summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-01-31 13:13:59 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-31 13:13:59 +0000
commitc6312710a26e12875af7961f047ef203a541dc68 (patch)
tree8ecaf569c7f3565eddf39251c87ef078a21333bf /Wrappers/Python
parent88b14ee8048a92d5cb7de99ac237455ec4db90b6 (diff)
downloadframework-c6312710a26e12875af7961f047ef203a541dc68.tar.gz
framework-c6312710a26e12875af7961f047ef203a541dc68.tar.bz2
framework-c6312710a26e12875af7961f047ef203a541dc68.tar.xz
framework-c6312710a26e12875af7961f047ef203a541dc68.zip
Working chainable DataSetProcessors
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/common.py403
-rw-r--r--Wrappers/Python/ccpi/framework.py69
-rw-r--r--Wrappers/Python/test/regularizers.py178
3 files changed, 227 insertions, 423 deletions
diff --git a/Wrappers/Python/ccpi/common.py b/Wrappers/Python/ccpi/common.py
deleted file mode 100644
index e2816db..0000000
--- a/Wrappers/Python/ccpi/common.py
+++ /dev/null
@@ -1,403 +0,0 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018 Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import abc
-import numpy
-import os
-import sys
-import time
-import vtk
-
-if sys.version_info[0] >= 3 and sys.version_info[1] >= 4:
- ABC = abc.ABC
-else:
- ABC = abc.ABCMeta('ABC', (), {})
-
-def find_key(dic, val):
- """return the key of dictionary dic given the value"""
- return [k for k, v in dic.items() if v == val][0]
-
-class CCPiBaseClass(ABC):
- def __init__(self, **kwargs):
- self.acceptedInputKeywords = []
- self.pars = {}
- self.debug = True
- # add keyworded arguments as accepted input keywords and add to the
- # parameters
- for key, value in kwargs.items():
- self.acceptedInputKeywords.append(key)
- #print ("key {0}".format(key))
- #self.setParameter(key.__name__=value)
- self.setParameter(**{key:value})
-
- def setParameter(self, **kwargs):
- '''set named parameter for the reconstructor engine
-
- raises Exception if the named parameter is not recognized
-
- '''
- for key , value in kwargs.items():
- if key in self.acceptedInputKeywords:
- self.pars[key] = value
- else:
- raise KeyError('Wrong parameter "{0}" for {1}'.format(key,
- self.__class__.__name__ ))
- # setParameter
-
- def getParameter(self, key):
- if type(key) is str:
- if key in self.acceptedInputKeywords:
- return self.pars[key]
- else:
- raise KeyError('Unrecongnised parameter: {0} '.format(key) )
- elif type(key) is list:
- outpars = []
- for k in key:
- outpars.append(self.getParameter(k))
- return outpars
- else:
- raise Exception('Unhandled input {0}' .format(str(type(key))))
- #getParameter
-
- def log(self, msg):
- if self.debug:
- print ("{0}: {1}".format(self.__class__.__name__, msg))
-
-class DataSet():
- '''Generic class to hold data'''
-
- def __init__ (self, array, deep_copy=True, dimension_labels=None,
- **kwargs):
- '''Holds the data'''
-
- self.shape = numpy.shape(array)
- self.number_of_dimensions = len (self.shape)
- self.dimension_labels = {}
-
- if dimension_labels is not None and \
- len (dimension_labels) == self.number_of_dimensions:
- for i in range(self.number_of_dimensions):
- self.dimension_labels[i] = dimension_labels[i]
- else:
- for i in range(self.number_of_dimensions):
- self.dimension_labels[i] = 'dimension_{0:02}'.format(i)
-
- if type(array) == numpy.ndarray:
- if deep_copy:
- self.array = array[:]
- else:
- self.array = array
- else:
- raise TypeError('Array must be NumpyArray')
-
- def as_array(self, dimensions=None):
- '''Returns the DataSet as Numpy Array
-
- Returns the pointer to the array if dimensions is not set.
- If dimensions is set, it first creates a new DataSet with the subset
- and then it returns the pointer to the array'''
- if dimensions is not None:
- return self.subset(dimensions).as_array()
- return self.array
-
- def subset(self, dimensions=None):
- '''Creates a DataSet containing a subset of self according to the
- labels in dimensions'''
- if dimensions is None:
- return self.array
- else:
- # check that all the requested dimensions are in the array
- # this is done by checking the dimension_labels
- proceed = True
- unknown_key = ''
- # axis_order contains the order of the axis that the user wants
- # in the output DataSet
- axis_order = []
- if type(dimensions) == list:
- for dl in dimensions:
- if dl not in self.dimension_labels.values():
- proceed = False
- unknown_key = dl
- break
- else:
- axis_order.append(find_key(self.dimension_labels, dl))
- if not proceed:
- raise KeyError('Unknown key specified {0}'.format(dl))
-
- # slice away the unwanted data from the array
- unwanted_dimensions = self.dimension_labels.copy()
- left_dimensions = []
- for ax in sorted(axis_order):
- this_dimension = unwanted_dimensions.pop(ax)
- left_dimensions.append(this_dimension)
- #print ("unwanted_dimensions {0}".format(unwanted_dimensions))
- #print ("left_dimensions {0}".format(left_dimensions))
- #new_shape = [self.shape[ax] for ax in axis_order]
- #print ("new_shape {0}".format(new_shape))
- command = "self.array"
- for i in range(self.number_of_dimensions):
- if self.dimension_labels[i] in unwanted_dimensions.values():
- command = command + "[0]"
- else:
- command = command + "[:]"
- #print ("command {0}".format(command))
- cleaned = eval(command)
- # cleaned has collapsed dimensions in the same order of
- # self.array, but we want it in the order stated in the
- # "dimensions".
- # create axes order for numpy.transpose
- axes = []
- for key in dimensions:
- #print ("key {0}".format( key))
- for i in range(len( left_dimensions )):
- ld = left_dimensions[i]
- #print ("ld {0}".format( ld))
- if ld == key:
- axes.append(i)
- #print ("axes {0}".format(axes))
-
- cleaned = numpy.transpose(cleaned, axes).copy()
-
- return DataSet(cleaned , True, dimensions)
-
- def fill(self, array):
- '''fills the internal numpy array with the one provided'''
- if numpy.shape(array) != numpy.shape(self.array):
- raise ValueError('Cannot fill with the provided array.' + \
- 'Expecting {0} got {1}'.format(
- numpy.shape(self.array),
- numpy.shape(array)))
- self.array = array[:]
-
-
-class SliceData(DataSet):
- '''DataSet for holding 2D images'''
- def __init__(self, array, deep_copy=True, dimension_labels=None,
- **kwargs):
-
- if type(array) == DataSet:
- # if the array is a DataSet get the info from there
- if array.number_of_dimensions != 2:
- raise ValueError('Number of dimensions are != 2: {0}'\
- .format(array.number_of_dimensions))
-
- DataSet.__init__(self, array.as_array(), deep_copy,
- array.dimension_labels, **kwargs)
- elif type(array) == numpy.ndarray:
- if dimension_labels is None:
- dimension_labels = ['horizontal_x' , 'horizontal_y' , 'vertical']
- shape = numpy.shape(array)
- ndims = len(shape)
- if ndims != 3:
- raise ValueError('Number of dimensions are != 2: {0}'.format(ndims))
-
- DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
-
- # Metadata
- self.origin = [0,0]
- self.spacing = [1,1]
-
- # load metadata from kwargs if present
- for key, value in kwargs.items():
- if key == 'origin' :
- if type(value) == list and len (value) == 2:
- self.origin = value
- if key == 'spacing' :
- if type(value) == list and len (value) == 2:
- self.spacing = value
-
- def rotate(self, center_of_rotation, angle):
- pass
-
-
-
-class VolumeData(DataSet):
- '''DataSet for holding 3D images'''
- def __init__(self, array, deep_copy=True, dimension_labels=None,
- **kwargs):
-
- if type(array) == DataSet:
- # if the array is a DataSet get the info from there
- if array.number_of_dimensions != 3:
- raise ValueError('Number of dimensions are != 3: {0}'\
- .format(array.number_of_dimensions))
-
- DataSet.__init__(self, array.as_array(), deep_copy,
- array.dimension_labels, **kwargs)
- elif type(array) == numpy.ndarray:
- if dimension_labels is None:
- dimension_labels = ['horizontal_x' , 'horizontal_y' , 'vertical']
- shape = numpy.shape(array)
- ndims = len(shape)
- if ndims != 3:
- raise ValueError('Number of dimensions are != 3: {0}'.format(ndims))
-
- DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
-
- # Metadata
- self.origin = [0,0,0]
- self.spacing = [1,1,1]
-
- # load metadata from kwargs if present
- for key, value in kwargs.items():
- if key == 'origin' :
- if type(value) == list and len (value) == 3:
- self.origin = value
- if key == 'spacing' :
- if type(value) == list and len (value) == 3:
- self.spacing = value
-
-class DataSetProcessor(CCPiBaseClass):
- '''Abstract class for a DataSetProcessor'''
-
- def __init__(self, number_of_inputs, number_of_outputs, **kwargs):
- kwargs['number_of_inputs'] = number_of_inputs
- kwargs['number_of_outputs'] = number_of_outputs
-
- CCPiBaseClass.__init__(self, **kwargs)
-
-
-
- def setInput(self, **inData):
- '''set the input data for the Processor
-
- this calls the setParameter method'''
- self.setParameter(**inData)
-
- def getOutput(self):
- raise NotImplementedError('The getOutput method is not implemented!')
-
- def apply(self):
- raise NotImplementedError('The apply method is not implemented!')
-
-
-
-class AX(DataSetProcessor):
- '''Example DataSetProcessor
- The AXPY routines perform a vector multiplication operation defined as
-
- y := a*x
- where:
-
- a is a scalar
-
- x a DataSet.
- '''
-
- def __init__(self, scalar, input_dataset):
- kwargs = {'scalar':scalar,
- 'input_dataset':input_dataset,
- 'output_dataset': None}
- DataSetProcessor.__init__(self, 2, 1, **kwargs)
-
-
-
- def apply(self):
- a, x = self.getParameter(['scalar' , 'input_dataset' ])
-
- y = DataSet( a * x.as_array() , True,
- dimension_labels=x.dimension_labels )
- self.setParameter(output_dataset=y)
-
- def getOutput(self):
- return self.getParameter( 'output_dataset' )
-
-
-class PixelByPixelDataSetProcessor(DataSetProcessor):
- '''Example DataSetProcessor
-
- This processor applies a python function to each pixel of the DataSet
-
- f is a python function
-
- x a DataSet.
- '''
-
- def __init__(self, pyfunc, input_dataset):
- kwargs = {'pyfunc':pyfunc,
- 'input_dataset':input_dataset,
- 'output_dataset': None}
- DataSetProcessor.__init__(self, 2, 1, **kwargs)
-
-
-
- def apply(self):
- pyfunc, x = self.getParameter(['pyfunc' , 'input_dataset' ])
-
- eval_func = numpy.frompyfunc(pyfunc,1,1)
-
-
- y = DataSet( eval_func( x.as_array() ) , True,
- dimension_labels=x.dimension_labels )
- self.setParameter(output_dataset=y)
-
- def getOutput(self):
- return self.getParameter( 'output_dataset' )
-
-if __name__ == '__main__':
- shape = (2,3,4,5)
- size = shape[0]
- for i in range(1, len(shape)):
- size = size * shape[i]
- a = numpy.asarray([i for i in range( size )])
- a = numpy.reshape(a, shape)
- ds = DataSet(a, False, ['X', 'Y','Z' ,'W'])
- print ("ds label {0}".format(ds.dimension_labels))
- subset = ['W' ,'X']
- b = ds.subset( subset )
- print ("b label {0} shape {1}".format(b.dimension_labels,
- numpy.shape(b.as_array())))
- c = ds.subset(['Z','W','X'])
-
- # Create a VolumeData sharing the array with c
- volume0 = VolumeData(c.as_array(), False, dimensions = c.dimension_labels)
- volume1 = VolumeData(c, False)
-
- print ("volume0 {0} volume1 {1}".format(id(volume0.array),
- id(volume1.array)))
-
- # Create a VolumeData copying the array from c
- volume2 = VolumeData(c.as_array(), dimensions = c.dimension_labels)
- volume3 = VolumeData(c)
-
- print ("volume2 {0} volume3 {1}".format(id(volume2.array),
- id(volume3.array)))
-
- # single number DataSet
- sn = DataSet(numpy.asarray([1]))
-
- ax = AX(scalar = 2 , input_dataset=c)
- ax.apply()
- print ("ax in {0} out {1}".format(c.as_array().flatten(),
- ax.getOutput().as_array().flatten()))
- axm = AX(scalar = 0.5 , input_dataset=ax.getOutput())
- axm.apply()
- print ("axm in {0} out {1}".format(c.as_array(), axm.getOutput().as_array()))
-
- # create a PixelByPixelDataSetProcessor
-
- #define a python function which will take only one input (the pixel value)
- pyfunc = lambda x: -x if x > 20 else x
- clip = PixelByPixelDataSetProcessor(pyfunc,c)
- clip.apply()
-
- print ("clip in {0} out {1}".format(c.as_array(), clip.getOutput().as_array()))
-
-
-
- \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 5135c87..ba24bef 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -296,7 +296,7 @@ class InstrumentGeometry(CCPiBaseClass):
-class DataSetProcessor(CCPiBaseClass):
+class DataSetProcessor1(CCPiBaseClass):
'''Abstract class for a DataSetProcessor
inputs: dictionary of inputs
@@ -355,7 +355,7 @@ class DataSetProcessor(CCPiBaseClass):
-class AX(DataSetProcessor):
+class AX(DataSetProcessor1):
'''Example DataSetProcessor
The AXPY routines perform a vector multiplication operation defined as
@@ -374,7 +374,7 @@ class AX(DataSetProcessor):
}
for key, value in wargs.items():
kwargs[key] = value
- DataSetProcessor.__init__(self, **kwargs)
+ DataSetProcessor1.__init__(self, **kwargs)
@@ -388,7 +388,7 @@ class AX(DataSetProcessor):
-class PixelByPixelDataSetProcessor(DataSetProcessor):
+class PixelByPixelDataSetProcessor(DataSetProcessor1):
'''Example DataSetProcessor
This processor applies a python function to each pixel of the DataSet
@@ -402,7 +402,7 @@ class PixelByPixelDataSetProcessor(DataSetProcessor):
kwargs = {'pyfunc':pyfunc,
'input_dataset':input_dataset,
'output_dataset': None}
- DataSetProcessor.__init__(self, **kwargs)
+ DataSetProcessor1.__init__(self, **kwargs)
@@ -416,6 +416,61 @@ class PixelByPixelDataSetProcessor(DataSetProcessor):
dimension_labels=x.dimension_labels )
return y
+class DataSetProcessor():
+ '''Defines a generic DataSet processor
+
+ accepts DataSet as inputs and
+ outputs DataSet
+ additional attributes can be defined with __setattr__
+ '''
+
+ def __init__(self):
+ pass
+
+ def __setattr__(self, name, value):
+ if name == 'input':
+ self.setInput(value)
+ elif name in self.__dict__.keys():
+ self.__dict__[name] = value
+ else:
+ raise KeyError('Attribute {0} not found'.format(name))
+ #pass
+
+ def setInput(self, dataset):
+ print('Setting input as {0}...'.format(dataset))
+ if issubclass(type(dataset), DataSet):
+ if self.checkInput(dataset):
+ self.__dict__['input'] = dataset
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(dataset), DataSet))
+
+ def checkInput(self, dataset):
+ '''Checks parameters of the input DataSet
+
+ Should raise an Error if the DataSet does not match expectation, e.g.
+ if the expected input DataSet is 3D and the Processor expects 2D.
+ '''
+ raise NotImplementedError('Implement basic checks for input DataSet')
+
+ def getOutput(self):
+ if None in self.__dict__.values():
+ raise ValueError('Not all parameters have been passed')
+ return self.process()
+
+ def setInputProcessor(self, processor):
+ print('Setting input as {0}...'.format(processor))
+ if issubclass(type(processor), DataSetProcessor):
+ self.__dict__['input'] = processor
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(processor), DataSetProcessor))
+
+
+ def process(self):
+ raise NotImplementedError('process must be implemented')
+
+
if __name__ == '__main__':
shape = (2,3,4,5)
@@ -472,7 +527,9 @@ if __name__ == '__main__':
print ("clip in {0} out {1}".format(c.as_array(), clip.getOutput().as_array()))
-
+ dsp = DataSetProcessor()
+ dsp.setInput(ds)
+ dsp.input = a
# pipeline
# Pipeline
# Pipeline.setProcessor(0, ax)
diff --git a/Wrappers/Python/test/regularizers.py b/Wrappers/Python/test/regularizers.py
index 003340c..4ac8d28 100644
--- a/Wrappers/Python/test/regularizers.py
+++ b/Wrappers/Python/test/regularizers.py
@@ -13,9 +13,9 @@ import timeit
from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
LLT_model, PatchBased_Regul ,\
TGV_PD
-from ccpi.framework import DataSetProcessor, DataSet
+from ccpi.framework import DataSetProcessor, DataSetProcessor1, DataSet
-class SplitBregmanTVRegularizer(DataSetProcessor):
+class SplitBregmanTVRegularizer(DataSetProcessor1):
'''Regularizers DataSetProcessor
'''
@@ -32,7 +32,7 @@ class SplitBregmanTVRegularizer(DataSetProcessor):
}
for key, value in wargs.items():
kwargs[key] = value
- DataSetProcessor.__init__(self, **kwargs)
+ DataSetProcessor1.__init__(self, **kwargs)
@@ -50,7 +50,7 @@ class SplitBregmanTVRegularizer(DataSetProcessor):
#self.setParameter(output_dataset=y)
return y
-class FGPTVRegularizer(DataSetProcessor):
+class FGPTVRegularizer(DataSetProcessor1):
'''Regularizers DataSetProcessor
'''
@@ -67,7 +67,7 @@ class FGPTVRegularizer(DataSetProcessor):
}
for key, value in wargs.items():
kwargs[key] = value
- DataSetProcessor.__init__(self, **kwargs)
+ DataSetProcessor1.__init__(self, **kwargs)
@@ -93,7 +93,106 @@ class FGPTVRegularizer(DataSetProcessor):
if issubclass(type(other) , DataSetProcessor):
self.setParameter(input = other.getOutput()[0])
-
+class SBTV(DataSetProcessor):
+ '''Regularizers DataSetProcessor
+ '''
+
+
+
+ def __init__(self):
+ attributes = {'regularization_parameter':None,
+ 'number_of_iterations': 35,
+ 'tolerance_constant': 0.0001,
+ 'TV_penalty':0,
+ 'input' : None
+ }
+ for key, value in attributes.items():
+ self.__dict__[key] = value
+
+ def checkInput(self, dataset):
+ '''Checks number of dimensions input DataSet
+
+ Expected input is 2D or 3D
+ '''
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self):
+ '''Executes the processor
+
+ Basic checks are run in here
+ '''
+
+ if issubclass(type(self.input), DataSetProcessor):
+ dsi = self.input.getOutput()[0]
+ else:
+ dsi = self.input
+ if None in self.__dict__.values():
+ raise ValueError('Not all parameters have been passed')
+ out = SplitBregman_TV (dsi.as_array(),
+ self.regularization_parameter,
+ self.number_of_iterations,
+ self.tolerance_constant,
+ self.TV_penalty)
+ print (type(out))
+ y = DataSet( out[0] , False )
+ #self.setParameter(output_dataset=y)
+ return y
+
+class FGPTV(DataSetProcessor):
+ '''Regularizers DataSetProcessor
+ '''
+
+
+
+ def __init__(self):
+ attributes = {'regularization_parameter':None,
+ 'number_of_iterations': 35,
+ 'tolerance_constant': 0.0001,
+ 'TV_penalty':0,
+ 'input' : None
+ }
+ for key, value in attributes.items():
+ self.__dict__[key] = value
+
+ def checkInput(self, dataset):
+ '''Checks number of dimensions input DataSet
+
+ Expected input is 2D or 3D
+ '''
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self):
+ '''Executes the processor
+
+ Basic checks are run in here
+ '''
+
+ if issubclass(type(self.input), DataSetProcessor):
+ dsi = self.input.getOutput()
+ else:
+ dsi = self.input
+ if None in self.__dict__.values():
+ raise ValueError('Not all parameters have been passed')
+ out = FGP_TV (dsi.as_array(),
+ self.regularization_parameter,
+ self.number_of_iterations,
+ self.tolerance_constant,
+ self.TV_penalty)
+ print (type(out))
+ y = DataSet( out[0] , False )
+ #self.setParameter(output_dataset=y)
+ return y
+
if __name__ == '__main__':
filename = os.path.join(".." , ".." , ".." , ".." ,
"CCPi-FISTA_Reconstruction", "data" ,
@@ -192,13 +291,18 @@ if __name__ == '__main__':
#cmap="gray"
)
- reg3 = FGPTVRegularizer(reg,
- pars['regularization_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['TV_penalty'],
- hold_input=False, hold_output=True)
- chain = reg3.getOutput()
+
+# 'regularization_parameter':40 , \
+# 'number_of_iterations' :350 ,\
+# 'tolerance_constant':0.01 , \
+# 'TV_penalty': 0
+ reg3 = SBTV()
+ reg3.number_of_iterations = 350
+ reg3.tolerance_constant = 0.01
+ reg3.regularization_parameter = 40
+ reg3.TV_penalty = 0
+ reg3.setInput(lena)
+ dataprocessoroutput = reg3.getOutput()
#txtstr = printParametersToString(pars)
#txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
@@ -211,7 +315,53 @@ if __name__ == '__main__':
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'chain', transform=a.transAxes, fontsize=14,
+ a.text(0.05, 0.95, 'SBTV', transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+ imgplot = plt.imshow(dataprocessoroutput.as_array(),\
+ #cmap="gray"
+ )
+ reg4 = FGPTV()
+ reg4.number_of_iterations = 350
+ reg4.tolerance_constant = 0.01
+ reg4.regularization_parameter = 40
+ reg4.TV_penalty = 0
+ reg4.setInput(lena)
+ dataprocessoroutput2 = reg4.getOutput()
+
+ #txtstr = printParametersToString(pars)
+ #txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+ #print (txtstr)
+
+
+ a=fig.add_subplot(2,3,5)
+
+
+ # these are matplotlib.patch.Patch properties
+ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+ # place a text box in upper left in axes coords
+ a.text(0.05, 0.95, 'FGPTV', transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+ imgplot = plt.imshow(dataprocessoroutput2.as_array(),\
+ #cmap="gray"
+ )
+
+
+ #reg4.input = None
+ reg4.setInputProcessor(reg3)
+ chain = reg4.process()
+
+ #txtstr = printParametersToString(pars)
+ #txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+ #print (txtstr)
+
+
+ a=fig.add_subplot(2,3,6)
+
+
+ # these are matplotlib.patch.Patch properties
+ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+ # place a text box in upper left in axes coords
+ a.text(0.05, 0.95, 'SBTV + FGPTV', transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(chain.as_array(),\
#cmap="gray"