diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-06-13 16:32:07 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-06-13 16:32:07 +0100 |
commit | ea5cb3395abf3bad04394d44a83d913175fbb963 (patch) | |
tree | 30ade4ac2c1679a271d1f812943d5d4c1cb0a72f /Wrappers/Python | |
parent | 23795ca3b019873b2fd295e03ae69db15edf69d5 (diff) | |
parent | aaaeb0a2fbb12a6de15663ca2bbb64b7c4a8d140 (diff) | |
download | framework-ea5cb3395abf3bad04394d44a83d913175fbb963.tar.gz framework-ea5cb3395abf3bad04394d44a83d913175fbb963.tar.bz2 framework-ea5cb3395abf3bad04394d44a83d913175fbb963.tar.xz framework-ea5cb3395abf3bad04394d44a83d913175fbb963.zip |
Merge pull request #313 from vais-ral/update_fix_test
Update fix test
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-x | Wrappers/Python/ccpi/framework/Vector.py | 96 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/framework/__init__.py | 56 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/framework/framework.py | 2 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py | 49 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py | 1 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py | 3 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py | 17 | ||||
-rwxr-xr-x | Wrappers/Python/test/test_DataContainer.py | 53 | ||||
-rwxr-xr-x | Wrappers/Python/test/test_run_test.py | 19 | ||||
-rw-r--r-- | Wrappers/Python/wip/compare_CGLS_algos.py | 28 | ||||
-rwxr-xr-x | Wrappers/Python/wip/fix_test.py | 208 |
11 files changed, 450 insertions, 82 deletions
diff --git a/Wrappers/Python/ccpi/framework/Vector.py b/Wrappers/Python/ccpi/framework/Vector.py new file mode 100755 index 0000000..542cb7a --- /dev/null +++ b/Wrappers/Python/ccpi/framework/Vector.py @@ -0,0 +1,96 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018-2019 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +import numpy +import sys +from datetime import timedelta, datetime +import warnings +from functools import reduce +from numbers import Number +from ccpi.framework import DataContainer + +class VectorData(DataContainer): + def __init__(self, array=None, **kwargs): + self.geometry = kwargs.get('geometry', None) + self.dtype = kwargs.get('dtype', numpy.float32) + + if self.geometry is None: + if array is None: + raise ValueError('Please specify either a geometry or an array') + else: + if len(array.shape) > 1: + raise ValueError('Incompatible size: expected 1D got {}'.format(array.shape)) + out = array + self.geometry = VectorGeometry(array.shape[0]) + self.length = self.geometry.length + else: + self.length = self.geometry.length + + if array is None: + out = numpy.zeros((self.length,), dtype=self.dtype) + else: + if self.length == array.shape[0]: + out = array + else: + raise ValueError('Incompatible size: expecting {} got {}'.format((self.length,), array.shape)) + deep_copy = True + super(VectorData, self).__init__(out, deep_copy, None) + +class VectorGeometry(object): + RANDOM = 'random' + RANDOM_INT = 'random_int' + + def __init__(self, + length): + + self.length = length + self.shape = (length, ) + + + def clone(self): + '''returns a copy of VectorGeometry''' + return VectorGeometry(self.length) + + def allocate(self, value=0, **kwargs): + '''allocates an VectorData according to the size expressed in the instance''' + self.dtype = kwargs.get('dtype', numpy.float32) + out = VectorData(geometry=self, dtype=self.dtype) + if isinstance(value, Number): + if value != 0: + out += value + else: + if value == VectorGeometry.RANDOM: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + out.fill(numpy.random.random_sample(self.shape)) + elif value == VectorGeometry.RANDOM_INT: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + max_value = kwargs.get('max_value', 100) + out.fill(numpy.random.randint(max_value,size=self.shape)) + else: + raise ValueError('Value {} unknown'.format(value)) + return out diff --git a/Wrappers/Python/ccpi/framework/__init__.py b/Wrappers/Python/ccpi/framework/__init__.py index 8926897..3de27ed 100755 --- a/Wrappers/Python/ccpi/framework/__init__.py +++ b/Wrappers/Python/ccpi/framework/__init__.py @@ -1,28 +1,28 @@ -# -*- coding: utf-8 -*-
-"""
-Created on Tue Mar 5 16:00:18 2019
-
-@author: ofn77899
-"""
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-from __future__ import unicode_literals
-
-import numpy
-import sys
-from datetime import timedelta, datetime
-import warnings
-from functools import reduce
-
-
-from .framework import DataContainer
-from .framework import ImageData, AcquisitionData
-from .framework import ImageGeometry, AcquisitionGeometry
-from .framework import find_key, message
-from .framework import DataProcessor
-from .framework import AX, PixelByPixelDataProcessor, CastDataContainer
-from .BlockDataContainer import BlockDataContainer
-from .BlockGeometry import BlockGeometry
-
-from .TestData import TestData
+# -*- coding: utf-8 -*- +""" +Created on Tue Mar 5 16:00:18 2019 + +@author: ofn77899 +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +import numpy +import sys +from datetime import timedelta, datetime +import warnings +from functools import reduce + + +from .framework import DataContainer +from .framework import ImageData, AcquisitionData +from .framework import ImageGeometry, AcquisitionGeometry +from .framework import find_key, message +from .framework import DataProcessor +from .framework import AX, PixelByPixelDataProcessor, CastDataContainer +from .BlockDataContainer import BlockDataContainer +from .BlockGeometry import BlockGeometry +from .TestData import TestData +from .Vector import VectorGeometry, VectorData diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py index e906ca6..fd0e0d8 100755 --- a/Wrappers/Python/ccpi/framework/framework.py +++ b/Wrappers/Python/ccpi/framework/framework.py @@ -29,7 +29,6 @@ import warnings from functools import reduce from numbers import Number - def find_key(dic, val): """return the key of dictionary dic given the value""" return [k for k, v in dic.items() if v == val][0] @@ -679,6 +678,7 @@ class DataContainer(object): def pixel_wise_binary(self, pwop, x2, *args, **kwargs): out = kwargs.get('out', None) + if out is None: if isinstance(x2, (int, float, complex)): out = pwop(self.as_array() , x2 , *args, **kwargs ) diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py index 6b610a0..15acc31 100755 --- a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py @@ -24,6 +24,7 @@ Created on Thu Feb 21 11:11:23 2019 from ccpi.optimisation.algorithms import Algorithm from ccpi.optimisation.functions import Norm2Sq +import numpy class CGLS(Algorithm): @@ -49,13 +50,15 @@ class CGLS(Algorithm): def set_up(self, x_init, operator , data ): self.r = data.copy() - self.x = x_init.copy() + self.x = x_init * 0 self.operator = operator self.d = operator.adjoint(self.r) self.normr2 = self.d.squared_norm() + + self.s = self.operator.domain_geometry().allocate() #if isinstance(self.normr2, Iterable): # self.normr2 = sum(self.normr2) #self.normr2 = numpy.sqrt(self.normr2) @@ -65,7 +68,8 @@ class CGLS(Algorithm): self.configured = True def update(self): - + self.update_new() + def update_old(self): Ad = self.operator.direct(self.d) #norm = (Ad*Ad).sum() #if isinstance(norm, Iterable): @@ -87,5 +91,44 @@ class CGLS(Algorithm): self.normr2 = normr2_new self.d = s + beta*self.d + def update_new(self): + + Ad = self.operator.direct(self.d) + norm = Ad.squared_norm() + if norm == 0.: + print ('norm = 0, cannot update solution') + print ("self.d norm", self.d.squared_norm(), self.d.as_array()) + raise StopIteration() + alpha = self.normr2/norm + if alpha == 0.: + print ('alpha = 0, cannot update solution') + raise StopIteration() + self.d *= alpha + Ad *= alpha + self.r -= Ad + + self.x += self.d + + self.operator.adjoint(self.r, out=self.s) + s = self.s + + normr2_new = s.squared_norm() + + beta = normr2_new/self.normr2 + self.normr2 = normr2_new + self.d *= (beta/alpha) + self.d += s + def update_objective(self): - self.loss.append(self.r.squared_norm()) + a = self.r.squared_norm() + if a is numpy.nan: + raise StopIteration() + self.loss.append(a) + +# def should_stop(self): +# if self.iteration > 0: +# x = self.get_last_objective() +# a = x > 0 +# return self.max_iteration_stop_cryterion() or (not a) +# else: +# return False diff --git a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py index 0b6bb0b..8e77f56 100755 --- a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py +++ b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py @@ -88,7 +88,6 @@ class Norm2Sq(Function): def gradient(self, x, out = None): if self.memopt: #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b ) - self.A.direct(x, out=self.range_tmp) self.range_tmp -= self.b self.A.adjoint(self.range_tmp, out=out) diff --git a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py index 1db223b..8bf502a 100755 --- a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py +++ b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py @@ -18,6 +18,7 @@ # limitations under the License.
from numbers import Number
import numpy
+import warnings
class ScaledFunction(object):
@@ -89,7 +90,7 @@ class ScaledFunction(object): '''Alias of proximal(x, tau, None)'''
warnings.warn('''This method will disappear in following
versions of the CIL. Use proximal instead''', DeprecationWarning)
- return self.proximal(x, out=None)
+ return self.proximal(x, tau, out=None)
diff --git a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py index 8cc4c71..90ef938 100644 --- a/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py +++ b/Wrappers/Python/ccpi/optimisation/operators/LinearOperatorMatrix.py @@ -2,14 +2,17 @@ import numpy from scipy.sparse.linalg import svds from ccpi.framework import DataContainer from ccpi.framework import AcquisitionData -from ccpi.framework import ImageData -from ccpi.framework import ImageGeometry +from ccpi.framework import VectorData +from ccpi.framework import VectorGeometry from ccpi.framework import AcquisitionGeometry from numbers import Number from ccpi.optimisation.operators import LinearOperator class LinearOperatorMatrix(LinearOperator): def __init__(self,A): self.A = A + M_A, N_A = self.A.shape + self.gm_domain = VectorGeometry(N_A) + self.gm_range = VectorGeometry(M_A) self.s1 = None # Largest singular value, initially unknown super(LinearOperatorMatrix, self).__init__() @@ -18,15 +21,13 @@ class LinearOperatorMatrix(LinearOperator): return type(x)(numpy.dot(self.A,x.as_array())) else: numpy.dot(self.A, x.as_array(), out=out.as_array()) - - + def adjoint(self,x, out=None): if out is None: return type(x)(numpy.dot(self.A.transpose(),x.as_array())) else: numpy.dot(self.A.transpose(),x.as_array(), out=out.as_array()) - - + def size(self): return self.A.shape @@ -34,3 +35,7 @@ class LinearOperatorMatrix(LinearOperator): # If unknown, compute and store. If known, simply return it. return svds(self.A,1,return_singular_vectors=False)[0] + def domain_geometry(self): + return self.gm_domain + def range_geometry(self): + return self.gm_range diff --git a/Wrappers/Python/test/test_DataContainer.py b/Wrappers/Python/test/test_DataContainer.py index 4c53df8..16f7b86 100755 --- a/Wrappers/Python/test/test_DataContainer.py +++ b/Wrappers/Python/test/test_DataContainer.py @@ -201,21 +201,25 @@ class TestDataContainer(unittest.TestCase): self.assertNumpyArrayEqual(out.as_array(), ds2.as_array()) ds0 = ds - steps.append(timer()) - ds0.add(2, out=out) - steps.append(timer()) - print("ds0.add(2,out=out)", dt(steps), 3, ds0.as_array()[0][0][0]) - self.assertEqual(3., out.as_array()[0][0][0]) - - dt1 = dt(steps) - steps.append(timer()) - ds3 = ds0.add(2) - steps.append(timer()) - print("ds3 = ds0.add(2)", dt(steps), 5, ds3.as_array()[0][0][0]) - dt2 = dt(steps) - self.assertLess(dt1, dt2) + dt1 = 0 + dt2 = 0 + for i in range(10): + steps.append(timer()) + ds0.add(2, out=out) + steps.append(timer()) + print("ds0.add(2,out=out)", dt(steps), 3, ds0.as_array()[0][0][0]) + self.assertEqual(3., out.as_array()[0][0][0]) + + dt1 += dt(steps)/10 + steps.append(timer()) + ds3 = ds0.add(2) + steps.append(timer()) + print("ds3 = ds0.add(2)", dt(steps), 5, ds3.as_array()[0][0][0]) + dt2 += dt(steps)/10 self.assertNumpyArrayEqual(out.as_array(), ds3.as_array()) + self.assertLess(dt1, dt2) + def binary_subtract(self): print("Test binary subtract") @@ -324,16 +328,19 @@ class TestDataContainer(unittest.TestCase): ds = DataContainer(a, False, ['X', 'Y', 'Z']) ds1 = ds.copy() - steps.append(timer()) - ds.divide(ds1, out=ds) - steps.append(timer()) - t1 = dt(steps) - print("ds.divide(ds1, out=ds)", dt(steps)) - steps.append(timer()) - ds2 = ds.divide(ds1) - steps.append(timer()) - t2 = dt(steps) - print("ds2 = ds.divide(ds1)", dt(steps)) + t1 = 0 + t2 = 0 + for i in range(10): + steps.append(timer()) + ds.divide(ds1, out=ds) + steps.append(timer()) + t1 += dt(steps)/10. + print("ds.divide(ds1, out=ds)", dt(steps)) + steps.append(timer()) + ds2 = ds.divide(ds1) + steps.append(timer()) + t2 += dt(steps)/10. + print("ds2 = ds.divide(ds1)", dt(steps)) self.assertLess(t1, t2) self.assertEqual(ds.as_array()[0][0][0], 1.) diff --git a/Wrappers/Python/test/test_run_test.py b/Wrappers/Python/test/test_run_test.py index 22d4a78..81ee738 100755 --- a/Wrappers/Python/test/test_run_test.py +++ b/Wrappers/Python/test/test_run_test.py @@ -10,9 +10,8 @@ from ccpi.optimisation.algorithms import FISTA #from ccpi.optimisation.algs import FBPD from ccpi.optimisation.functions import Norm2Sq from ccpi.optimisation.functions import ZeroFunction +# from ccpi.optimisation.funcs import Norm1 from ccpi.optimisation.functions import L1Norm -# This was removed -#from ccpi.optimisation.funcs import Norm2 from ccpi.optimisation.operators import LinearOperatorMatrix from ccpi.optimisation.operators import Identity @@ -138,8 +137,11 @@ class TestAlgorithms(unittest.TestCase): # A = Identity() # Change n to equal to m. - - b = DataContainer(bmat) + vgb = VectorGeometry(m) + vgx = VectorGeometry(n) + b = vgb.allocate() + b.fill(bmat) + #b = DataContainer(bmat) # Regularization parameter lam = 10 @@ -149,10 +151,11 @@ class TestAlgorithms(unittest.TestCase): g0 = ZeroFunction() # Initial guess - x_init = DataContainer(np.zeros((n, 1))) + #x_init = DataContainer(np.zeros((n, 1))) + x_init = vgx.allocate() # Create 1-norm object instance - g1 = lam * L1Norm() + g1 = Norm1(lam) g1(x_init) g1.prox(x_init, 0.02) @@ -226,7 +229,7 @@ class TestAlgorithms(unittest.TestCase): # Create 1-norm object instance - g1 = lam * L1Norm() + g1 = Norm1(lam) # Compare to CVXPY @@ -293,7 +296,7 @@ class TestAlgorithms(unittest.TestCase): # 1-norm regulariser lam1_denoise = 1.0 - g1_denoise = lam1_denoise * L1Norm() + g1_denoise = Norm1(lam1_denoise) # Initial guess x_init_denoise = ImageData(np.zeros((N, N))) diff --git a/Wrappers/Python/wip/compare_CGLS_algos.py b/Wrappers/Python/wip/compare_CGLS_algos.py index 119752c..52f3f31 100644 --- a/Wrappers/Python/wip/compare_CGLS_algos.py +++ b/Wrappers/Python/wip/compare_CGLS_algos.py @@ -12,6 +12,8 @@ from ccpi.optimisation.algorithms import CGLS as CGLSalg import numpy as np import matplotlib.pyplot as plt +from ccpi.optimisation.functions import Norm2Sq + # Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case test_case = 1 @@ -101,25 +103,29 @@ x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt) #plt.title('CGLS criterion') #plt.show() +f = Norm2Sq(Aop, b, c=1.) +def callback(it, objective, solution): + print (objective, f(solution)) # Now CLGS using the algorithm class CGLS_alg = CGLSalg() CGLS_alg.set_up(x_init, Aop, b ) -CGLS_alg.max_iteration = 2000 -CGLS_alg.run(opt['iter']) +CGLS_alg.max_iteration = 500 +CGLS_alg.update_objective_interval = 10 +CGLS_alg.run(300, callback=callback) x_CGLS_alg = CGLS_alg.get_output() -#plt.figure() -#plt.imshow(x_CGLS_alg.as_array()) -#plt.title('CGLS ALG') -#plt.colorbar() -#plt.show() +plt.figure() +plt.imshow(x_CGLS_alg.as_array()) +plt.title('CGLS ALG') +plt.colorbar() +plt.show() -#plt.figure() -#plt.semilogy(CGLS_alg.objective) -#plt.title('CGLS criterion') -#plt.show() +plt.figure() +plt.semilogy(CGLS_alg.objective) +plt.title('CGLS criterion') +plt.show() print(criter_CGLS) print(CGLS_alg.objective) diff --git a/Wrappers/Python/wip/fix_test.py b/Wrappers/Python/wip/fix_test.py new file mode 100755 index 0000000..b1006c0 --- /dev/null +++ b/Wrappers/Python/wip/fix_test.py @@ -0,0 +1,208 @@ +import numpy as np +import numpy +from ccpi.optimisation.operators import * +from ccpi.optimisation.algorithms import * +from ccpi.optimisation.functions import * +from ccpi.framework import * + +def isSizeCorrect(data1 ,data2): + if issubclass(type(data1), DataContainer) and \ + issubclass(type(data2), DataContainer): + # check dimensionality + if data1.check_dimensions(data2): + return True + elif issubclass(type(data1) , numpy.ndarray) and \ + issubclass(type(data2) , numpy.ndarray): + return data1.shape == data2.shape + else: + raise ValueError("{0}: getting two incompatible types: {1} {2}"\ + .format('Function', type(data1), type(data2))) + return False + +class Norm1(Function): + + def __init__(self,gamma): + super(Norm1, self).__init__() + self.gamma = gamma + self.L = 1 + self.sign_x = None + + def __call__(self,x,out=None): + if out is None: + return self.gamma*(x.abs().sum()) + else: + if not x.shape == out.shape: + raise ValueError('Norm1 Incompatible size:', + x.shape, out.shape) + x.abs(out=out) + return out.sum() * self.gamma + + def prox(self,x,tau): + return (x.abs() - tau*self.gamma).maximum(0) * x.sign() + + def proximal(self, x, tau, out=None): + if out is None: + return self.prox(x, tau) + else: + if isSizeCorrect(x,out): + # check dimensionality + if issubclass(type(out), DataContainer): + v = (x.abs() - tau*self.gamma).maximum(0) + x.sign(out=out) + out *= v + #out.fill(self.prox(x,tau)) + elif issubclass(type(out) , numpy.ndarray): + v = (x.abs() - tau*self.gamma).maximum(0) + out[:] = x.sign() + out *= v + #out[:] = self.prox(x,tau) + else: + raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) ) + +opt = {'memopt': True} +# Problem data. +m = 500 +n = 200 + +# if m < n then the problem is under-determined and algorithms will struggle to find a solution. +# One approach is to add regularisation + +#np.random.seed(1) +Amat = np.asarray( np.random.randn(m, n), dtype=numpy.float32) +Amat = np.asarray( np.random.random_integers(1,10, (m, n)), dtype=numpy.float32) +#Amat = np.asarray(np.eye(m), dtype=np.float32) * 2 +A = LinearOperatorMatrix(Amat) +bmat = np.asarray( np.random.randn(m), dtype=numpy.float32) +#bmat *= 0 +#bmat += 2 +print ("bmat", bmat.shape) +print ("A", A.A) +#bmat.shape = (bmat.shape[0], 1) + +# A = Identity() +# Change n to equal to m. +vgb = VectorGeometry(m) +vgx = VectorGeometry(n) +b = vgb.allocate(VectorGeometry.RANDOM_INT, dtype=numpy.float32) +# b.fill(bmat) +#b = DataContainer(bmat) + +# Regularization parameter +lam = 10 +opt = {'memopt': True} +# Create object instances with the test data A and b. +f = Norm2Sq(A, b, c=1., memopt=True) +#f = FunctionOperatorComposition(A, L2NormSquared(b=bmat)) +g0 = ZeroFunction() + +#f.L = 30.003 +x_init = vgx.allocate(VectorGeometry.RANDOM, dtype=numpy.float32) +x_initcgls = x_init.copy() + +a = VectorData(x_init.as_array(), deep_copy=True) + +assert id(x_init.as_array()) != id(a.as_array()) + + +#f.L = LinearOperator.PowerMethod(A, 25, x_init)[0] +#print ('f.L', f.L) +rate = (1 / f.L) / 6 +#f.L *= 12 + +# Initial guess +#x_init = DataContainer(np.zeros((n, 1))) +print ('x_init', x_init.as_array()) +print ('b', b.as_array()) +# Create 1-norm object instance +g1_new = lam * L1Norm() +g1 = Norm1(lam) + +g1 = ZeroFunction() +#g1(x_init) +x = g1.prox(x_init, 1/f.L ) +print ("g1.proximal ", x.as_array()) + +x = g1.prox(x_init, 0.03 ) +print ("g1.proximal ", x.as_array()) +x = g1_new.proximal(x_init, 0.03 ) +print ("g1.proximal ", x.as_array()) + +x1 = vgx.allocate(VectorGeometry.RANDOM, dtype=numpy.float32) +pippo = vgx.allocate() + +print ("x_init", x_init.as_array()) +print ("x1", x1.as_array()) +a = x_init.subtract(x1, out=pippo) + +print ("pippo", pippo.as_array()) +print ("x_init", x_init.as_array()) +print ("x1", x1.as_array()) + +y = A.direct(x_init) +y *= 0 +A.direct(x_init, out=y) + +# Combine with least squares and solve using generic FISTA implementation +#x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g1, opt=opt) +def callback(it, objective, solution): + print ("callback " , it , objective, f(solution)) + +fa = FISTA(x_init=x_init, f=f, g=g1) +fa.max_iteration = 1000 +fa.update_objective_interval = int( fa.max_iteration / 10 ) +fa.run(fa.max_iteration, callback = None, verbose=True) + +gd = GradientDescent(x_init=x_init, objective_function=f, rate = rate ) +gd.max_iteration = 5000 +gd.update_objective_interval = int( gd.max_iteration / 10 ) +gd.run(gd.max_iteration, callback = None, verbose=True) + + + +cgls = CGLS(x_init= x_initcgls, operator=A, data=b) +cgls.max_iteration = 1000 +cgls.update_objective_interval = int( cgls.max_iteration / 10 ) + +#cgls.should_stop = stop_criterion(cgls) +cgls.run(cgls.max_iteration, callback = callback, verbose=True) + + + +# Print for comparison +print("FISTA least squares plus 1-norm solution and objective value:") +print(fa.get_output().as_array()) +print(fa.get_last_objective()) + +print ("data ", b.as_array()) +print ('FISTA ', A.direct(fa.get_output()).as_array()) +print ('GradientDescent', A.direct(gd.get_output()).as_array()) +print ('CGLS ', A.direct(cgls.get_output()).as_array()) + +cond = numpy.linalg.cond(A.A) + +print ("cond" , cond) + +#%% +try: + import cvxpy as cp + # Construct the problem. + x = cp.Variable(n) + objective = cp.Minimize(cp.sum_squares(A.A*x - bmat)) + prob = cp.Problem(objective) + # The optimal objective is returned by prob.solve(). + result = prob.solve(solver = cp.MOSEK) + + print ('CGLS ', cgls.get_output().as_array()) + print ('CVX ', x.value) + + print ('FISTA ', fa.get_output().as_array()) + print ('GD ', gd.get_output().as_array()) +except ImportError as ir: + pass + + #%% + + + + + |