
+ cp2 = cp0.power(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+ cp2 = cp0**cp1
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == 0.)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+
+ cp2 = cp0 ** 2
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0] , 0., decimal=5)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0] , 1., decimal = 5)
+
+ cp2 = cp0.maximum(cp1)
+ assert (cp2.get_item(0,0).as_array()[0][0][0] == cp1.get_item(0,0).as_array()[0][0][0])
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], cp2.get_item(1,0).as_array()[0][0][0], decimal=4)
+
+
+ cp2 = cp0.abs()
+ numpy.testing.assert_almost_equal(cp2.get_item(0,0).as_array()[0][0][0], 0., decimal=4)
+ numpy.testing.assert_almost_equal(cp2.get_item(1,0).as_array()[0][0][0], 1., decimal=4)
+
+ cp2 = cp0.subtract(cp1)
+ s = cp2.sign()
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], -1., decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], -1., decimal=4)
+
+ cp2 = cp0.add(cp1)
+ s = cp2.sqrt()
+ numpy.testing.assert_almost_equal(s.get_item(0,0).as_array()[0][0][0], numpy.sqrt(2), decimal=4)
+ numpy.testing.assert_almost_equal(s.get_item(1,0).as_array()[0][0][0], numpy.sqrt(4), decimal=4)
+
+ s = cp0.sum()
+ numpy.testing.assert_almost_equal(s[0], 0, decimal=4)
+ s0 = 1
+ s1 = 1
+ for i in cp0.get_item(0,0).shape:
+ s0 *= i
+ for i in cp0.get_item(1,0).shape:
+ s1 *= i
+
+ numpy.testing.assert_almost_equal(s[1], cp0.get_item(0,0).as_array()[0][0][0]*s0 +cp0.get_item(1,0).as_array()[0][0][0]*s1, decimal=4)
+ \ No newline at end of file